Basic Definitions Graph Traversal BFS DFS All Comp Impl
A A P

Graphs

T. M. Murali

January 28, February 2, 4, 2016

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All

‘Werner Herzog

Bruce Lee.

‘Seurce: Th Intemet Mevie Dstsbase & The Orace of Bacon Grif
Images: Wiicammon. atipgitin

The Oracle of Bacon

M. Murali January 28, February 2, 4, 2016

CS4104: Graphs

https://oracleofbacon.org/

DFS All Comp

Graph Traversal BFS

sic Definitions

@
£
a
e
o
g
=)
-
<
@
O

January 28, February 2, 4, 2016

Basic Definitions Graph Traversal BFS DFS All Comp Impl

FOLLOWS Manah Carsy
On Twitter, & 4

Selected ' ighli below

Tabiy ¥eusng
(151 szcourt)

820
o wama i L

M-wvrv.ﬂk

Pty
oty possep Bgg)

January 28, February 2, 4, 2016 ! CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS

All Comp s Impl.

Nematodes
Root-feeders

Fungi
Myconthizal fungi
Saprophytic fungi

First trophic Second Third trophic Fourth trophic Fifth and
level: trophic level: level: level: higher trophic
P i Shredders Higher level levels:
Mutualists Predators predators Higher level
Pathe 5, parasites Grazers predators
Root-feeders

January 28, February 2, 4, 2016 CS4104: Graphs

Basic Defi

nitions Graph Traversal BFS DFS All Comp Impl

Murali

£
AV e S
T ST

Vil B
\».";. A%

. 4

o

January 28, February 2016 CS4104: Graph:

Basic Definitions Graph Traversal BFS DFS All Components Implementations

Motility Circuits Cytostasis and
Differentiation
Circuits

anti-growth
;actors

pre

p16

. L
extracellular — int cyclin D ——0O

matrix
pRb—O o
Proliferation E2F (Jj|_ p21
Clrcultsrecep v

rowth — tyrosi
actors Kina:

/
o'_,o >O% changes Hallmark T
\ & ingene __WMREANTTINY |~
Myc —— expression P53

oo,

hormones —

L

survival factors —

2
A
o
(‘) factors

abnormali

sensor w
cytokines —»
Viability Circuits

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Graphs

» Model pairwise relationships (edges) between objects (nodes).

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Graphs

» Model pairwise relationships (edges) between objects (nodes).
» Useful in a large number of applications:

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Imp ions

Graphs

» Model pairwise relationships (edges) between objects (nodes).

» Useful in a large number of applications: computer networks, the World Wide
Web, ecology (food webs), social networks, software systems, job scheduling,
VLSI circuits, cellular networks, . ..

> Other examples: gene and protein networks, our bodies (nervous and
circulatory systems, brains), buildings, transportation networks, ...

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl ions

Graphs

» Model pairwise relationships (edges) between objects (nodes).

» Useful in a large number of applications: computer networks, the World Wide
Web, ecology (food webs), social networks, software systems, job scheduling,
VLSI circuits, cellular networks, . ..

> Other examples: gene and protein networks, our bodies (nervous and
circulatory systems, brains), buildings, transportation networks, ...

» Problems involving graphs have a rich history dating back to Euler.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Graphs

» Model pairwise relationships (edges) between objects (nodes).

» Useful in a large number of applications: computer networks, the World Wide
Web, ecology (food webs), social networks, software systems, job scheduling,
VLSI circuits, cellular networks, . ..

> Other examples: gene and protein networks, our bodies (nervous and
circulatory systems, brains), buildings, transportation networks, ...

» Problems involving graphs have a rich history dating back to Euler.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Impl

[

Definition of a Graph

» Undirected graph G = (V, E): set V of nodes and set E of edges, where
E C V x V. Elements of E are unordered pairs.
» Abuse of notation: write an edge e between nodes u and v as e = (u, v) and
not as e = {u, v}.
» Say that edge e is incident on u and on v.
» Exactly one edge between any pair of nodes.
» G contains no self loops.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All

N .
mp s p ions

Definition of a Graph

» Undirected graph G = (V, E): set V of nodes and set E of edges, where
E C V x V. Elements of E are unordered pairs.
» Abuse of notation: write an edge e between nodes u and v as e = (u, v) and
not as e = {u, v}.
» Say that edge e is incident on u and on v.
» Exactly one edge between any pair of nodes.
» G contains no self loops.

» Directed graph G = (V, E): set V of nodes and set E of edges, where
E C V x V. Elements of E are ordered pairs.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp

Definition of a Graph

» Undirected graph G = (V, E): set V of nodes and set E of edges, where
E C V x V. Elements of E are unordered pairs.
» Abuse of notation: write an edge e between nodes u and v as e = (u, v) and
not as e = {u, v}.
» Say that edge e is incident on u and on v.
» Exactly one edge between any pair of nodes.
» G contains no self loops.

» Directed graph G = (V, E): set V of nodes and set E of edges, where
E C V x V. Elements of E are ordered pairs.

» e = (u,v): uis the tail of the edge e, v is its head; e leaves node u and enters
node v; e is directed from u to v.

> A pair of nodes {u, v} may be connected by two directed edges: (u,v) and
(v, v)-

» G contains no self loops.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Imp ions

Definition of a Graph

» Undirected graph G = (V, E): set V of nodes and set E of edges, where
E C V x V. Elements of E are unordered pairs.
» Abuse of notation: write an edge e between nodes u and v as e = (u, v) and
not as e = {u, v}.
» Say that edge e is incident on u and on v.
» Exactly one edge between any pair of nodes.
» G contains no self loops.

» Directed graph G = (V, E): set V of nodes and set E of edges, where
E C V x V. Elements of E are ordered pairs.

» e = (u,v): uis the tail of the edge e, v is its head; e leaves node u and enters
node v; e is directed from u to v.
> A pair of nodes {u, v} may be connected by two directed edges: (u,v) and

(v, u).

» G contains no self loops.

» By default, “graph” will mean an “undirected graph.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl

Paths and Connectivity

> A pathin an undirected graph G = (V, E) is a sequence P of nodes
Vi,V2,...,Vk_1, vk € V such that every consecutive pair of nodes
Vi, Vit1, 1 § i < k is connected by an edge in E.
> P is called a path from vi to vk or a vi-vi path.
» A path is simple if all its nodes are distinct.
» A cycleis a path where k > 2, the first k — 1 nodes are distinct, and v; = vy.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl ions

Paths and Connectivity

> A pathin an undirected graph G = (V, E) is a sequence P of nodes
Vi, Vo, ..., Vk_1, vk € V such that every consecutive pair of nodes
Vi, Vit1,1 < i < k is connected by an edge in E.
> P is called a path from vi to vk or a vi-vi path.
» A path is simple if all its nodes are distinct.
» A cycleis a path where k > 2, the first k — 1 nodes are distinct, and v; = vy.
> All definitions carry over to directed graphs as well.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl ions

Paths and Connectivity

A path in an undirected graph G = (V, E) is a sequence P of nodes
Vi, Vo, ..., Vk_1, vk € V such that every consecutive pair of nodes
Vi, Vit1,1 < i < k is connected by an edge in E.
> P is called a path from vi to vk or a vi-vi path.
A path is simple if all its nodes are distinct.
A cycle is a path where k > 2, the first k — 1 nodes are distinct, and v; = vy.
> All definitions carry over to directed graphs as well.
» An undirected graph G is connected if for every pair of nodes u,v € V, there
is a path from uto v in G.
» Directed graphs have the notion of “strong connectivity.”

v

vy

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl ions

Paths and Connectivity

A path in an undirected graph G = (V, E) is a sequence P of nodes
Vi, Vo, ..., Vk_1, vk € V such that every consecutive pair of nodes
Vi, Vit1,1 < i < k is connected by an edge in E.
> P is called a path from vi to vk or a vi-vi path.
A path is simple if all its nodes are distinct.
A cycle is a path where k > 2, the first k — 1 nodes are distinct, and v; = vy.
> All definitions carry over to directed graphs as well.
» An undirected graph G is connected if for every pair of nodes u,v € V, there
is a path from uto v in G.
» Directed graphs have the notion of “strong connectivity.”
» Distance between two nodes u and v is the minimum number of edges in any
u-v path.

v

vy

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Trees

Figure 3.1 Two drawings of the same tree. On the right, the tree is rooted at node 1.

» An undirected graph is a tree if it is connected and does not contain a cycle.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Trees

Figure 3.1 Two drawings of the same tree. On the right, the tree is rooted at node 1.

» An undirected graph is a tree if it is connected and does not contain a cycle.
For any pair of nodes in a tree, there is a unique path connecting them.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Con s Impl

[P ions

Trees

Figure 3.1 Two drawings of the same tree. On the right, the tree is rooted at node 1.

» An undirected graph is a tree if it is connected and does not contain a cycle.
For any pair of nodes in a tree, there is a unique path connecting them.
» Rooting a tree T: pick some node r in the tree and orient each edge of T

“away" from r, i.e., for each node v # r, define parent of v to be the node u
that directly precedes v on the path from r to v.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp

P ions

Trees
@)

Figure 3.1 Two drawings of the same tree. On the right, the tree is rooted at node 1.

» An undirected graph is a tree if it is connected and does not contain a cycle.
For any pair of nodes in a tree, there is a unique path connecting them.

» Rooting a tree T: pick some node r in the tree and orient each edge of T
“away" from r, i.e., for each node v # r, define parent of v to be the node u
that directly precedes v on the path from r to v.

> Node w is a child of node v if v is a parent of w.

> Node w is a descendant of node v (or v is an ancestor of w) if v lies on the
r-w path.

> Node x is a /eaf if it has no descendants.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp

P ions

Trees
@)

Figure 3.1 Two drawings of the same tree. On the right, the tree is rooted at node 1.

» An undirected graph is a tree if it is connected and does not contain a cycle.
For any pair of nodes in a tree, there is a unique path connecting them.

» Rooting a tree T: pick some node r in the tree and orient each edge of T
“away" from r, i.e., for each node v # r, define parent of v to be the node u
that directly precedes v on the path from r to v.

> Node w is a child of node v if v is a parent of w.

> Node w is a descendant of node v (or v is an ancestor of w) if v lies on the
r-w path.

> Node x is a /eaf if it has no descendants.

» Examples of (rooted) trees:

T. M. Murali

January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp

P ions

Trees
@)

Figure 3.1 Two drawings of the same tree. On the right, the tree is rooted at node 1.

» An undirected graph is a tree if it is connected and does not contain a cycle.
For any pair of nodes in a tree, there is a unique path connecting them.

» Rooting a tree T: pick some node r in the tree and orient each edge of T
“away" from r, i.e., for each node v # r, define parent of v to be the node u
that directly precedes v on the path from r to v.

> Node w is a child of node v if v is a parent of w.

> Node w is a descendant of node v (or v is an ancestor of w) if v lies on the
r-w path.

> Node x is a /eaf if it has no descendants.

» Examples of (rooted) trees: organisational hierarchy, class hierarchies in
object-oriented languages.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Number of Edges in a Tree

» Claim: every n-node tree has edges.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Number of Edges in a Tree

» Claim: every n-node tree has exactly n — 1 edges.
» Proof 1:

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Impl

[

Number of Edges in a Tree

» Claim: every n-node tree has exactly n — 1 edges.

» Proof 1: Root the tree. Each node, except the root, has a unique parent.

Each edge connects one parent to one child. Therefore, the tree has n — 1
edges.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Number of Edges in a Tree

» Claim: every n-node tree has exactly n — 1 edges.

» Proof 1: Root the tree. Each node, except the root, has a unique parent.
Each edge connects one parent to one child. Therefore, the tree has n — 1
edges.

» Proof 2: (by induction)

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl ions

Number of Edges in a Tree

» Claim: every n-node tree has exactly n — 1 edges.

» Proof 1: Root the tree. Each node, except the root, has a unique parent.
Each edge connects one parent to one child. Therefore, the tree has n — 1
edges.

» Proof 2: (by induction) Two key pieces.

> Every tree contains at least one leaf, i.e., node of degree 1. Why?
> Inductive hypothesis: every tree with n — 1 nodes contains n — 2 edges.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl ions

Number of Edges in a Tree

» Claim: every n-node tree has exactly n — 1 edges.

» Proof 1: Root the tree. Each node, except the root, has a unique parent.
Each edge connects one parent to one child. Therefore, the tree has n — 1
edges.

» Proof 2: (by induction) Two key pieces.

> Every tree contains at least one leaf, i.e., node of degree 1. Why?
> Inductive hypothesis: every tree with n — 1 nodes contains n — 2 edges.

» Stronger claim: Let G be an undirected graph on n nodes. Any two of the

following statements implies the third:

1. G is connected.
2. G does not contain a cycle.
3. G contains n — 1 edges.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl ions

Number of Edges in a Tree

» Claim: every n-node tree has exactly n — 1 edges.

» Proof 1: Root the tree. Each node, except the root, has a unique parent.
Each edge connects one parent to one child. Therefore, the tree has n — 1
edges.

» Proof 2: (by induction) Two key pieces.

> Every tree contains at least one leaf, i.e., node of degree 1. Why?
> Inductive hypothesis: every tree with n — 1 nodes contains n — 2 edges.

» Stronger claim: Let G be an undirected graph on n nodes. Any two of the

following statements implies the third:

1. G is connected.
2. G does not contain a cycle.
3. G contains n — 1 edges.

» Note that none of these statements uses the word “tree”.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl ions

Number of Edges in a Tree

» Claim: every n-node tree has exactly n — 1 edges.

» Proof 1: Root the tree. Each node, except the root, has a unique parent.
Each edge connects one parent to one child. Therefore, the tree has n — 1
edges.

» Proof 2: (by induction) Two key pieces.

> Every tree contains at least one leaf, i.e., node of degree 1. Why?
> Inductive hypothesis: every tree with n — 1 nodes contains n — 2 edges.

» Stronger claim: Let G be an undirected graph on n nodes. Any two of the

following statements implies the third:

1. G is connected.
2. G does not contain a cycle.
3. G contains n — 1 edges.

» Note that none of these statements uses the word “tree”.
» land 2 = 3:

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl ions

Number of Edges in a Tree

» Claim: every n-node tree has exactly n — 1 edges.

» Proof 1: Root the tree. Each node, except the root, has a unique parent.
Each edge connects one parent to one child. Therefore, the tree has n — 1
edges.

» Proof 2: (by induction) Two key pieces.

> Every tree contains at least one leaf, i.e., node of degree 1. Why?
> Inductive hypothesis: every tree with n — 1 nodes contains n — 2 edges.

» Stronger claim: Let G be an undirected graph on n nodes. Any two of the

following statements implies the third:

1. G is connected.
2. G does not contain a cycle.
3. G contains n — 1 edges.

» Note that none of these statements uses the word “tree”.
» 1 and 2 = 3: just proved.
» 2and 3 = 1:

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl ions

Number of Edges in a Tree

» Claim: every n-node tree has exactly n — 1 edges.

» Proof 1: Root the tree. Each node, except the root, has a unique parent.
Each edge connects one parent to one child. Therefore, the tree has n — 1
edges.

» Proof 2: (by induction) Two key pieces.

> Every tree contains at least one leaf, i.e., node of degree 1. Why?
> Inductive hypothesis: every tree with n — 1 nodes contains n — 2 edges.

» Stronger claim: Let G be an undirected graph on n nodes. Any two of the

following statements implies the third:
1. G is connected.
2. G does not contain a cycle.
3. G contains n — 1 edges.

Note that none of these statements uses the word “tree”.
1 and 2 = 3: just proved.

2 and 3 = 1: prove by contradiction.

3 and 1 = 2: prove yourself.

vy vy VvVYyYy

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

s-t Connectivity

1)
G‘Q‘G OEEC

s-t Connectivity
INSTANCE: An undirected graph G = (V, E) and two nodes s, t € V.
QUESTION: Is there an s-t path in G?

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl

s-t Connectivity
(1) (D ©
(2) 99 (9

s-t Connectivity

INSTANCE: An undirected graph G = (V, E) and two nodes s, t € V.
QUESTION: Is there an s-t path in G?

» The connected component of G containing s is the set of all nodes u such
that there is an s-u path in G.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl

.....

s-t Connectivity
(1) (D) ©
) 96 (9

s-t Connectivity

INSTANCE: An undirected graph G = (V, E) and two nodes s, t € V.
QUESTION: Is there an s-t path in G?

» The connected component of G containing s is the set of all nodes u such
that there is an s-u path in G.

» Algorithm for the s-t Connectivity problem: compute the connected
component of G that contains s and check if t is in that component.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Computing Connected Components

» “Explore” G starting from s and maintain set R of visited nodes.

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where ucR and v¢R
Add v to R

Endwhile

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Computing Connected Components

» “Explore” G starting from s and maintain set R of visited nodes.

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where ucR and v¢R
Add v to R

Endwhile

o

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Computing Connected Components

» “Explore” G starting from s and maintain set R of visited nodes.

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where ucR and v¢R
Add v to R

Endwhile

e

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Computing Connected Components

» “Explore” G starting from s and maintain set R of visited nodes.

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where ucR and v¢R
Add v to R

Endwhile

e

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Computing Connected Components

» “Explore” G starting from s and maintain set R of visited nodes.

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where ucR and v¢R
Add v to R

Endwhile

e

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Computing Connected Components

» “Explore” G starting from s and maintain set R of visited nodes.

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where ucR and v¢R
Add v to R

Endwhile

e

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Computing Connected Components

» “Explore” G starting from s and maintain set R of visited nodes.

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where ucR and v¢R
Add v to R

Endwhile

e

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Computing Connected Components

» “Explore” G starting from s and maintain set R of visited nodes.

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where ucR and v¢R
Add v to R

Endwhile

o

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Computing Connected Components

» “Explore” G starting from s and maintain set R of visited nodes.

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where ucR and v¢R
Add v to R

Endwhile

o

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Impl

[

Issues in Computing Connected Components

R will consist of nodes to which s has a path . ‘
Q0 ©® ©

While there is an edge (u,v) where ueR and v¢R
Add v to R
Endwhile

» How do we implement the while loop?

T. M. Murali

January 28, February 2, 4, 2016

CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Impl

[

Issues in Computing Connected Components

B O O O
R will consist of nodes to which s has a path ‘ ‘
Initially R={s} e o o @ @
While there is an edge (u,v) where ueR and v¢R
Add v to R
Endwhile
O—E—©

» How do we implement the while loop? Examine each edge in E.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All

mp s

Issues in Computing Connected Components

@ O O O
R will consist of nodes to which s has a path ‘ ‘
Initially R={s} 9 o o @ @
While there is an edge (u,v) where ueR and v¢R
Add v to R
Endwhile
O——C0 O

» How do we implement the while loop? Examine each edge in E.
> Other issues to consider:

» Why does the algorithm terminate?
> Does the algorithm truly compute connected component of G containing s?
» What is the running time of the algorithm?

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Impl

P P

Termination of the Algorithm

R will consist of nodes to which s has a path . ‘
Q——© ® @

While there is an edge (u,v) where uecR and v¢R
Add v to R
Endwhile

» How many nodes does each iteration of the while loop add to R?
» How many times is the while loop executed?

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Impl

P P

Termination of the Algorithm

R will consist of nodes to which s has a path . ‘
Q——© ® @

While there is an edge (u,v) where uecR and v¢R
Add v to R
Endwhile

» How many nodes does each iteration of the while loop add to R? Exactly 1.
» How many times is the while loop executed?

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Impl

P P

Termination of the Algorithm

R will consist of nodes to which s has a path . ‘
Q—CF—©® ©® @

While there is an edge (u,v) where uecR and v¢R
Add v to R
Endwhile

» How many nodes does each iteration of the while loop add to R? Exactly 1.
» How many times is the while loop executed? At most n times.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Con Impl

P P

Termination of the Algorithm

O ORNORB®
R will consist of nodes to which s has a path . ‘
Initially R=(s) 9 o 9 @ @
While there is an edge (u,v) where uecR and v¢R
Add v to R
Endwhile
O—E—0©

» How many nodes does each iteration of the while loop add to R? Exactly 1.

» How many times is the while loop executed? At most n times.
» What is true of R at termination?

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All

ions

mp s

Termination of the Algorithm

R will consist of nodes to which s has a path . ‘
Q0 ©® ®

While there is an edge (u,v) where uecR and v¢R
Add v to R
Endwhile

O—0—C6 G

» How many nodes does each iteration of the while loop add to R? Exactly 1.
» How many times is the while loop executed? At most n times.
» What is true of R at termination?

» either R = V at the end or

> in the last iteration, every edge either has both nodes in R or both nodes not
in R.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Correctness of the Algorithm

R

» Claim: at the end of the algorithm, the set R is exactly the connected
component of G containing s.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl

Correctness of the Algorithm

R

» Claim: at the end of the algorithm, the set R is exactly the connected
component of G containing s.
> Proof: Suppose w € R but there is an s-w path P in G.

» Consider first node v in P not in R (v # s).
> Let u be the predecessor of v in P:

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl ions

Correctness of the Algorithm

R

» Claim: at the end of the algorithm, the set R is exactly the connected
component of G containing s.
> Proof: Suppose w € R but there is an s-w path P in G.

» Consider first node v in P not in R (v # s).
> Let u be the predecessor of v in P: uis in R.
> (u,v) is an edge with u € R but v € R, contradicting the stopping rule.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl ions

Correctness of the Algorithm

R

» Claim: at the end of the algorithm, the set R is exactly the connected
component of G containing s.
> Proof: Suppose w € R but there is an s-w path P in G.

» Consider first node v in P not in R (v # s).

> Let u be the predecessor of v in P: uis in R.

> (u,v) is an edge with u € R but v € R, contradicting the stopping rule.
> Note: wrong to assume that predecessor of w in P is not in R.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Impl

P P

Recovering Paths

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where ueR and v¢R
Add v to R

Endwhile

» Given a node t € R, how do we recover the s-t path?

M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Recovering Paths

R will consist of nodes to which s has a path ‘ ‘
Q-0 ©® ®

While there is an edge (u,v) where ueR and v¢R
Add v to R
Endwhile

GO——~C6—© ®

» Given a node t € R, how do we recover the s-t path?
» When adding node v to R, record the edge (u,v).
» What type of graph is formed by these edges?

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Recovering Paths

B O OO O
R will consist of nodes to which s has a path . ‘
Initially R={s} e e e @ @
While there is an edge (u,v) where ueR and v¢R
Add v to R
Endwhile
O——0

» Given a node t € R, how do we recover the s-t path?

» When adding node v to R, record the edge (u,v).
» What type of graph is formed by these edges? It is a tree! Why?

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Recovering Paths

B O OO O
R will consist of nodes to which s has a path . ‘
Initially R={s} e e e @ @
While there is an edge (u,v) where ueR and v¢R
Add v to R
Endwhile
O——0

Given a node t € R, how do we recover the s-t path?

When adding node v to R, record the edge (u, v).
What type of graph is formed by these edges? It is a tree! Why?

vV v.v Y

To recover the s-t path, trace these edges backwards from t until we reach s.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Impl

P P

Running Time of the Algorithm

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where ueR and v¢R
Add v to R

Endwhile

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Impl

P P

Running Time of the Algorithm

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where u€R and v¢R
Add v to R

Endwhile

» Analyse algorithm in terms of two parameters: the number of nodes n and
the number of edges m.

> Implement the while loop by examining each edge in E. Running time of
each loop is

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Con Impl

P P

Running Time of the Algorithm

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where u€R and v¢R
Add v to R

Endwhile

» Analyse algorithm in terms of two parameters: the number of nodes n and
the number of edges m.

> Implement the while loop by examining each edge in E. Running time of
each loop is O(m).

» How many while loops does the algorithm execute?

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All

1
mp s p

Running Time of the Algorithm

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where u€R and v¢R
Add v to R

Endwhile

» Analyse algorithm in terms of two parameters: the number of nodes n and
the number of edges m.

> Implement the while loop by examining each edge in E. Running time of
each loop is O(m).

» How many while loops does the algorithm execute? At most n.

> The running time is

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All

1
mp s p

Running Time of the Algorithm

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where u€R and v¢R
Add v to R

Endwhile

» Analyse algorithm in terms of two parameters: the number of nodes n and
the number of edges m.

> Implement the while loop by examining each edge in E. Running time of
each loop is O(m).

» How many while loops does the algorithm execute? At most n.
» The running time is O(mn).

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Con s Impl

[

Running Time of the Algorithm

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where u€R and v¢R
Add v to R

Endwhile

» Analyse algorithm in terms of two parameters: the number of nodes n and
the number of edges m.

> Implement the while loop by examining each edge in E. Running time of
each loop is O(m).

» How many while loops does the algorithm execute? At most n.
» The running time is O(mn).

» Can we improve the running time by processing edges more carefully?

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Breadth-First Search (BFS)

> Idea: explore G starting at s and going “outward” in all directions, adding
nodes one layer at a time.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Breadth-First Search (BFS)

> Idea: explore G starting at s and going “outward” in all directions, adding
nodes one layer at a time.

» Layer Ly contains only s.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Breadth-First Search (BFS)

> Idea: explore G starting at s and going “outward” in all directions, adding
nodes one layer at a time.

» Layer Ly contains only s.

» Layer L; contains all neighbours of s.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl ions

Breadth-First Search (BFS)

> Idea: explore G starting at s and going “outward” in all directions, adding
nodes one layer at a time.

» Layer Ly contains only s.

» Layer L; contains all neighbours of s.

> Given layers Lo, Ly,...,L;, layer Lj;; contains all nodes that

1. do not belong to an earlier layer and
2. are connected by an edge to a node in layer L;.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl ions

Breadth-First Search (BFS)

> Idea: explore G starting at s and going “outward” in all directions, adding
nodes one layer at a time.

» Layer Ly contains only s.

» Layer L; contains all neighbours of s.

> Given layers Lo, Ly,...,L;, layer Lj;; contains all nodes that

1. do not belong to an earlier layer and
2. are connected by an edge to a node in layer L;.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Properties of BFS

(4 (3 e @

» We have not yet described how to compute these layers.
> Claim: For each j > 1, layer L; consists of all nodes

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Properties of BFS

(W
0‘9‘0 OEEC

» We have not yet described how to compute these layers.
> Claim: For each j > 1, layer L; consists of all nodes exactly at distance j
from S. Proof

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All

mp s

Properties of BFS

(W
0‘9‘0 OEEC

» We have not yet described how to compute these layers.

> Claim: For each j > 1, layer L; consists of all nodes exactly at distance j
from S. Proof by induction on j.

» Claim: There is a path from s to t if and only if ¢ is a member of some layer.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl

Properties of BFS

(W
9‘6‘0 OEEC

We have not yet described how to compute these layers.

Claim: For each j > 1, layer L; consists of all nodes exactly at distance j
from S. Proof by induction on j.

Claim: There is a path from s to t if and only if t is a member of some layer.
Let v be a node in layer L;;; and u be the “first” node in L; such that (u,v)
is an edge in G. Consider the graph T formed by all such edges, directed
from u to v.

vy

vy

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl

Properties of BFS

(W
9‘6‘0 OEEC

We have not yet described how to compute these layers.
Claim: For each j > 1, layer L; consists of all nodes exactly at distance j
from S. Proof by induction on j.
Claim: There is a path from s to t if and only if t is a member of some layer.
Let v be a node in layer L;;; and u be the “first” node in L; such that (u,v)
is an edge in G. Consider the graph T formed by all such edges, directed
from u to v.

» Whyis T a tree?

vy

vy

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl

Properties of BFS

(W
9‘6‘0 OEEC

We have not yet described how to compute these layers.
Claim: For each j > 1, layer L; consists of all nodes exactly at distance j
from S. Proof by induction on j.
Claim: There is a path from s to t if and only if t is a member of some layer.
Let v be a node in layer L;;; and u be the “first” node in L; such that (u,v)
is an edge in G. Consider the graph T formed by all such edges, directed
from u to v.

» Why is T a tree? It is connected. The number of edges in T is the number of

nodes in all the layers minus 1.
» T is called the breadth-first search tree.

vy

vy

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl ions

BFS Trees

G‘GG@@
N\

> Non-tree edge: an edge of G that does not belong to the BFS tree T.

» Claim: Let T be a BFS tree, let x and y be nodes in T belonging to layers L;
and L;, respectively, and let (x, y) be an edge of G. Then |i —j] < 1.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Components Implementations

BFS Trees

Sody

> Non-tree edge: an edge of G that does not belong to the BFS tree T.
» Claim: Let T be a BFS tree, let x and y be nodes in T belonging to layers L;
and L;, respectively, and let (x, y) be an edge of G. Then |i —j] < 1.

> Proof by contradiction: Suppose i < j — 1. Node x € L; = all nodes adjacent
to x are in layers Ly, Ly, ... L;1 1. Hence y must be in layer L; ;1 or earlier.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Components Implementations

BFS Trees

Sody

> Non-tree edge: an edge of G that does not belong to the BFS tree T.

» Claim: Let T be a BFS tree, let x and y be nodes in T belonging to layers L;
and L;, respectively, and let (x, y) be an edge of G. Then |i —j] < 1.

> Proof by contradiction: Suppose i < j — 1. Node x € L; = all nodes adjacent
to x are in layers Ly, Ly, ... L;1 1. Hence y must be in layer L; ;1 or earlier.

» Still unresolved: an efficient implementation of BFS.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Depth-First Search (DFS)

> Explore G as if it were a maze: start from s, traverse first edge out (to node
v), traverse first edge out of v, ..., reach a dead-end, backtrack,

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Depth-First Search (DFS)

> Explore G as if it were a maze: start from s, traverse first edge out (to node
v), traverse first edge out of v, ..., reach a dead-end, backtrack,

1. Mark all nodes as “Unexplored’.
2. Invoke DFS(s).

DFS(u):
Mark u as "Explored" and add u to R
For each edge (u,v) incident to u
If v is not marked "Explored" then
Recursively invoke DFS(v)
Endif
Endfor

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl

Depth-First Search (DFS)

> Explore G as if it were a maze: start from s, traverse first edge out (to node
v), traverse first edge out of v, ..., reach a dead-end, backtrack,

1. Mark all nodes as “Unexplored’.
2. Invoke DFS(s).

DFS(u):
Mark u as "Explored" and add u to R
For each edge (u,v) incident to u
If v is not marked "Explored" then
Recursively invoke DFS(v)
Endif
Endfor

» Depth-first search tree is a tree T: when DFS(v) is invoked directly during
the call to DFS(v), add edge (u,v) to T.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All

[

Example of DFS

GSOGQQ

M. Murali

January 28, February 2, 4, 2016

CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

:
(1)

M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Example of DFS

M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Example of DFS

M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Imp

z ‘a Xale of DFS
QG @ (1
IN o

anuary 28, February

~
Il TR g

2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Imp

z ‘a Xale of DFS
QG @ (1
IN o

anuary 28, February

~
Il TR g

2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl

z ‘a Xale of DFS
QG @ (1
IN o

anuary 28, February

~
Il TR g

-
- -~

R

2016 CS4104: Graphs

ions

BFS DFS All Comp

Graph Traversal

Example of DFS
340 5
9\9 e
OO0 ¢

anuary 28, February

~
S

~
~
S

-
- —_——

————
- =~

-

CS4104: Graphs

2016

Basic Definitions Graph Traversal BFS DFS All Comp s Impl ions

BFS vs. DFS

» Both visit the same set of nodes but in a different order.
» Both traverse all the edges in the connected component but in a different
order.
» BFS trees have root-to-leaf paths that look as short as possible while paths in
DFS trees tend to be long and deep.
» Non-tree edges
BFS within the same level or between adjacent levels.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl ions

BFS vs. DFS

» Both visit the same set of nodes but in a different order.
» Both traverse all the edges in the connected component but in a different
order.
» BFS trees have root-to-leaf paths that look as short as possible while paths in
DFS trees tend to be long and deep.
» Non-tree edges
BFS within the same level or between adjacent levels.
DFS connect ancestors to descendants.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Properties of DFS Trees

DFS(u) :
Mark u as "Explored" and add u to R
For each edge (u,v) incident to u
If v is not marked "Explored" then
Recursively invoke DFS(v)
Endif
Endfor

> Observation: All nodes marked as “Explored’ between the start of DFS(u)
and its end are descendants of v in the DFS tree T.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl

Properties of DFS Trees

DFS(u) :
Mark u as "Explored" and add u to R
For each edge (u,v) incident to u
If v is not marked "Explored" then
Recursively invoke DFS(v)
Endif
Endfor

> Observation: All nodes marked as “Explored’ between the start of DFS(u)
and its end are descendants of u in the DFS tree T.

» Claim: Let x and y be nodes in a DFS tree T such that (x, y) is an edge of
G but not of T. Then one of x or y is an ancestor of the other in T.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl ions

Properties of DFS Trees

DFS(u) :
Mark u as "Explored" and add u to R
For each edge (u,v) incident to u
If v is not marked "Explored" then
Recursively invoke DFS(v)
Endif
Endfor

> Observation: All nodes marked as “Explored’ between the start of DFS(u)
and its end are descendants of u in the DFS tree T.
» Claim: Let x and y be nodes in a DFS tree T such that (x, y) is an edge of
G but not of T. Then one of x or y is an ancestor of the other in T.
> Proof: Assume, without loss of generality, that DFS(u) reached x first.
» Since (x,y) is an edge in G, it is examined during DFS(x).
» Since (x,y) € T, y must be marked as "Explored” during DFS(x) but before
(x,y) is examined.
» Since y was not marked as “Explored” before DFS(x) was invoked, it must be
marked as “Explored” between the start and the end of DFS(x).
» Therefore, y must be a descendant of x in T.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All

All Connected Components

» We have discussed the component containing a particular node s.

» Each node belongs to a component.
» What is the relationship between all these components?

T. M. Murali January 28, February 2, 4, 2016

CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All

All Connected Components

» We have discussed the component containing a particular node s.

» Each node belongs to a component.
» What is the relationship between all these components?

> If visin u's component, is u in v's component?
» If v is not in u’s component, can u be in v's component?

T. M. Murali January 28, February 2, 4, 2016

CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Impl ions

All Connected Components

v

We have discussed the component containing a particular node s.

v

Each node belongs to a component.

v

What is the relationship between all these components?

> If visin u's component, is u in v's component?
» If v is not in u’s component, can u be in v's component?

v

Claim: For any two nodes s and t in a graph, their connected components
are either equal or disjoint.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Impl ions

All Connected Components

» We have discussed the component containing a particular node s.
» Each node belongs to a component.
» What is the relationship between all these components?
> If visin u's component, is u in v's component?
» If v is not in u’s component, can u be in v's component?
» Claim: For any two nodes s and t in a graph, their connected components
are either equal or disjoint.
> Proof in two parts (sketch):

1. If G has an s-t path, then the connected components of s and t are the same.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Impl ions

All Connected Components

v

We have discussed the component containing a particular node s.

v

Each node belongs to a component.

v

What is the relationship between all these components?

> If visin u's component, is u in v's component?
» If v is not in u’s component, can u be in v's component?

v

Claim: For any two nodes s and t in a graph, their connected components
are either equal or disjoint.

v

Proof in two parts (sketch):

1. If G has an s-t path, then the connected components of s and t are the same.
2. If G has no s-t path, then there cannot be a node v that is in both connected
components.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Impl

Computing All Connected Components

Pick an arbitrary node s in G.
Compute its connected component using BFS (or DFS).
Find a node (say v, not already visited) and repeat the BFS from v.

e

Repeat this process until all nodes are visited.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Representing Graphs

» Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
> Size of the graph is defined to be m + n.
» Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp

Representing Graphs

» Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
> Size of the graph is defined to be m + n.
» Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

> Assume V ={1,2,...,n—1,n}.

» Adjacency matrix representation: n x n Boolean matrix, where the entry in
row i and column j is 1 iff the graph contains the edge (i, J).

» Space used is

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s

Representing Graphs

» Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
> Size of the graph is defined to be m + n.
» Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

> Assume V ={1,2,...,n—1,n}.
» Adjacency matrix representation: n x n Boolean matrix, where the entry in
row i and column j is 1 iff the graph contains the edge (i, J).

» Space used is ©(n?), which is optimal in the worst case.
> Check if there is an edge between node i/ and node j in

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s

Representing Graphs

» Graph G = (V, E) has two input parameters: |V| = n, |E| = m.

> Size of the graph is defined to be m + n.

» Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).
> Assume V ={1,2,...,n—1,n}.
» Adjacency matrix representation: n x n Boolean matrix, where the entry in

row i and column j is 1 iff the graph contains the edge (i, J).

» Space used is ©(n?), which is optimal in the worst case.

» Check if there is an edge between node i and node j in O(1) time.

> lterate over all the edges incident on node 7 in

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s

Representing Graphs

» Graph G = (V, E) has two input parameters: |V| = n, |E| = m.

> Size of the graph is defined to be m + n.

» Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).
> Assume V ={1,2,...,n—1,n}.
» Adjacency matrix representation: n x n Boolean matrix, where the entry in

row i and column j is 1 iff the graph contains the edge (i, J).

» Space used is ©(n?), which is optimal in the worst case.

» Check if there is an edge between node i and node j in O(1) time.

> lterate over all the edges incident on node i in ©(n) time.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s

Representing Graphs

» Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
> Size of the graph is defined to be m + n.
» Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).
> Assume V ={1,2,...,n—1,n}.
» Adjacency matrix representation: n x n Boolean matrix, where the entry in
row i and column j is 1 iff the graph contains the edge (i, J).

» Space used is ©(n?), which is optimal in the worst case.
» Check if there is an edge between node i and node j in O(1) time.
> lterate over all the edges incident on node i in ©(n) time.

> Adjacency list representation: array Adj, where Adj[v] stores the list of all
nodes adjacent to v.

» An edge e = (u, v) appears twice: in Adj[u] and Adj[v].

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s

Representing Graphs

» Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
> Size of the graph is defined to be m + n.
» Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).
> Assume V ={1,2,...,n—1,n}.
» Adjacency matrix representation: n x n Boolean matrix, where the entry in
row i and column j is 1 iff the graph contains the edge (i, J).

» Space used is ©(n?), which is optimal in the worst case.
» Check if there is an edge between node i and node j in O(1) time.
> lterate over all the edges incident on node i in ©(n) time.
> Adjacency list representation: array Adj, where Adj[v] stores the list of all
nodes adjacent to v.
» An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
» n, = the number of neighbours of node v.
> Space used is

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s

Representing Graphs

» Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
> Size of the graph is defined to be m + n.
» Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).
> Assume V ={1,2,...,n—1,n}.
» Adjacency matrix representation: n x n Boolean matrix, where the entry in
row i and column j is 1 iff the graph contains the edge (i, J).
» Space used is ©(n?), which is optimal in the worst case.
» Check if there is an edge between node i and node j in O(1) time.
> lterate over all the edges incident on node i in ©(n) time.
> Adjacency list representation: array Adj, where Adj[v] stores the list of all
nodes adjacent to v.
» An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
» n, = the number of neighbours of node v.
> Space used is O(n+ 3 .o M) =

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Components Implementations

Representing Graphs

» Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
> Size of the graph is defined to be m + n.
» Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

> Assume V ={1,2,...,n—1,n}.
» Adjacency matrix representation: n x n Boolean matrix, where the entry in
row i and column j is 1 iff the graph contains the edge (i, J).
» Space used is ©(n?), which is optimal in the worst case.

» Check if there is an edge between node i and node j in O(1) time.
> lterate over all the edges incident on node i in ©(n) time.

> Adjacency list representation: array Adj, where Adj[v] stores the list of all
nodes adjacent to v.
» An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
n, = the number of neighbours of node v.
Space used is O(n+ 3 ¢ nv) = O(n+ m), which is optimal for every graph.
Check if there is an edge between node u and node v in

vy vy

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Components Implementations

Representing Graphs

» Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
> Size of the graph is defined to be m + n.
» Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

> Assume V ={1,2,...,n—1,n}.
» Adjacency matrix representation: n x n Boolean matrix, where the entry in
row i and column j is 1 iff the graph contains the edge (i, J).
» Space used is ©(n?), which is optimal in the worst case.

» Check if there is an edge between node i and node j in O(1) time.
> lterate over all the edges incident on node i in ©(n) time.

> Adjacency list representation: array Adj, where Adj[v] stores the list of all
nodes adjacent to v.
» An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
n, = the number of neighbours of node v.
Space used is O(n+ 3" ¢ nv) = O(n+ m), which is optimal for every graph.
Check if there is an edge between node v and node v in O(n,) time.
Iterate over all the edges incident on node v in

vYyVvyly

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Components Implementations

Representing Graphs

» Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
> Size of the graph is defined to be m + n.
» Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

> Assume V ={1,2,...,n—1,n}.
» Adjacency matrix representation: n x n Boolean matrix, where the entry in
row i and column j is 1 iff the graph contains the edge (i, J).
» Space used is ©(n?), which is optimal in the worst case.

» Check if there is an edge between node i and node j in O(1) time.
> lterate over all the edges incident on node i in ©(n) time.

> Adjacency list representation: array Adj, where Adj[v] stores the list of all
nodes adjacent to v.
» An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
n, = the number of neighbours of node v.
Space used is O(n+ 3" ¢ nv) = O(n+ m), which is optimal for every graph.
Check if there is an edge between node v and node v in O(n,) time.
Iterate over all the edges incident on node u in ©(ny) time.

vYyVvyly

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All

mp s

Data Structures for Implementation

» “Implementation” of BFS and DFS: fully specify the algorithms and data
structures so that we can obtain provably efficient times.

> Inner loop of both BFS and DFS: process the set of edges incident on a given
node and the set of visited nodes.

» How do we store the set of visited nodes? Order in which we process the
nodes is crucial.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl

Data Structures for Implementation

» “Implementation” of BFS and DFS: fully specify the algorithms and data
structures so that we can obtain provably efficient times.

> Inner loop of both BFS and DFS: process the set of edges incident on a given
node and the set of visited nodes.

» How do we store the set of visited nodes? Order in which we process the
nodes is crucial.
» BFS: store visited nodes in a queue (first-in, first-out).
» DFS: store visited nodes in a stack (last-in, first-out)

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl

[«]
ok

>
N

Implementing BFS

» Maintain an array Discovered and set (®
Discovered[v] = true as soon as the algorithm sees v. S
O——©
BFS(s) : [s]7]s]«]

Set Discovered[s] = true and Discovered[v] = false for all other v
Initialize L[0] to consist of the single element s

Pe
N

Set the layer counter i=0
Set the current BFS tree T=0§
While L[i] is not empty

Initialize an empty list L[i+1]

2@

Ll @
O,
©

For each node u € LI[i]

Consider each edge (u,v) incident to u

Q.O

i
© Q‘

If Discovered[v] = false then
Set Discovered[v] = true

Add edge (u,v) to the tree T
Add v to the list L[i+1]

Endif @ (D
Endfor e.o‘e
Increment the layer counter i by one .

Endwhile
O——0

January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s

Using a Queue in BFS

> Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

o (S) : = true

Set Discovered[s] =

Set Discovered[v] = false, for all other nodes v a 0

Initialize L to consist of the single element s

While L is not empty
Pop the node u at the head of L
Consider each edge (u,v) incident on u a e e
If Discovered[v] = false then

Set Discovered[v] = true
Add edge (u,v) to the tree T

Push v to the back of L 0 e e
Endif

Endwhile

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s

Using a Queue in BFS

> Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s): 1

Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v c a

Initialize L to consist of the single element s

While L is not empty
Pop the node u at the head of L
Consider each edge (u,v) incident on u e e e
If Discovered[v] = false then

Set Discovered[v] = true
Add edge (u,v) to the tree T

Push v to the back of L 0 e a
Endif

Endwhile

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s

Using a Queue in BFS

> Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s): 1

Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v a a

Initialize L to consist of the single element s

While L is not empty
Pop the node u at the head of L
Consider each edge (u,v) incident on u e e e
If Discovered[v] = false then

Set Discovered[v] = true
Add edge (u,v) to the tree T

Push v to the back of L ° e e
Endif

Endwhile

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s

Using a Queue in BFS

> Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

s - true 3

Set Discovered[s] =

Set Discovered[v] = false, for all other nodes v 0 o

Initialize L to consist of the single element s

While L is not empty
Pop the node u at the head of L
Consider each edge (u,v) incident on u e e e
If Discovered[v] = false then

Set Discovered[v] = true
Add edge (u,v) to the tree T

Push v to the back of L ° e e
Endif

Endwhile

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s

Using a Queue in BFS

> Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s): . 3

Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v a 0

Initialize L to consist of the single element s

While L is not empty
Pop the node u at the head of L
Consider each edge (u,v) incident on u e e e
If Discovered[v] = false then

Set Discovered[v] = true
Add edge (u,v) to the tree T

Push v to the back of L ° e e
Endif

Endwhile

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s

Using a Queue in BFS

> Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s): e 3 n

Set Discovered[s] =

Set Discovered[v] = false, for all other nodes v a 0

Initialize L to consist of the single element s

While L is not empty
Pop the node u at the head of L
Consider each edge (u,v) incident on u e e e
If Discovered[v] = false then

Set Discovered[v] = true
Add edge (u,v) to the tree T

Push v to the back of L ° e e
Endif

Endwhile

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s

Using a Queue in BFS

> Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s): e 2 En

Set Discovered[s] =

Set Discovered[v] = false, for all other nodes v a 0

Initialize L to consist of the single element s

While L is not empty
Pop the node u at the head of L
Consider each edge (u,v) incident on u e e e
If Discovered[v] = false then

Set Discovered[v] = true
Add edge (u,v) to the tree T

Push v to the back of L 0 e e
Endif

Endwhile

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s

Using a Queue in BFS

> Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s): e 5 nn

Set Discovered[s] =

Set Discovered[v] = false, for all other nodes v a 0

Initialize L to consist of the single element s

While L is not empty
Pop the node u at the head of L
Consider each edge (u,v) incident on u e e e
If Discovered[v] = false then

Set Discovered[v] = true
Add edge (u,v) to the tree T

Push v to the back of L 0 e e
Endif

Endwhile

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s

Using a Queue in BFS

> Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s): 7

Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v a 0

Initialize L to consist of the single element s

While L is not empty
Pop the node u at the head of L
Consider each edge (u,v) incident on u e e e
If Discovered[v] = false then

Set Discovered[v] = true
Add edge (u,v) to the tree T

Push v to the back of L 0 e e
Endif

Endwhile

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s

Using a Queue in BFS

> Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s): 8

Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v a 0

Initialize L to consist of the single element s

While L is not empty
Pop the node u at the head of L
Consider each edge (u,v) incident on u e e e
If Discovered[v] = false then

Set Discovered[v] = true
Add edge (u,v) to the tree T

Push v to the back of L 0 e e
Endif

Endwhile

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s

Using a Queue in BFS

> Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s):
= true 4 IE

Set Discovered[s] =

Set Discovered[v] = false, for all other nodes v a 0

Initialize L to consist of the single element s

While L is not empty
Pop the node u at the head of L
Consider each edge (u,v) incident on u e e e
If Discovered[v] = false then

Set Discovered[v] = true
Add edge (u,v) to the tree T

Push v to the back of L 0 e e
Endif

Endwhile

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s

Using a Queue in BFS

> Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s): 6 |:|
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v a 0

Initialize L to consist of the single element s

While L is not empty
Pop the node u at the head of L
Consider each edge (u,v) incident on u e e e
If Discovered[v] = false then

Set Discovered[v] = true
Add edge (u,v) to the tree T

Push v to the back of L 0 e e
Endif

Endwhile

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s

Using a Queue in BFS

> Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s): 6 [|
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v a 0

Initialize L to consist of the single element s

While L is not empty
Pop the node u at the head of L
Consider each edge (u,v) incident on u e e e
If Discovered[v] = false then

Set Discovered[v] = true
Add edge (u,v) to the tree T

Push v to the back of L 0 e e
Endif

Endwhile
» Simple to modify this procedure to keep track of layer numbers as well.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s

Using a Queue in BFS

> Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s): 6 I]
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v a 0

Initialize L to consist of the single element s

While L is not empty
Pop the node u at the head of L
Consider each edge (u,v) incident on u e e e
If Discovered[v] = false then

Set Discovered[v] = true
Add edge (u,v) to the tree T

Push v to the back of L 0 e e
Endif

Endwhile
» Simple to modify this procedure to keep track of layer numbers as well. Store
the pair (u, l,), where I, is the index of the layer containing u.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Components Implementations

Using a Queue in BFS

> Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s): 6 I]
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v a 0

Initialize L to consist of the single element s

While L is not empty
Pop the node u at the head of L
Consider each edge (u,v) incident on u a e e
If Discovered[v] = false then

Set Discovered[v] = true
Add edge (u,v) to the tree T

Push v to the back of L 0 e e
Endif

Endwhile

» Simple to modify this procedure to keep track of layer numbers as well. Store
the pair (u, l,), where I, is the index of the layer containing u.

» Claim: Nodes in layer i + 1 will appear in L immediately after nodes in layer
i

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Components Implementations

Using a Queue in BFS

> Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s): 6 I]
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v ° 0

Initialize L to consist of the single element s

While L is not empty
Pop the node u at the head of L
Consider each edge (u,v) incident on u a e e
If Discovered[v] = false then

Set Discovered[v] = true
Add edge (u,v) to the tree T

Push v to the back of L o e e
Endif

Endwhile

» Simple to modify this procedure to keep track of layer numbers as well. Store
the pair (u, l,), where I, is the index of the layer containing u.

» Claim: Nodes in layer i + 1 will appear in L immediately after nodes in layer
i. More formally: If BFS(s) pops (v, /,) from L immediately after it pops
(u, 1), then either |, =1, or I, =1, + 1.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s

Analysis of BFS Implementation

BFS(s):
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty
Pop the node u at the head of L
Consider each edge (u,v) incident on u
If Discovered[v] = false then
Set Discovered[v] = true
Add edge (u,v) to the tree T
Push v to the back of L
Endif
Endwhile

» Naive bound on running time is

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s

Analysis of BFS Implementation

BFS(s):
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty
Pop the node u at the head of L
Consider each edge (u,v) incident on u
If Discovered[v] = false then
Set Discovered[v] = true
Add edge (u,v) to the tree T
Push v to the back of L
Endif
Endwhile

» Naive bound on running time is O(n?): For each node, we spend O(n) time.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s

Analysis of BFS Implementation

BFS(s):
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty
Pop the node u at the head of L
Consider each edge (u,v) incident on u
If Discovered[v] = false then
Set Discovered[v] = true
Add edge (u,v) to the tree T
Push v to the back of L
Endif
Endwhile

» Naive bound on running time is O(n?): For each node, we spend O(n) time.

» Improved bound:
» How many times is a node popped from L?

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s

Analysis of BFS Implementation

BFS(s):
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty
Pop the node u at the head of L
Consider each edge (u,v) incident on u
If Discovered[v] = false then
Set Discovered[v] = true
Add edge (u,v) to the tree T
Push v to the back of L
Endif
Endwhile

» Naive bound on running time is O(n?): For each node, we spend O(n) time.

» Improved bound:
» How many times is a node popped from L? Exactly once.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s

Analysis of BFS Implementation

BFS(s):
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty
Pop the node u at the head of L
Consider each edge (u,v) incident on u
If Discovered[v] = false then
Set Discovered[v] = true
Add edge (u,v) to the tree T
Push v to the back of L
Endif
Endwhile

» Naive bound on running time is O(n?): For each node, we spend O(n) time.
» Improved bound:

» How many times is a node popped from L? Exactly once.

» Time used by for loop for a node u:

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s

Analysis of BFS Implementation

BFS(s):
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty
Pop the node u at the head of L
Consider each edge (u,v) incident on u
If Discovered[v] = false then
Set Discovered[v] = true
Add edge (u,v) to the tree T
Push v to the back of L
Endif
Endwhile

» Naive bound on running time is O(n?): For each node, we spend O(n) time.
» Improved bound:

» How many times is a node popped from L? Exactly once.

» Time used by for loop for a node u: O(ny) time.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s

Analysis of BFS Implementation

BFS(s):
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v

Initialize L to consist of the single element s
While L is not empty
Pop the node u at the head of L
Consider each edge (u,v) incident on u
If Discovered[v] = false then
Set Discovered[v] = true
Add edge (u,v) to the tree T
Push v to the back of L
Endif
Endwhile

» Naive bound on running time is O(n?): For each node, we spend O(n) time.
» Improved bound:
» How many times is a node popped from L? Exactly once.
Time used by for loop for a node u: O(n,) time.
Total time for all for loops:), . O(n.) = O(m) time.
Maintaining layer information:

vYyy

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s

Analysis of BFS Implementation

BFS(s):
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty
Pop the node u at the head of L
Consider each edge (u,v) incident on u
If Discovered[v] = false then
Set Discovered[v] = true
Add edge (u,v) to the tree T
Push v to the back of L
Endif
Endwhile

» Naive bound on running time is O(n?): For each node, we spend O(n) time.
» Improved bound:
» How many times is a node popped from L? Exactly once.
Time used by for loop for a node u: O(n,) time.
Total time for all for loops:), . O(n.) = O(m) time.
Maintaining layer information: O(1) time per node.

otal time O(n -+ m
T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

>
>
>
>

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Recursive DFS

DFS(u):
Mark u as "Explored" and add u to R
For each edge (u,v) incident to u
If v is not marked "Explored" then
Recursively invoke DFS(v)
Endif
Endfor

» Procedure has “tail recursion”: recursive call is the last step.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Impl

Recursive DFS

DFS(u):
Mark u as "Explored" and add u to R
For each edge (u,v) incident to u
If v is not marked "Explored" then
Recursively invoke DFS(v)
Endif
Endfor

» Procedure has “tail recursion”: recursive call is the last step.

» Can replace the recursion by an iteration: use a stack to explicitly implement
the recursion.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Implementing DFS

» Maintain a stack S to store nodes to be explored.

» Maintain an array Explored and set Explored[v] = true when the algorithm
pops v from the stack.

» Read textbook on how to construct the DFS tree.

DFS(s):
Initialize S to be a stack with one element s
While S is not empty
Take a node u from S
If Explored[u] = false then
Set Explored[u] = true
For each edge (u,v) incident to u
Add v to the stack S
Endfor
Endif
Endwhile

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl

Implementing DFS

» Maintain a stack S to store nodes to be explored.

» Maintain an array Explored and set Explored[v] = true when the algorithm
pops v from the stack.

» Read textbook on how to construct the DFS tree.

DFS(s):
Initialize S to be a stack with one element s Q a

While S is not empty

Take a node u from S
If Explored[u] = false then e 9 G
Set Explored[u] = true
For each edge (u,v) incident to u
Add v to the stack S
Endfor

(O——©

Endwhile

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl

Implementing DFS

» Maintain a stack S to store nodes to be explored.

» Maintain an array Explored and set Explored[v] = true when the algorithm
pops v from the stack.

» Read textbook on how to construct the DFS tree.

DFS(s):
Initialize S to be a stack with one element s

While S is not empty Add parent
pointer when
pushing to
stack

Take a node u from S
If Explored[u] = false then
Set Explored[u] = true
For each edge (u,v) incident to u
Add v to the stack S
Endfor
Endif
Endwhile

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All

mp s

Implementing DFS

» Maintain a stack S to store nodes to be explored.

» Maintain an array Explored and set Explored[v] = true when the algorithm
pops v from the stack.

» Read textbook on how to construct the DFS tree.

DFS(s):

P . . Node may
Initialize S to be a stack with one element s

be on stack
more than
once

While S is not empty

Take a node u from S 8
If Explored[u] = false then
Set Explored[u] = true 7
For each edge (u,v) incident to u S:gxrg:inter it 5
Add v to the stack S pushing node
again 2
Endfor
Endif 3V 2
Endwhile

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl

Implementing DFS

» Maintain a stack S to store nodes to be explored.

» Maintain an array Explored and set Explored[v] = true when the algorithm
pops v from the stack.

» Read textbook on how to construct the DFS tree.

DFS(s):
Initialize S to be a stack with one element s o a

While S is not empty

Take a node u from S

If Explored[u] = false then e e e L
Set Explored[u] = true 7

For each edge (u,v) incident to u ?

Add v to the stack S —

Endfor i
O——0 s

Endwhile _

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl

Implementing DFS

» Maintain a stack S to store nodes to be explored.

» Maintain an array Explored and set Explored[v] = true when the algorithm
pops v from the stack.

» Read textbook on how to construct the DFS tree.

DFS(s):
Initialize S to be a stack with one element s o o

While S is not empty

Take a node u from S
If Explored[u] = false then
Set Explored[u] = true

For each edge (u,v) incident to u
Add v to the stack S
Endfor

(>

Endwhile

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl

Implementing DFS

» Maintain a stack S to store nodes to be explored.

» Maintain an array Explored and set Explored[v] = true when the algorithm
pops v from the stack.

» Read textbook on how to construct the DFS tree.

DFS(s):
Initialize S to be a stack with one element s o o

While S is not empty

Take a node u from S
If Explored[u] = false then
Set Explored[u] = true

For each edge (u,v) incident to u ‘

Add v to the stack S
Endfor
(D—)—©) 7

Endif
Endwhile

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl

Implementing DFS

» Maintain a stack S to store nodes to be explored.

» Maintain an array Explored and set Explored[v] = true when the algorithm
pops v from the stack.

» Read textbook on how to construct the DFS tree.

DFS(s):
Initialize S to be a stack with one element s o o

While S is not empty

Take a node u from S

If Explored[u] = false then e e e i
Set Explored[u] = true 4

For each edge (u,v) incident to u T

Add v to the stack S —

Endfor i
OO0 s

Endwhile _

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl

Implementing DFS

» Maintain a stack S to store nodes to be explored.

» Maintain an array Explored and set Explored[v] = true when the algorithm
pops v from the stack.

» Read textbook on how to construct the DFS tree.

DFS(s):
Initialize S to be a stack with one element s o o
While S is not empty
Take a node u from S
If Explored[u] = false then e e e
Set Explored[u] = true n
For each edge (u,v) incident to u
Add v to the stack S
Endfor
O—O—@ o2

Endwhile

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl

Implementing DFS

» Maintain a stack S to store nodes to be explored.

» Maintain an array Explored and set Explored[v] = true when the algorithm
pops v from the stack.

» Read textbook on how to construct the DFS tree.

DFS(s):
Initialize S to be a stack with one element s o o

While S is not empty

Take a node u from S
If Explored[u] = false then
Set Explored[u] = true

For each edge (u,v) incident to u ‘

Add v to the stack S
Endfor
O—6—©

Endif
Endwhile

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp s Impl

Implementing DFS

» Maintain a stack S to store nodes to be explored.

» Maintain an array Explored and set Explored[v] = true when the algorithm
pops v from the stack.

» Read textbook on how to construct the DFS tree.

DFS(s):
Initialize S to be a stack with one element s o o

While S is not empty

Take a node u from S
If Explored[u] = false then

Set Explored[u] = true e e e
For each edge (u,v) incident to u
Add v to the stack S
2

Endfor

2
Endif 0 e e 2

Endwhile

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Comparing Recursion and lteration

DFS(u):
Mark u as "Explored" and add u to R
For each edge (u,v) incident to u
If v is not marked "Explored" then
Recursively invoke DFS(v)
Endif
Endfor

DFS(s):
Initialize S to be a stack with one element s
While S is not empty
Take a node u from S
If Explored[u] = false then
Set Explored[u] = true
For each edge (u,v) incident to u
Add v to the stack S
Endfor
Endif
Endwhile

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Analysing DFS

DFS(s):
Initialize S to be a stack with one element s
While S is not empty
Take a node u from S
If Explored[u] = false then
Set Explored[u] = true
For each edge (u,v) incident to u
Add v to the stack S
Endfor
Endif
Endwhile

» How many times is a node's adjacency list scanned?

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Analysing DFS

DFS(s):
Initialize S to be a stack with one element s
While S is not empty
Take a node u from S
If Explored[u] = false then
Set Explored[u] = true
For each edge (u,v) incident to u
Add v to the stack S
Endfor
Endif
Endwhile

» How many times is a node's adjacency list scanned? Exactly once.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Analysing DFS

DFS(s):
Initialize S to be a stack with one element s
While S is not empty
Take a node u from S
If Explored[u] = false then
Set Explored[u] = true
For each edge (u,v) incident to u
Add v to the stack S
Endfor
Endif
Endwhile

» How many times is a node's adjacency list scanned? Exactly once.
» The total amount of time to process edges incident on node u's is

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Analysing DFS

DFS(s):
Initialize S to be a stack with one element s
While S is not empty
Take a node u from S
If Explored[u] = false then
Set Explored[u] = true
For each edge (u,v) incident to u
Add v to the stack S
Endfor
Endif
Endwhile

» How many times is a node's adjacency list scanned? Exactly once.
> The total amount of time to process edges incident on node u's is O(n,).

» The total running time of the algorithm is

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

Basic Definitions Graph Traversal BFS DFS All Comp Impl

Analysing DFS

DFS(s):
Initialize S to be a stack with one element s
While S is not empty
Take a node u from S
If Explored[u] = false then
Set Explored[u] = true
For each edge (u,v) incident to u
Add v to the stack S
Endfor
Endif
Endwhile

» How many times is a node's adjacency list scanned? Exactly once.
> The total amount of time to process edges incident on node u's is O(n,).
» The total running time of the algorithm is O(n + m).

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs

	Basic Definitions
	Graph Traversal
	BFS
	DFS
	All Components
	Implementations

