Interval Scheduling Interval Partitioning Minimising Lateness

Greedy Algorithms

T. M. Murali

February 11, 16, 2016

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Algorithm Design

Start discussion of different ways of designing algorithms.
Greedy algorithms, divide and conquer, dynamic programming.
Discuss principles that can solve a variety of problem types.

vV v. vy

Design an algorithm, prove its correctness, analyse its complexity.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Algorithm Design

Start discussion of different ways of designing algorithms.
Greedy algorithms, divide and conquer, dynamic programming.
Discuss principles that can solve a variety of problem types.

Design an algorithm, prove its correctness, analyse its complexity.

vV V. v Vv Y

Greedy algorithms: make the current best choice.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

M. Murali bruary 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness
L O S O

N S S S S S S [

i
X00" | xrervonoerand —
T
ez | s R— — J— T EO— ——
| @m @ @ @@ @m o
scas || wom S -
T
J— JR— R R P R JRT—————
|| oo oy [TeT— | ROS—— oy
2 |w [— cton s 5m F— e |mm.m.....“..,m o s
r = = = E
[e— s | p— e
- | o spos e et Graam .|| e || - | [TE——— es— prr——
FOX | smernien J— ne | o [—— PO fo— [—
A | o T i ot = m| i St o = W
Q| ot oo T— EE— s
= T =
-y [J— | oo onte Py o it e, 0
= T T
cw | e s e | 28 (- PO e oty samsecie - st
r 1
LY EE— S— [EN——
[p——— Er— | =
R R —— || e || s [- [R—
R | e o s | p— s [- et

Good

y 11, 16, 2016 CS 4104: Greedy

Interval Scheduling

Interval Partitioning

Minimising Lateness

L - " [pr— sk “MM [e || [s f—
o et emcus ||m.ﬂ.,mmm
et o) [ot o e || R—
w— p——
S | consaescrses mm o e L ——
S— ree———— ._
| s sn [—— [—

o

p——r—

[i

Beyond heHeadines

[st e v s o

e

[emoeranos

| T ———

y 11, 16, 2016

CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness
s ,, b L _

2 13

-

e i he calden i h Golden Gl

|| e

Fghtaghe o)

Sufy | E——
Vi

” e
= |||mm\anambeum)m Iea\dnwvevsmn)unmm | S, | S——
l T
mn, ” ,,,,,,,,,,,,,,,,, lnw E———

o | i || oo

[oo s ‘ ‘

» Input: Start and end time of each movie.

» Constraint: Only one TV = cannot watch two overlapping classes at the
same time.

» Output: Compute the largest number of movies we can watch.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness
s ,, b L _

Interval Scheduling

INTERVAL SCHEDULING

INSTANCE: Nonempty set {(s(/), f(i)),1 < i < n} of start and finish
times of n jobs.

SOLUTION: The largest subset of mutually compatible jobs.
» Two jobs are compatible if they do not overlap.

» This problem models the situation where you have a resource, a set of fixed
jobs, and you want to schedule as many jobs as possible.

» For any input set of jobs, algorithm must provably compute the largest set of
compatible jobs.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Template for Greedy Algorithm

» Process jobs in some order. Add next job to the result if it is compatible with
the jobs already in the result.

» Key question: in what order should we process the jobs?

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Template for Greedy Algorithm

» Process jobs in some order. Add next job to the result if it is compatible with
the jobs already in the result.
» Key question: in what order should we process the jobs?
Earliest start time Increasing order of start time s(/).
Earliest finish time Increasing order of finish time f(/).
Shortest interval Increasing order of length f(i) — s(i).
Fewest conflicts Increasing order of the number of conflicting jobs. How fast
can you compute the number of conflicting jobs for each job?

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Greedy ldeas that Do Not Work

— — — —

(@)
b
(b)
| — | —
— b
(c)

Figure 4.1 Some instances of the Interval Scheduling Problem on which natural greedy
algorithms fail to find the optimal solution. In (a), it does not work to select the interval
that starts earliest; in (b), it does not work to select the shortest interval; and in (c), it
does not work to select the interval with the fewest conflicts.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Interval Scheduling Algorithm: Earliest Finish Time

> Schedule jobs in order of earliest finish time (EFT).

Initially let R be the set of all requests, and let A be empty
While R is not yet empty

Choose a request ieR that has the smallest finishing time

Add request i to A

Delete all requests from R that are not compatible with request i
EndWhile
Return the set A as the set of accepted requests

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Interval Scheduling Algorithm: Earliest Finish Time

> Schedule jobs in order of earliest finish time (EFT).

Initially let R be the set of all requests, and let A be empty
While R is not yet empty

Choose a request ieR that has the smallest finishing time

Add request i to A

Delete all requests from R that are not compatible with request i
EndWhile
Return the set A as the set of accepted requests

» Claim: A is a compatible set of jobs.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Interval Scheduling Algorithm: Earliest Finish Time

> Schedule jobs in order of earliest finish time (EFT).

Initially let R be the set of all requests, and let A be empty
While R is not yet empty

Choose a request ieR that has the smallest finishing time

Add request i to A

Delete all requests from R that are not compatible with request i
EndWhile
Return the set A as the set of accepted requests

» Claim: A is a compatible set of jobs. Proof follows by construction, i.e., the
algorithm computes a compatible set of jobs.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Ideas for Analysing the EFT Algorithm

> We need to prove that |A| (the number of jobs in A) is the largest possible in
any set of mutually compatible jobs.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Ideas for Analysing the EFT Algorithm

> We need to prove that |A| (the number of jobs in A) is the largest possible in
any set of mutually compatible jobs.

» Proof idea 1: algorithm makes the best choice at each step, so it must
choose the largest number of mutually compatible jobs.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Ideas for Analysing the EFT Algorithm

> We need to prove that |A| (the number of jobs in A) is the largest possible in
any set of mutually compatible jobs.

» Proof idea 1: algorithm makes the best choice at each step, so it must
choose the largest number of mutually compatible jobs.
» What does “best” mean?

> This idea is too generic. It can be applied even to algorithms that we know do
not work correctly.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Ideas for Analysing the EFT Algorithm

> We need to prove that |A| (the number of jobs in A) is the largest possible in
any set of mutually compatible jobs.
» Proof idea 1: algorithm makes the best choice at each step, so it must
choose the largest number of mutually compatible jobs.
» What does “best” mean?
> This idea is too generic. It can be applied even to algorithms that we know do
not work correctly.
» Proof idea 2: at each step, can we show algorithm has the “better” solution
than any other answer?

» What does “better” mean?
» How do we measure progress of the algorithm?

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Ideas for Analysing the EFT Algorithm

> We need to prove that |A| (the number of jobs in A) is the largest possible in
any set of mutually compatible jobs.
» Proof idea 1: algorithm makes the best choice at each step, so it must
choose the largest number of mutually compatible jobs.
» What does “best” mean?
> This idea is too generic. It can be applied even to algorithms that we know do
not work correctly.
» Proof idea 2: at each step, can we show algorithm has the “better” solution
than any other answer?
» What does “better” mean?
» How do we measure progress of the algorithm?
» Basic idea of proof:
» We can sort jobs in any solution in increasing order of their finishing time.

> Finishing time of job number r selected by A < finishing time of job number r
selected by any other algorithm.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Analysing the EFT Algorithm

Let O be an optimal set of jobs. We will show that |A| = |O].
Let iy, h, ..., ik be the set of jobs in A in order.

Let j1,J/2,---,jm be the set of jobs in O in order, m > k.
Claim: For all indices r < k, f(i,) < f(j,).

vV v. vy

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Analysing the EFT Algorithm

Let O be an optimal set of jobs. We will show that |A| = |O].

Let iy, h, ..., ik be the set of jobs in A in order.

Let j1,J/2,---,jm be the set of jobs in O in order, m > k.

Claim: For all indices r < k, f(i,) < f(j;). Prove by induction on r.

vV v. vy

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Analysing the EFT Algorithm

Let O be an optimal set of jobs. We will show that |A| = |O].

Let iy, h, ..., ik be the set of jobs in A in order.

Let j1,J/2,---,jm be the set of jobs in O in order, m > k.

Claim: For all indices r < k, f(i,) < f(j;). Prove by induction on r.

vV v. vy

Can the greedy algorithm’s
rihinterval really finish later?

Figure 4.3 The inductive step in the proof that the greedy algorithm stays ahead.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Analysing the EFT Algorithm

Let O be an optimal set of jobs. We will show that |A| = |O].

Let iy, h, ..., ik be the set of jobs in A in order.

Let j1,J/2,---,jm be the set of jobs in O in order, m > k.

Claim: For all indices r < k, f(i,) < f(j;). Prove by induction on r.

vV v. vy

Can the greedy algorithm’s
rihinterval really finish later?

i 02
L 1 k 1

Jr-1 Jr

Figure 4.3 The inductive step in the proof that the greedy algorithm stays ahead.

» Claim: m = k.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Analysing the EFT Algorithm

Let O be an optimal set of jobs. We will show that |A| = |O].

Let iy, h, ..., ik be the set of jobs in A in order.

Let j1,J/2,---,jm be the set of jobs in O in order, m > k.

Claim: For all indices r < k, f(i,) < f(j;). Prove by induction on r.

vV v. vy

Can the greedy algorithm’s
rihinterval really finish later?

i 02
L 1 k 1

Jr-1 Jr

Figure 4.3 The inductive step in the proof that the greedy algorithm stays ahead.

» Claim: m = k.

» Claim: The greedy algorithm returns an optimal set A.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Implementing the EFT Algorithm

1. Reorder jobs so that they are in increasing order of finish time.
2. Store starting time of jobs in an array S.
3. k=1
4. While k <|S],
4.1 Output job k.
4.2 Let finish time of job k be f.

4.3 lterate over S from index k onwards to find the first index i such that S[i] > f.
4.4 k=i

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Implementing the EFT Algorithm

1. Reorder jobs so that they are in increasing order of finish time.
2. Store starting time of jobs in an array S.

3. k=1

4. While k <|S],

4.1 Output job k.
4.2 Let finish time of job k be f.

4.3 lterate over S from index k onwards to find the first index i such that S[i] > f.
44 k=i

» Must be careful to iterate over S such that we never scan same index more
than once.

» Running time is O(nlog n), dominated by sorting. advance from the

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

12528 | CS-3604 [Protesionalsm in Comping [L [@ [rns] s [oRouls [tr [tooaw] wisew|paua [ur
‘Comments for CRN 12528: Force/add subjectto availaily;
for informati
20110 [CS-3634 [Comp Sci Foundations for MDA [L [3 T rws] E) [T werburon [TR [soem]| eusem|saunpaos | 17T
‘Comments for CRN 20110: Not fo CS major credi.
To submit a orcefadd request,
send e-mail 1o M. Nora Sullvan: nora@4@vLedu
12520 [CS-3654 [10 Data Anatyrcs & visual | P [5 [2] o0 [t orn [Tww [sowm][sisew | wiisso [
Comments for RN 12529: Forceladd subject o avalabliy;
forinformation,
19527 | CS-3704 [mtermed softare Des | 0 [5 [% [5 [rseancons [ww [zaww] sasew [winsso [
Comments for GRN 19527: Force/add subject o avalbily;
12530 | Cs-3714 [Mobile Sotware Development I L [3 [rom] ® [bsmcCice [TR [saew] assew[mcau3 [=
Comments for CRN 12530: Forceiadd subjectto availaily;
for informari y
12531 | CS-3724 [[HumanComputsTneen I L [2 [rm2s] 0 [sRHson [TR [aew] wesew|surce e [z
‘Comments for CRN 12531: Force/add subject to availaily;
P
12533 [CS-3744 [1e0 Ut Programming Grapics [L [3 T rus] 75 [K Luter [TR [soem| eusem|mce i | 17T
‘Comments for CRN 12533: Force/add subject to availabily;
for informat
1254 | CS-4104 [Data ana Algoritm Analysis [L [5 Jraa [& [[TR [zooem| sasem|ovmizs [1
‘Comments lor CRN 12534: Force/add subject to avallably;
forinfoma
1535 | CS-4114 [[Formal Languages I B [3 [raas| s o [7R [ssoem] wasew [TorG 1060 [s
‘Comments for RN 12535: Force/add subject 1o avalabiliy;
12537 | CS-4284 [[systems & Networking Capstane | L [T 5 T » Jawex [mw [zaew] sasbw[Ranv2z [
Comments for CRN 12537: Force/add subject to availaily;
for information, y
19512 | C5-4504 [Computer Onganiation | L [2 T % [wren [T [waew] wesew [whiasy [z
Comments for CRN 19512: Force/add subjectto avalabily;
for i
1250 | CS-4604 [Date Bae Mgt 5 | L [7 T w0 [eabee [Tww [woew [susem [wiiaeo [
Comments for CRN 12540: Force/add subject to avalabily;
for infomati
12541 [CS-4624 [Muttimediatiypertext [L I 3 [ma Fox [TR [saoam| ioasam[wenae [oar
‘Comments lor CRN 12541; Force/add subject to avalabliy;
for inl
20098 [CS-4644 [Creative Computing st [L [5 Jraw] 20 [axener [TR [ooam] izasem [mcs 2 [ux

Murali

y 11, 16, 2016

Interval Scheduling Interval Partitioning Minimising Lateness

52 [C5:3604 [Polesioulin i Conputng \ L [= [ras] = [owows [T [oo | e[[
‘Comments for CRN 12528: Force/add subjectto availaily;
for informa
20110 [CS-3634 [Comp Sci Foundations for MDA [L [3 T rws] E) [T werburon [TR [soem]| eusem|saunpaos | 17T
‘Comments for CRN 20110: Not fo CS major credi.
To submit a forceladd request
send e-mail 1o M. Nora Sullvan: nora@4@vLedu
12520 [CS-3654 [10 Data Anatyrcs & visual | P [5 [2] o0 [t orn [Tww [sowm][sisew | wiisso [
Comments for RN 12529: Forceladd subject o avalabliy;
for information,
1527 [C5-3704 | imemea sotare Des] v [[5 [= [rsmmces [ow [o] e |wimmo | i
Comments for GRN 19527: Force/add subject o avalbily;
13 | Csa71a [obieSofvare Develapmen: [[5 [ram] @ [swecidan [TR | sooem] wau|mes s [=
Comments for CRN 12530: Forceiadd subjectto availaily;
for inform: i y
253 [C5:3704 | uananConputs an \ L [= [rua] 5 [[n [mam] emi|smem | &
‘Comments for CRN 12531: Force/add subject to availaily;
P
12533 [CS-3744 [1e0 Ut Programming Grapics [L [3 T rus] 75 [K Luter [TR [soem| eusem|mce i | 17T
‘Comments for CRN 12533: Force/add subject to availabily;
for nformat
1254 | CS-4104 [Data ana Algoritm Analysis [L [5 Jraa [& [[TR [zooem| sasem|ovmizs [1
‘Comments lor CRN 12534: Force/add subject to avallably;
forinformaton, see
55 [C5a114 o tanguges \ v [5 [ras] s [imm [[swm] sem|tocm | G
‘Comments for RN 12535: Force/add subject 1o avalabiliy;
12557 [C5-4284 | Sysems i Netwrking Copsoe I C [= [5 [» Jwem [wiw | zow] sew|mwom | m
Comments for CRN 12537: Force/add subject to availaily;
for information, y
5512 [C54504 [Conpuer Ogmiaion I [[[@ [% Jwem [x| woww| vem|werm | @
Comments for CRN 19512: Force/add subjectto avalabily;
for nformai
2580 [CS4604 |inDuaBuegsys I [[= [7 | @ [sarwems [oiw | soom] se|wism | @
Comments for CRN 12540: Force/add subject to avalabily;
fo nformat
12541 [CS-4624 [Muttimediatiypertext [L I 3 [ma Fox [TR [saoam| ioasam[wenae [oar
‘Comments lor CRN 12541; Force/add subject to avalabliy;
for inl
20098 [CS-4644 [Creative Computing st [L [5 Jraw] 20 [axener [TR [ooam] izasem [mcs 2 [ux

» Input: Start and end time of each class.

» Constraint: Cannot schedule two overlapping classes to the same room.

» Output: Assign each class to a room and use smallest number of rooms
possible.

Murali

y 11, 16, 2016

Interval Scheduling Interval Partitioning Minimising Lateness

Interval Partitioning

INTERVAL PARTITIONING

INSTANCE: Set {(s(),f(i)),1 < i < n} of start and finish times of n
jobs.

SOLUTION: A partition of the jobs into k sets, where each set of jobs is
mutually compatible, and k is minimised.

» This problem models the situation where you a set of fixed jobs, and you
want to schedule all jobs using as few resources as possible.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Depth of Intervals

£ . J .

< . 4 . 8 .
b
| — [—
a f L

(@)
£ .4 . Ni . .
|b I I I |i I
Aa 1 le ||h I

(b)

Figure 4.4 (a) An instance of the Interval Partitioning Problem with ten intervals (a
through j). (b) A solution in which all intervals are scheduled using three resources:
each row represents a set of intervals that can all be scheduled on a single resource.

» The depth of a set of intervals is the maximum number of intervals that
contain any time point.

February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Depth of Intervals

£ . J .
< M , 8 ;
b
I — -
[— A
()
£ .4 . Ni . .
|b I I I |i I
Aa 1 le ||h I
(b)

Figure 4.4 (a) An instance of the Interval Partitioning Problem with ten intervals (a
through j). (b) A solution in which all intervals are scheduled using three resources:
each row represents a set of intervals that can all be scheduled on a single resource.

» The depth of a set of intervals is the maximum number of intervals that
contain any time point.

» Claim: In any instance of INTERVAL PARTITIONING, k > depth.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Depth of Intervals

£ . J .
< M , 8 ;
b
I — -
[— A
()
£ N . N . .
|b I I I |i I
Aa 1 le ||h I
(b)

Figure 4.4 (a) An instance of the Interval Partitioning Problem with ten intervals (a
through j). (b) A solution in which all intervals are scheduled using three resources:
each row represents a set of intervals that can all be scheduled on a single resource.

» The depth of a set of intervals is the maximum number of intervals that
contain any time point.

» Claim: In any instance of INTERVAL PARTITIONING, k > depth.

> Is it possible to compute the depth efficiently? Is k = depth?

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Computing the Depth of the Intervals

» How efficiently can we compute the depth of a set of intervals?

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Computing the Depth of the Intervals
» How efficiently can we compute the depth of a set of intervals?

1. Sort the start times and finish times of the jobs into a single list L.

2..d <+ 0.
3. For i ranging from 1 to 2n

3.1 If L; is a start time, increment d by 1.
3.2 If L; is a finish time, decrement d by 1.

4. Return the largest value of d computed in the loop.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Computing the Depth of the Intervals
» How efficiently can we compute the depth of a set of intervals?

1. Sort the start times and finish times of the jobs into a single list L.

2..d <+ 0.
3. For i ranging from 1 to 2n

3.1 If L; is a start time, increment d by 1.
3.2 If L; is a finish time, decrement d by 1.

4. Return the largest value of d computed in the loop.

» Algorithm runs in O(nlog n) time.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Interval Partitioning Algorithm
» Compute the depth d of the intervals.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Interval Partitioning Algorithm
» Compute the depth d of the intervals.

Sort the intervals by their start times, breaking ties arbitrarily
Let I}, I, ...,I, denote the intervals in this order
For j=1,2,3,...,n
For each interval I; that precedes J; in sorted order and overlaps it
Exclude the label of I; from consideration for I
Endfor
If there is any label from {1,2,...,d} that has not been excluded then
Assign a nonexcluded label to J;
Else
Leave I; unlabeled
Endif
Endfor

» Claim: Every interval gets a label and no pair of overlapping intervals get the
same label.

February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Interval Partitioning Algorithm
» Compute the depth d of the intervals.

Sort the intervals by their start times, breaking ties arbitrarily
Let I}, I, ...,I, denote the intervals in this order
For j=1,2,3,...,n
For each interval I; that precedes J; in sorted order and overlaps it
Exclude the label of I; from consideration for I
Endfor
If there is any label from {1,2,...,d} that has not been excluded then
Assign a nonexcluded label to J;
Else
Leave I; unlabeled
Endif
Endfor

» Claim: Every interval gets a label and no pair of overlapping intervals get the
same label.
» Claim: The greedy algorithm is optimal.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Interval Partitioning Algorithm
» Compute the depth d of the intervals.

Sort the intervals by their start times, breaking ties arbitrarily
Let I}, I, ...,I, denote the intervals in this order
For j=1,2,3,...,n
For each interval I; that precedes J; in sorted order and overlaps it
Exclude the label of I; from consideration for I
Endfor
If there is any label from {1,2,...,d} that has not been excluded then
Assign a nonexcluded label to J;
Else
Leave I; unlabeled
Endif
Endfor

» Claim: Every interval gets a label and no pair of overlapping intervals get the
same label.

» Claim: The greedy algorithm is optimal.

» The running time of the algorithm is O(nlog n).

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Interval Partitioning Algorithm
» Compute the depth d of the intervals.

Sort the intervals by their start times, breaking ties arbitrarily
Let I}, I, ...,I, denote the intervals in this order
For j=1,2,3,...,n
For each interval I; that precedes J; in sorted order and overlaps it
Exclude the label of I; from consideration for I
Endfor
If there is any label from {1,2,...,d} that has not been excluded then
Assign a nonexcluded label to J;
Else
Leave I; unlabeled
Endif
Endfor

» Claim: Every interval gets a label and no pair of overlapping intervals get the
same label.

» Claim: The greedy algorithm is optimal.

» The running time of the algorithm is O(nlog n). Can modify algorithm for
computing depth to maintain set of available labels and to assign them
efficiently.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Scheduling to Minimise Lateness

» Study different model: job i has a length t(i) and a deadline d(/).
» We want to schedule all n jobs on one resource.

» Our goal is to assign a starting time s(7) to each job such that each job is
delayed as little as possible.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Scheduling to Minimise Lateness

v

Study different model: job i has a length t(/) and a deadline d(/).
» We want to schedule all n jobs on one resource.

v

Our goal is to assign a starting time s(/) to each job such that each job is
delayed as little as possible.

A job i is delayed if f(i) > d(i); the lateness of the job is

v

max(0, £ (i) — d(i)).
The lateness of a schedule is

max (max (0, f(i) — d(i))).

1<i<n

v

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Scheduling to Minimise Lateness

v

Study different model: job i has a length t(/) and a deadline d(/).
» We want to schedule all n jobs on one resource.

v

Our goal is to assign a starting time s(/) to each job such that each job is
delayed as little as possible.

A job i is delayed if f(i) > d(i); the lateness of the job is
max(0, f (i) — d(1)).

v

The lateness of a schedule is

max (max (0, F(i) — d(i))).

v

MINIMISE LATENESS

INSTANCE: Set {(t(i),d()),1 < i < n} of lengths and deadlines of n

jobs.

SOLUTION: Set {s(i),1
)+

i < n} of start times such that
maxy<j<n (max (0, s(i —d(i

)) is as small as possible.

()

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Scheduling to Minimise Lateness

MINIMISE LATENESS

INSTANCE: Set {(t(i),d()),1 < i < n} of lengths and deadlines of n
jobs.
SOLUTION: Set {s(i

1),1 < i < n} of start times such that
maxi<i<n (max (075(i) + () —d(i

)) is as small as possible.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Scheduling to Minimise Lateness

MINIMISE LATENESS

INSTANCE: Set {(t(i),d()),1 < i < n} of lengths and deadlines of n
jobs.

SOLUTION: Set {s(/),1 < i < n} of start times such that
maxy<i<p (max (0, s(i) + t(i) — d(i)) is as small as possible.
d(l) =1 d(2) = 3
. 0 , 4@
! 0 1 2 3 4 5
(1) |32
di) | 113 d(2) =3 d(1) =1
OF 40
0 1 2 3 4 5

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Template for Greedy Algorithm

» Key question: In what order should we schedule the jobs?

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Template for Greedy Algorithm

» Key question: In what order should we schedule the jobs?
Shortest length Increasing order of length t(/).

Shortest slack time Increasing order of d(i) — ().

Earliest deadline Increasing order of deadline d(i).

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Template for Greedy Algorithm

» Key question: In what order should we schedule the jobs?

Shortest length Increasing order of length t(/). Ignores deadlines completely!
Shortest job may have a very late deadline.

i 1 2
t(f) 1 10
d(i) | 100 | 10

Shortest slack time Increasing order of d(i) — ().

Earliest deadline Increasing order of deadline d(i).

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Template for Greedy Algorithm

» Key question: In what order should we schedule the jobs?

Shortest length Increasing order of length t(/). Ignores deadlines completely!
Shortest job may have a very late deadline.

i 1 2
t(f) 1 10
d(i) | 100 | 10

Shortest slack time Increasing order of d(i) — t(i). Job with smallest slack
may take a long time.

i 1| 2
t(i) 1 1]10
d(i) | 2110

Earliest deadline Increasing order of deadline d(i).

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Template for Greedy Algorithm

» Key question: In what order should we schedule the jobs?

Shortest length Increasing order of length t(/). Ignores deadlines completely!
Shortest job may have a very late deadline.

i 1 2
t(1) 1 10
d(i) | 100 | 10

Shortest slack time Increasing order of d(i) — t(i). Job with smallest slack
may take a long time.

i 1| 2
t(i) 1 1]10
d(i) | 2110

Earliest deadline Increasing order of deadline d(i). Correct? Does it make
sense to tackle jobs with earliest deadlines first?

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Minimising Lateness: Earliest Deadline First

Order the jobs in order of their deadlines
Assume for simplicity of notation that d;<...<d,
Initially, f=s

Consider the jobs i=1,...,n in this order
Assign job i to the time interval from s(i))=f to f()=f+¢
Let f=f+¢

End

Return the set of scheduled intervals [s(i), f()] for i=1,...,n

» Proof of correctness is more complex.

> We will use an exchange argument: gradually modify the optimal schedule O
till it is the same as the schedule A computed by the algorithm.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Properties of Schedules
Inversion
T~
| | IFA | 1) | I | |
d(j) < d(i) but s(i) < s(j)

> A schedule has an inversion if a job i with deadline d(/) is scheduled before a
job j with an earlier deadline d(j), i.e., d(j) < d(i) and s(i) < s(j).

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Properties of Schedules
Inversion

D ——
| | I | 1] L1 |
d(j) < d(i) but s(i) < s(j)
> A schedule has an inversion if a job i with deadline d(/) is scheduled before a
job j with an earlier deadline d(j), i.e., d(j) < d(i) and s(i) < s(j).
» Claim 1: The algorithm produces a schedule with no inversions and no idle
time.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Properties of Schedules

Inversion

=

T~
| | I | 1] L1 |
d(j) < d(i) but s(i) < s(j)
> A schedule has an inversion if a job i with deadline d(/) is scheduled before a
job j with an earlier deadline d(j), i.e., d(j) < d(i) and s(i) < s(j).
» Claim 1: The algorithm produces a schedule with no inversions and no idle
time.

» Claim 2: All schedules with no inversions and no idle time have the same
lateness.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Properties of Schedules

Inversion

=

T~
| | I | 1] L1 |
d(j) < d(i) but s(i) < s(j)
> A schedule has an inversion if a job i with deadline d(/) is scheduled before a
job j with an earlier deadline d(j), i.e., d(j) < d(i) and s(i) < s(j).
» Claim 1: The algorithm produces a schedule with no inversions and no idle
time.

» Claim 2: All schedules with no inversions and no idle time have the same
lateness.
» Case 1: All jobs have distinct deadlines.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Properties of Schedules

Inversion

=

—
| | IFA | 1) | I | |
d(j) < d(i) but s(i) < s(j)

> A schedule has an inversion if a job i with deadline d(/) is scheduled before a

job j with an earlier deadline d(j), i.e., d(j) < d(i) and s(i) < s(j).
» Claim 1: The algorithm produces a schedule with no inversions and no idle

time.
» Claim 2: All schedules with no inversions and no idle time have the same

lateness.

» Case 1: All jobs have distinct deadlines. There is a unique schedule with no
inversions and no idle time.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Properties of Schedules

Inversion

=

T~
| | I | 1] L1 |
d(j) < d(i) but s(i) < s(j)
> A schedule has an inversion if a job i with deadline d(/) is scheduled before a
job j with an earlier deadline d(j), i.e., d(j) < d(i) and s(i) < s(j).
» Claim 1: The algorithm produces a schedule with no inversions and no idle
time.

» Claim 2: All schedules with no inversions and no idle time have the same
lateness.
» Case 1: All jobs have distinct deadlines. There is a unique schedule with no
inversions and no idle time.
» Case 2: Some jobs have the same deadline.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Properties of Schedules

Inversion

=

—
| | IFA | 1) | I | |
d(j) < d(i) but s(i) < s(j)
> A schedule has an inversion if a job i with deadline d(/) is scheduled before a
job j with an earlier deadline d(j), i.e., d(j) < d(i) and s(i) < s(j).
» Claim 1: The algorithm produces a schedule with no inversions and no idle
time.
» Claim 2: All schedules with no inversions and no idle time have the same
lateness.
» Case 1: All jobs have distinct deadlines. There is a unique schedule with no
inversions and no idle time.
» Case 2: Some jobs have the same deadline. Ordering of the jobs does not
change the maximum lateness of these jobs.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Properties of Schedules

Inversion

=

—
| | IFA | 1) | I | |
d(j) < d(i) but s(i) < s(j)
> A schedule has an inversion if a job i with deadline d(/) is scheduled before a
job j with an earlier deadline d(j), i.e., d(j) < d(i) and s(i) < s(j).
» Claim 1: The algorithm produces a schedule with no inversions and no idle
time.
» Claim 2: All schedules with no inversions and no idle time have the same
lateness.
» Case 1: All jobs have distinct deadlines. There is a unique schedule with no
inversions and no idle time.
» Case 2: Some jobs have the same deadline. Ordering of the jobs does not
change the maximum lateness of these jobs.

» Claim 3: There is an optimal schedule with no idle time.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Properties of Schedules

Inversion

=

T~
| | I | 1] L1 |
d(j) < d(i) but s(i) < s(j)
A schedule has an inversion if a job i with deadline d(/) is scheduled before a
job j with an earlier deadline d(j), i.e., d(j) < d(i) and s(i) < s(j).

v

» Claim 1: The algorithm produces a schedule with no inversions and no idle
time.
» Claim 2: All schedules with no inversions and no idle time have the same
lateness.
» Case 1: All jobs have distinct deadlines. There is a unique schedule with no
inversions and no idle time.
» Case 2: Some jobs have the same deadline. Ordering of the jobs does not
change the maximum lateness of these jobs.
» Claim 3: There is an optimal schedule with no idle time.
> Claim 4: There is an optimal schedule with no inversions and no idle time.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Properties of Schedules

Inversion

=

T~
| | I | 1] L1 |
d(j) < d(i) but s(i) < s(j)
A schedule has an inversion if a job i with deadline d(/) is scheduled before a
job j with an earlier deadline d(j), i.e., d(j) < d(i) and s(i) < s(j).

v

» Claim 1: The algorithm produces a schedule with no inversions and no idle
time.
» Claim 2: All schedules with no inversions and no idle time have the same
lateness.
» Case 1: All jobs have distinct deadlines. There is a unique schedule with no
inversions and no idle time.
» Case 2: Some jobs have the same deadline. Ordering of the jobs does not
change the maximum lateness of these jobs.
» Claim 3: There is an optimal schedule with no idle time.
» Claim 4: There is an optimal schedule with no inversions and no idle time.?!

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Properties of Schedules

Inversion

=

—
| | IFA | 1) | I | |
d(j) < d(i) but s(i) < s(j)
A schedule has an inversion if a job i with deadline d(/) is scheduled before a
job j with an earlier deadline d(j), i.e., d(j) < d(i) and s(i) < s(j).
Claim 1: The algorithm produces a schedule with no inversions and no idle
time.
Claim 2: All schedules with no inversions and no idle time have the same
lateness.
» Case 1: All jobs have distinct deadlines. There is a unique schedule with no
inversions and no idle time.
» Case 2: Some jobs have the same deadline. Ordering of the jobs does not
change the maximum lateness of these jobs.

v

v

v

v

Claim 3: There is an optimal schedule with no idle time.
Claim 4: There is an optimal schedule with no inversions and no idle time.?!
Claim 5: The greedy algorithm produces an optimal schedule.

vy

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Properties of Schedules

Inversion

=

—
| | IFA | 1) | I | |
d(j) < d(i) but s(i) < s(j)
A schedule has an inversion if a job i with deadline d(/) is scheduled before a
job j with an earlier deadline d(j), i.e., d(j) < d(i) and s(i) < s(j).
» Claim 1: The algorithm produces a schedule with no inversions and no idle
time.
» Claim 2: All schedules with no inversions and no idle time have the same
lateness.
» Case 1: All jobs have distinct deadlines. There is a unique schedule with no
inversions and no idle time.
» Case 2: Some jobs have the same deadline. Ordering of the jobs does not
change the maximum lateness of these jobs.

v

» Claim 3: There is an optimal schedule with no idle time.
» Claim 4: There is an optimal schedule with no inversions and no idle time.?!

» Claim 5: The greedy algorithm produces an optimal schedule. Follows from
Claims 1, 2 and 4.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Proving Claim 4

» Claim 4: There is an optimal schedule with no inversions and no idle time.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Proving Claim 4

» Claim 4: There is an optimal schedule with no inversions and no idle time.

» Approach: Start with an optimal schedule O and use an exchange argument
to convert O into a schedule that satisfies Claim 4 and has lateness not larger

than O.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Proving Claim 4

» Claim 4: There is an optimal schedule with no inversions and no idle time.

» Approach: Start with an optimal schedule O and use an exchange argument
to convert O into a schedule that satisfies Claim 4 and has lateness not larger
than O.

1. If O has an inversion, then there is a pair of jobs i and j such that j is
scheduled just after i and d(j) < d(i).

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Proving Claim 4

» Claim 4: There is an optimal schedule with no inversions and no idle time.

» Approach: Start with an optimal schedule O and use an exchange argument
to convert O into a schedule that satisfies Claim 4 and has lateness not larger
than O.

1. If O has an inversion, then there is a pair of jobs i and j such that j is

scheduled just after i and d(j) < d(i).
2. Let i and j be consecutive inverted jobs in O. After swapping i and j, we get
a schedule O’ with one less inversion.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Proving Claim 4

» Claim 4: There is an optimal schedule with no inversions and no idle time.

» Approach: Start with an optimal schedule O and use an exchange argument
to convert O into a schedule that satisfies Claim 4 and has lateness not larger
than O.

1. If O has an inversion, then there is a pair of jobs i and j such that j is
scheduled just after i and d(j) < d(i).

2. Let i and j be consecutive inverted jobs in O. After swapping i and j, we get
a schedule O’ with one less inversion.

3. The lateness of O’ is no larger than the lateness of O.

> It is enough to prove the last item, since after (g) swaps, we obtain a

schedule with no inversions whose lateness is no larger than that of O.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Swapping Inverted Jobs
are affected by the swap.

Before swapping:

[[Job i [Job j []
4 4
@)
After swapping:
[[Job j Job i
[
4 dq
(b)

Figure 4.6 The effect of swapping two consecutive, inverted jobs.

> In O, assume each job r is scheduled for the interval [s(r), f(r)] and has
lateness /(r). For O’, let the lateness of job r be /'(r).

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Swapping Inverted Jobs
are affected by the swap.

Before swapping:

[[Job i [Job j []
4 4
@)
After swapping:
[[Job j Job i
[
4 dq
(b)

Figure 4.6 The effect of swapping two consecutive, inverted jobs.

> In O, assume each job r is scheduled for the interval [s(r), f(r)] and has
lateness /(r). For O’, let the lateness of job r be /'(r).

> Claim: /'(k) = I(k), for all k # i,j.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Swapping Inverted Jobs
are affected by the swap.

Before swapping:

[[Job i [Job j []
4 4
@)
After swapping:
[[Job j Job i
[
4 dq

(b)

Figure 4.6 The effect of swapping two consecutive, inverted jobs.

> In O, assume each job r is scheduled for the interval [s(r), f(r)] and has
lateness /(r). For O’, let the lateness of job r be /'(r).

> Claim: /'(k) = I(K), for all k # i,].
> Claim: I'(j) < I()).

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Swapping Inverted Jobs
are affected by the swap.

Before swapping:

[[Job i [Job j []
4 4
@)
After swapping:
[[Job j Job i
[
4 dq
(b)

Figure 4.6 The effect of swapping two consecutive, inverted jobs.

> In O, assume each job r is scheduled for the interval [s(r), f(r)] and has
lateness /(r). For O’, let the lateness of job r be /'(r).

> Claim: I'(k) = I(k), for all k # i,].

> Claim: I'(j) < I()).

» Claim: I"(7) < I(j)

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Swapping Inverted Jobs
are affected by the swap.

Before swapping:

[[Job i [Job j []
[
4 4
@
After swapping:
[[Jobj [Job i
[
4 dq
(b)

Figure 4.6 The effect of swapping two consecutive, inverted jobs.

> In O, assume each job r is scheduled for the interval [s(r), f(r)] and has
lateness /(r). For O’, let the lateness of job r be /'(r).
> Claim: I'(k) = I(k), for all k # i,].

v

Claim: I'(j) < I(j).
Claim: I'(i) < I(j) because I'(i) = f(j) — di < f(j) — d; = I(j).

v

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Summary of Proof

1. Think of a schedule as a 2D point: x-coordinate is the number of inversions in the
schedule and y-coordinate is the lateness of the schedule.

February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Summary of Proof
1. Think of a schedule as a 2D point: x-coordinate is the number of inversions in the

schedule and y-coordinate is the lateness of the schedule.
2. Where does the schedule A produced by the algorithm lie?

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Summary of Proof

1. Think of a schedule as a 2D point: x-coordinate is the number of inversions in the
schedule and y-coordinate is the lateness of the schedule.

2. Where does the schedule A produced by the algorithm lie? Somewhere on the
y-axis since it has no inversions, say (0, /a).

3. Where does some other schedule B with no inversions lie?

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Summary of Proof

1. Think of a schedule as a 2D point: x-coordinate is the number of inversions in the
schedule and y-coordinate is the lateness of the schedule.

2. Where does the schedule A produced by the algorithm lie? Somewhere on the
y-axis since it has no inversions, say (0, /a).

3. Where does some other schedule B with no inversions lie? Also at (0, /4) since all
schedules with no inversions have the same lateness.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Summary of Proof

1. Think of a schedule as a 2D point: x-coordinate is the number of inversions in the
schedule and y-coordinate is the lateness of the schedule.

2. Where does the schedule A produced by the algorithm lie? Somewhere on the
y-axis since it has no inversions, say (0, /a).

3. Where does some other schedule B with no inversions lie? Also at (0, /4) since all
schedules with no inversions have the same lateness.

4. Let X be any schedule that is supposed to be optimal (and better than A). Where
does X lie?

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Summary of Proof

1. Think of a schedule as a 2D point: x-coordinate is the number of inversions in the
schedule and y-coordinate is the lateness of the schedule.

2. Where does the schedule A produced by the algorithm lie? Somewhere on the
y-axis since it has no inversions, say (0, /a).

3. Where does some other schedule B with no inversions lie? Also at (0, /4) since all
schedules with no inversions have the same lateness.

4. Let X be any schedule that is supposed to be optimal (and better than A). Where
does X lie? At some point (i, Ix), where i > 0 and Ix are the number of inversions
in and lateness of X, respectively. Ix < Ia

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Summary of Proof

1. Think of a schedule as a 2D point: x-coordinate is the number of inversions in the
schedule and y-coordinate is the lateness of the schedule.

2. Where does the schedule A produced by the algorithm lie? Somewhere on the
y-axis since it has no inversions, say (0, /a).

3. Where does some other schedule B with no inversions lie? Also at (0, /4) since all
schedules with no inversions have the same lateness.

4. Let X be any schedule that is supposed to be optimal (and better than A). Where
does X lie? At some point (i, Ix), where i > 0 and Ix are the number of inversions
in and lateness of X, respectively. Ix < Ia

5. Find an inversion in X and then isolate the inversion to be between consecutive
jobs in X.

6. Swap the jobs to get a new schedule X;_1. Where does X;_; lie?

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Summary of Proof

1. Think of a schedule as a 2D point: x-coordinate is the number of inversions in the
schedule and y-coordinate is the lateness of the schedule.

2. Where does the schedule A produced by the algorithm lie? Somewhere on the
y-axis since it has no inversions, say (0, /a).

3. Where does some other schedule B with no inversions lie? Also at (0, /4) since all
schedules with no inversions have the same lateness.

4. Let X be any schedule that is supposed to be optimal (and better than A). Where
does X lie? At some point (i, Ix), where i > 0 and Ix are the number of inversions
in and lateness of X, respectively. Ix < Ia

5. Find an inversion in X and then isolate the inversion to be between consecutive
jobs in X.

6. Swap the jobs to get a new schedule Xj_1. Where does X;_; lie? X;_1 has one
fewer inversion! Lateness cannot increase! So Xi_1 is at (i — 1, /x) or “below.”

7. Repeat until we have Xj with one inversion at

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Summary of Proof

1. Think of a schedule as a 2D point: x-coordinate is the number of inversions in the
schedule and y-coordinate is the lateness of the schedule.

2. Where does the schedule A produced by the algorithm lie? Somewhere on the
y-axis since it has no inversions, say (0, /a).

3. Where does some other schedule B with no inversions lie? Also at (0, /4) since all
schedules with no inversions have the same lateness.

4. Let X be any schedule that is supposed to be optimal (and better than A). Where
does X lie? At some point (i, Ix), where i > 0 and Ix are the number of inversions
in and lateness of X, respectively. Ix < Ia

5. Find an inversion in X and then isolate the inversion to be between consecutive
jobs in X.

6. Swap the jobs to get a new schedule Xi_1. Where does X;_1 lie? X;_1 has one
fewer inversion! Lateness cannot increase! So Xi_1 is at (i — 1, /x) or “below.”

7. Repeat until we have X; with one inversion at (1, /x) or "below”, where Ix < /a.

8. Repeat one more step: Xy has no inversions. What is Xp's location?

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Summary of Proof

1. Think of a schedule as a 2D point: x-coordinate is the number of inversions in the
schedule and y-coordinate is the lateness of the schedule.

2. Where does the schedule A produced by the algorithm lie? Somewhere on the
y-axis since it has no inversions, say (0, /a).

3. Where does some other schedule B with no inversions lie? Also at (0, /4) since all
schedules with no inversions have the same lateness.

4. Let X be any schedule that is supposed to be optimal (and better than A). Where
does X lie? At some point (i, Ix), where i > 0 and Ix are the number of inversions
in and lateness of X, respectively. Ix < Ia

5. Find an inversion in X and then isolate the inversion to be between consecutive
jobs in X.

6. Swap the jobs to get a new schedule X;_1. Where does X;_1 lie? X;_; has one
fewer inversion! Lateness cannot increase! So Xi_1 is at (i — 1, /x) or “below.”

7. Repeat until we have X; with one inversion at (1, /x) or "below”, where Ix < /a.

8. Repeat one more step: Xy has no inversions. What is Xp's location? (0, Ix) or
“below” because of #7 and (0, /a) because of #3.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Summary of Proof

1. Think of a schedule as a 2D point: x-coordinate is the number of inversions in the
schedule and y-coordinate is the lateness of the schedule.

2. Where does the schedule A produced by the algorithm lie? Somewhere on the
y-axis since it has no inversions, say (0, /a).

3. Where does some other schedule B with no inversions lie? Also at (0, /4) since all
schedules with no inversions have the same lateness.

4. Let X be any schedule that is supposed to be optimal (and better than A). Where
does X lie? At some point (i, Ix), where i > 0 and Ix are the number of inversions
in and lateness of X, respectively. Ix < Ia

5. Find an inversion in X and then isolate the inversion to be between consecutive
jobs in X.

6. Swap the jobs to get a new schedule X;_1. Where does X;_1 lie? X;_; has one
fewer inversion! Lateness cannot increase! So Xi_1 is at (i — 1, /x) or “below.”

7. Repeat until we have X; with one inversion at (1, /x) or “below”, where Ix < /a.

8. Repeat one more step: Xy has no inversions. What is Xp's location? (0, Ix) or
“below” because of #7 and (0, /a) because of #3.

9. We have a contradiction!

10. Lateness of A cannot be larger than that of O!

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Common Mistakes with Exchange Arguments

» Wrong: start with algorithm's schedule A and argue that A cannot be
improved by swapping two jobs.

» Correct: Start with an arbitrary schedule O (which can be the optimal one)
and argue that O can be converted into the schedule that is essentially the
same as the one the algorithm produces without increasing the lateness.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Common Mistakes with Exchange Arguments

» Wrong: start with algorithm's schedule A and argue that A cannot be
improved by swapping two jobs.

» Correct: Start with an arbitrary schedule O (which can be the optimal one)
and argue that O can be converted into the schedule that is essentially the
same as the one the algorithm produces without increasing the lateness.

» Wrong: Swap two jobs that are not neighbouring in O. Pitfall is that the
completion times of all intervening jobs changes.

> Correct: Show that an inversion exists between two neighbouring jobs and
swap them.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

Interval Scheduling Interval Partitioning Minimising Lateness

Summary

» Greedy algorithms make local decisions.

> Three analysis strategies:

Greedy algorithm stays ahead Show that after each step in the greedy
algorithm, its solution is at least as good as that produced by
any other algorithm.

Structural bound First, discover a property that must be satisfied by every
possible solution. Then show that the (greedy) algorithm
produces a solution with this property.

Exchange argument Transform the optimal solution in steps into the solution
by the greedy algorithm without worsening the quality of the
optimal solution.

T. M. Murali February 11, 16, 2016 CS 4104: Greedy is Good

	Interval Scheduling
	Interval Partitioning
	Minimising Lateness

