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Graphs

» Model pairwise relationships (edges) between objects (nodes).
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Graphs

» Model pairwise relationships (edges) between objects (nodes).
» Useful in a large number of applications:
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Graphs

» Model pairwise relationships (edges) between objects (nodes).

» Useful in a large number of applications: computer networks, the World Wide
Web, ecology (food webs), social networks, software systems, job scheduling,
VLSI circuits, cellular networks, . ..

> Other examples: gene and protein networks, our bodies (nervous and
circulatory systems, brains), buildings, transportation networks, ...
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Graphs

» Model pairwise relationships (edges) between objects (nodes).

» Useful in a large number of applications: computer networks, the World Wide
Web, ecology (food webs), social networks, software systems, job scheduling,
VLSI circuits, cellular networks, . ..

> Other examples: gene and protein networks, our bodies (nervous and
circulatory systems, brains), buildings, transportation networks, ...

» Problems involving graphs have a rich history dating back to Euler.
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Definition of a Graph

» Undirected graph G = (V, E): set V of nodes and set E of edges, where
E C V x V. Elements of E are unordered pairs.
» Abuse of notation: write an edge e between nodes u and v as e = (u, v) and
not as e = {u, v}.
» Say that edge e is incident on u and on v.
» Exactly one edge between any pair of nodes.
» G contains no self loops.
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Definition of a Graph

» Undirected graph G = (V, E): set V of nodes and set E of edges, where
E C V x V. Elements of E are unordered pairs.
» Abuse of notation: write an edge e between nodes u and v as e = (u, v) and
not as e = {u, v}.
» Say that edge e is incident on u and on v.
» Exactly one edge between any pair of nodes.
» G contains no self loops.

» Directed graph G = (V, E): set V of nodes and set E of edges, where
E C V x V. Elements of E are ordered pairs.
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Definition of a Graph

» Undirected graph G = (V, E): set V of nodes and set E of edges, where
E C V x V. Elements of E are unordered pairs.
» Abuse of notation: write an edge e between nodes u and v as e = (u, v) and
not as e = {u, v}.
» Say that edge e is incident on u and on v.
» Exactly one edge between any pair of nodes.
» G contains no self loops.

» Directed graph G = (V, E): set V of nodes and set E of edges, where
E C V x V. Elements of E are ordered pairs.

» e = (u,v): uis the tail of the edge e, v is its head; e leaves node u and enters
node v; e is directed from u to v.

> A pair of nodes {u, v} may be connected by two directed edges: (u,v) and
(v, v)-

» G contains no self loops.
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Definition of a Graph

» Undirected graph G = (V, E): set V of nodes and set E of edges, where
E C V x V. Elements of E are unordered pairs.
» Abuse of notation: write an edge e between nodes u and v as e = (u, v) and
not as e = {u, v}.
» Say that edge e is incident on u and on v.
» Exactly one edge between any pair of nodes.
» G contains no self loops.

» Directed graph G = (V, E): set V of nodes and set E of edges, where
E C V x V. Elements of E are ordered pairs.

» e = (u,v): uis the tail of the edge e, v is its head; e leaves node u and enters
node v; e is directed from u to v.
> A pair of nodes {u, v} may be connected by two directed edges: (u,v) and

(v, u).

» G contains no self loops.

» By default, “graph” will mean an “undirected graph.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs



Basic Definitions Graph Traversal BFS DFS All Comp s Impl

Paths and Connectivity

> A pathin an undirected graph G = (V, E) is a sequence P of nodes
Vi,V2,...,Vk_1, vk € V such that every consecutive pair of nodes
Vi, Vit1, 1 § i < k is connected by an edge in E.
> P is called a path from vi to vk or a vi-vi path.
» A path is simple if all its nodes are distinct.
» A cycleis a path where k > 2, the first k — 1 nodes are distinct, and v; = vy.
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Paths and Connectivity

> A pathin an undirected graph G = (V, E) is a sequence P of nodes
Vi, Vo, ..., Vk_1, vk € V such that every consecutive pair of nodes
Vi, Vit1,1 < i < k is connected by an edge in E.
> P is called a path from vi to vk or a vi-vi path.
» A path is simple if all its nodes are distinct.
» A cycleis a path where k > 2, the first k — 1 nodes are distinct, and v; = vy.
> All definitions carry over to directed graphs as well.
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Paths and Connectivity

A path in an undirected graph G = (V, E) is a sequence P of nodes
Vi, Vo, ..., Vk_1, vk € V such that every consecutive pair of nodes
Vi, Vit1,1 < i < k is connected by an edge in E.
> P is called a path from vi to vk or a vi-vi path.
A path is simple if all its nodes are distinct.
A cycle is a path where k > 2, the first k — 1 nodes are distinct, and v; = vy.
> All definitions carry over to directed graphs as well.
» An undirected graph G is connected if for every pair of nodes u,v € V, there
is a path from uto v in G.
» Directed graphs have the notion of “strong connectivity.”
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Paths and Connectivity

A path in an undirected graph G = (V, E) is a sequence P of nodes
Vi, Vo, ..., Vk_1, vk € V such that every consecutive pair of nodes
Vi, Vit1,1 < i < k is connected by an edge in E.
> P is called a path from vi to vk or a vi-vi path.
A path is simple if all its nodes are distinct.
A cycle is a path where k > 2, the first k — 1 nodes are distinct, and v; = vy.
> All definitions carry over to directed graphs as well.
» An undirected graph G is connected if for every pair of nodes u,v € V, there
is a path from uto v in G.
» Directed graphs have the notion of “strong connectivity.”
» Distance between two nodes u and v is the minimum number of edges in any
u-v path.
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Trees

Figure 3.1 Two drawings of the same tree. On the right, the tree is rooted at node 1.

» An undirected graph is a tree if it is connected and does not contain a cycle.
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Trees

Figure 3.1 Two drawings of the same tree. On the right, the tree is rooted at node 1.

» An undirected graph is a tree if it is connected and does not contain a cycle.
For any pair of nodes in a tree, there is a unique path connecting them.
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Trees

Figure 3.1 Two drawings of the same tree. On the right, the tree is rooted at node 1.

» An undirected graph is a tree if it is connected and does not contain a cycle.
For any pair of nodes in a tree, there is a unique path connecting them.
» Rooting a tree T: pick some node r in the tree and orient each edge of T

“away" from r, i.e., for each node v # r, define parent of v to be the node u
that directly precedes v on the path from r to v.
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Figure 3.1 Two drawings of the same tree. On the right, the tree is rooted at node 1.

» An undirected graph is a tree if it is connected and does not contain a cycle.
For any pair of nodes in a tree, there is a unique path connecting them.

» Rooting a tree T: pick some node r in the tree and orient each edge of T
“away" from r, i.e., for each node v # r, define parent of v to be the node u
that directly precedes v on the path from r to v.

> Node w is a child of node v if v is a parent of w.

> Node w is a descendant of node v (or v is an ancestor of w) if v lies on the
r-w path.

> Node x is a /eaf if it has no descendants.
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Figure 3.1 Two drawings of the same tree. On the right, the tree is rooted at node 1.

» An undirected graph is a tree if it is connected and does not contain a cycle.
For any pair of nodes in a tree, there is a unique path connecting them.

» Rooting a tree T: pick some node r in the tree and orient each edge of T
“away" from r, i.e., for each node v # r, define parent of v to be the node u
that directly precedes v on the path from r to v.

> Node w is a child of node v if v is a parent of w.

> Node w is a descendant of node v (or v is an ancestor of w) if v lies on the
r-w path.

> Node x is a /eaf if it has no descendants.

» Examples of (rooted) trees:
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Figure 3.1 Two drawings of the same tree. On the right, the tree is rooted at node 1.

» An undirected graph is a tree if it is connected and does not contain a cycle.
For any pair of nodes in a tree, there is a unique path connecting them.

» Rooting a tree T: pick some node r in the tree and orient each edge of T
“away" from r, i.e., for each node v # r, define parent of v to be the node u
that directly precedes v on the path from r to v.

> Node w is a child of node v if v is a parent of w.

> Node w is a descendant of node v (or v is an ancestor of w) if v lies on the
r-w path.

> Node x is a /eaf if it has no descendants.

» Examples of (rooted) trees: organisational hierarchy, class hierarchies in
object-oriented languages.
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Number of Edges in a Tree

» Claim: every n-node tree has edges.
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Number of Edges in a Tree

» Claim: every n-node tree has exactly n — 1 edges.
» Proof 1:
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Number of Edges in a Tree

» Claim: every n-node tree has exactly n — 1 edges.

» Proof 1: Root the tree. Each node, except the root, has a unique parent.

Each edge connects one parent to one child. Therefore, the tree has n — 1
edges.
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Number of Edges in a Tree

» Claim: every n-node tree has exactly n — 1 edges.

» Proof 1: Root the tree. Each node, except the root, has a unique parent.
Each edge connects one parent to one child. Therefore, the tree has n — 1
edges.

» Proof 2: (by induction)
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Number of Edges in a Tree

» Claim: every n-node tree has exactly n — 1 edges.

» Proof 1: Root the tree. Each node, except the root, has a unique parent.
Each edge connects one parent to one child. Therefore, the tree has n — 1
edges.

» Proof 2: (by induction) Two key pieces.

> Every tree contains at least one leaf, i.e., node of degree 1. Why?
> Inductive hypothesis: every tree with n — 1 nodes contains n — 2 edges.
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Number of Edges in a Tree

» Claim: every n-node tree has exactly n — 1 edges.

» Proof 1: Root the tree. Each node, except the root, has a unique parent.
Each edge connects one parent to one child. Therefore, the tree has n — 1
edges.

» Proof 2: (by induction) Two key pieces.

> Every tree contains at least one leaf, i.e., node of degree 1. Why?
> Inductive hypothesis: every tree with n — 1 nodes contains n — 2 edges.

» Stronger claim: Let G be an undirected graph on n nodes. Any two of the

following statements implies the third:

1. G is connected.
2. G does not contain a cycle.
3. G contains n — 1 edges.

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs



Basic Definitions Graph Traversal BFS DFS All Comp s Impl ions

Number of Edges in a Tree

» Claim: every n-node tree has exactly n — 1 edges.

» Proof 1: Root the tree. Each node, except the root, has a unique parent.
Each edge connects one parent to one child. Therefore, the tree has n — 1
edges.

» Proof 2: (by induction) Two key pieces.

> Every tree contains at least one leaf, i.e., node of degree 1. Why?
> Inductive hypothesis: every tree with n — 1 nodes contains n — 2 edges.

» Stronger claim: Let G be an undirected graph on n nodes. Any two of the

following statements implies the third:

1. G is connected.
2. G does not contain a cycle.
3. G contains n — 1 edges.

» Note that none of these statements uses the word “tree”.
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Number of Edges in a Tree

» Claim: every n-node tree has exactly n — 1 edges.

» Proof 1: Root the tree. Each node, except the root, has a unique parent.
Each edge connects one parent to one child. Therefore, the tree has n — 1
edges.

» Proof 2: (by induction) Two key pieces.

> Every tree contains at least one leaf, i.e., node of degree 1. Why?
> Inductive hypothesis: every tree with n — 1 nodes contains n — 2 edges.

» Stronger claim: Let G be an undirected graph on n nodes. Any two of the

following statements implies the third:

1. G is connected.
2. G does not contain a cycle.
3. G contains n — 1 edges.

» Note that none of these statements uses the word “tree”.
» land 2 = 3:
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Number of Edges in a Tree

» Claim: every n-node tree has exactly n — 1 edges.

» Proof 1: Root the tree. Each node, except the root, has a unique parent.
Each edge connects one parent to one child. Therefore, the tree has n — 1
edges.

» Proof 2: (by induction) Two key pieces.

> Every tree contains at least one leaf, i.e., node of degree 1. Why?
> Inductive hypothesis: every tree with n — 1 nodes contains n — 2 edges.

» Stronger claim: Let G be an undirected graph on n nodes. Any two of the

following statements implies the third:

1. G is connected.
2. G does not contain a cycle.
3. G contains n — 1 edges.

» Note that none of these statements uses the word “tree”.
» 1 and 2 = 3: just proved.
» 2and 3 = 1:

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs



Basic Definitions Graph Traversal BFS DFS All Comp s Impl ions

Number of Edges in a Tree

» Claim: every n-node tree has exactly n — 1 edges.

» Proof 1: Root the tree. Each node, except the root, has a unique parent.
Each edge connects one parent to one child. Therefore, the tree has n — 1
edges.

» Proof 2: (by induction) Two key pieces.

> Every tree contains at least one leaf, i.e., node of degree 1. Why?
> Inductive hypothesis: every tree with n — 1 nodes contains n — 2 edges.

» Stronger claim: Let G be an undirected graph on n nodes. Any two of the

following statements implies the third:
1. G is connected.
2. G does not contain a cycle.
3. G contains n — 1 edges.

Note that none of these statements uses the word “tree”.
1 and 2 = 3: just proved.

2 and 3 = 1: prove by contradiction.

3 and 1 = 2: prove yourself.

vy vy VvVYyYy
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s-t Connectivity

1)
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s-t Connectivity
INSTANCE: An undirected graph G = (V, E) and two nodes s, t € V.
QUESTION: Is there an s-t path in G?
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s-t Connectivity

INSTANCE: An undirected graph G = (V, E) and two nodes s, t € V.
QUESTION: Is there an s-t path in G?

» The connected component of G containing s is the set of all nodes u such
that there is an s-u path in G.
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s-t Connectivity
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s-t Connectivity

INSTANCE: An undirected graph G = (V, E) and two nodes s, t € V.
QUESTION: Is there an s-t path in G?

» The connected component of G containing s is the set of all nodes u such
that there is an s-u path in G.

» Algorithm for the s-t Connectivity problem: compute the connected
component of G that contains s and check if t is in that component.
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Computing Connected Components

» “Explore” G starting from s and maintain set R of visited nodes.

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where ucR and v¢R
Add v to R

Endwhile
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Computing Connected Components

» “Explore” G starting from s and maintain set R of visited nodes.

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where ucR and v¢R
Add v to R

Endwhile
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Computing Connected Components

» “Explore” G starting from s and maintain set R of visited nodes.

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where ucR and v¢R
Add v to R

Endwhile
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Computing Connected Components

» “Explore” G starting from s and maintain set R of visited nodes.

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where ucR and v¢R
Add v to R

Endwhile

o
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Issues in Computing Connected Components

R will consist of nodes to which s has a path . ‘
Q0 ©® ©

While there is an edge (u,v) where ueR and v¢R
Add v to R
Endwhile

» How do we implement the while loop?

T. M. Murali

January 28, February 2, 4, 2016
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Issues in Computing Connected Components

B O O O
R will consist of nodes to which s has a path ‘ ‘
Initially R={s} e o o @ @
While there is an edge (u,v) where ueR and v¢R
Add v to R
Endwhile
O—E—©

» How do we implement the while loop? Examine each edge in E.
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Issues in Computing Connected Components

@ O O O
R will consist of nodes to which s has a path ‘ ‘
Initially R={s} 9 o o @ @
While there is an edge (u,v) where ueR and v¢R
Add v to R
Endwhile
O——C0 O

» How do we implement the while loop? Examine each edge in E.
> Other issues to consider:

» Why does the algorithm terminate?
> Does the algorithm truly compute connected component of G containing s?
» What is the running time of the algorithm?

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs



Basic Definitions Graph Traversal BFS DFS All Impl

P P

Termination of the Algorithm

R will consist of nodes to which s has a path . ‘
Q——© ® @

While there is an edge (u,v) where uecR and v¢R
Add v to R
Endwhile

» How many nodes does each iteration of the while loop add to R?
» How many times is the while loop executed?
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P P

Termination of the Algorithm

R will consist of nodes to which s has a path . ‘
Q——© ® @

While there is an edge (u,v) where uecR and v¢R
Add v to R
Endwhile

» How many nodes does each iteration of the while loop add to R? Exactly 1.
» How many times is the while loop executed?
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P P

Termination of the Algorithm

R will consist of nodes to which s has a path . ‘
Q—CF—©® ©® @

While there is an edge (u,v) where uecR and v¢R
Add v to R
Endwhile

» How many nodes does each iteration of the while loop add to R? Exactly 1.
» How many times is the while loop executed? At most n times.
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P P

Termination of the Algorithm

O ORNORB®
R will consist of nodes to which s has a path . ‘
Initially R=(s) 9 o 9 @ @
While there is an edge (u,v) where uecR and v¢R
Add v to R
Endwhile
O—E—0©

» How many nodes does each iteration of the while loop add to R? Exactly 1.

» How many times is the while loop executed? At most n times.
» What is true of R at termination?
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Termination of the Algorithm

R will consist of nodes to which s has a path . ‘
Q0 ©® ®

While there is an edge (u,v) where uecR and v¢R
Add v to R
Endwhile

O—0—C6 G

» How many nodes does each iteration of the while loop add to R? Exactly 1.
» How many times is the while loop executed? At most n times.
» What is true of R at termination?

» either R = V at the end or

> in the last iteration, every edge either has both nodes in R or both nodes not
in R.
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Correctness of the Algorithm

R

» Claim: at the end of the algorithm, the set R is exactly the connected
component of G containing s.
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Correctness of the Algorithm

R

» Claim: at the end of the algorithm, the set R is exactly the connected
component of G containing s.
> Proof: Suppose w € R but there is an s-w path P in G.

» Consider first node v in P not in R (v # s).
> Let u be the predecessor of v in P:
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Correctness of the Algorithm

R

» Claim: at the end of the algorithm, the set R is exactly the connected
component of G containing s.
> Proof: Suppose w € R but there is an s-w path P in G.

» Consider first node v in P not in R (v # s).
> Let u be the predecessor of v in P: uis in R.
> (u,v) is an edge with u € R but v € R, contradicting the stopping rule.
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Correctness of the Algorithm

R

» Claim: at the end of the algorithm, the set R is exactly the connected
component of G containing s.
> Proof: Suppose w € R but there is an s-w path P in G.

» Consider first node v in P not in R (v # s).

> Let u be the predecessor of v in P: uis in R.

> (u,v) is an edge with u € R but v € R, contradicting the stopping rule.
> Note: wrong to assume that predecessor of w in P is not in R.
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P P

Recovering Paths

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where ueR and v¢R
Add v to R

Endwhile

» Given a node t € R, how do we recover the s-t path?
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Recovering Paths

R will consist of nodes to which s has a path ‘ ‘
Q-0 ©® ®

While there is an edge (u,v) where ueR and v¢R
Add v to R
Endwhile

GO——~C6—© ®

» Given a node t € R, how do we recover the s-t path?
» When adding node v to R, record the edge (u,v).
» What type of graph is formed by these edges?
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Recovering Paths

B O OO O
R will consist of nodes to which s has a path . ‘
Initially R={s} e e e @ @
While there is an edge (u,v) where ueR and v¢R
Add v to R
Endwhile
O——0

» Given a node t € R, how do we recover the s-t path?

» When adding node v to R, record the edge (u,v).
» What type of graph is formed by these edges? It is a tree! Why?
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Recovering Paths

B O OO O
R will consist of nodes to which s has a path . ‘
Initially R={s} e e e @ @
While there is an edge (u,v) where ueR and v¢R
Add v to R
Endwhile
O——0

Given a node t € R, how do we recover the s-t path?

When adding node v to R, record the edge (u, v).
What type of graph is formed by these edges? It is a tree! Why?

vV v.v Y

To recover the s-t path, trace these edges backwards from t until we reach s.
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P P

Running Time of the Algorithm

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where ueR and v¢R
Add v to R

Endwhile
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P P

Running Time of the Algorithm

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where u€R and v¢R
Add v to R

Endwhile

» Analyse algorithm in terms of two parameters: the number of nodes n and
the number of edges m.

> Implement the while loop by examining each edge in E. Running time of
each loop is
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P P

Running Time of the Algorithm

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where u€R and v¢R
Add v to R

Endwhile

» Analyse algorithm in terms of two parameters: the number of nodes n and
the number of edges m.

> Implement the while loop by examining each edge in E. Running time of
each loop is O(m).

» How many while loops does the algorithm execute?
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Running Time of the Algorithm

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where u€R and v¢R
Add v to R

Endwhile

» Analyse algorithm in terms of two parameters: the number of nodes n and
the number of edges m.

> Implement the while loop by examining each edge in E. Running time of
each loop is O(m).

» How many while loops does the algorithm execute? At most n.

> The running time is
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Running Time of the Algorithm

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where u€R and v¢R
Add v to R

Endwhile

» Analyse algorithm in terms of two parameters: the number of nodes n and
the number of edges m.

> Implement the while loop by examining each edge in E. Running time of
each loop is O(m).

» How many while loops does the algorithm execute? At most n.
» The running time is O(mn).
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Running Time of the Algorithm

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where u€R and v¢R
Add v to R

Endwhile

» Analyse algorithm in terms of two parameters: the number of nodes n and
the number of edges m.

> Implement the while loop by examining each edge in E. Running time of
each loop is O(m).

» How many while loops does the algorithm execute? At most n.
» The running time is O(mn).

» Can we improve the running time by processing edges more carefully?
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Breadth-First Search (BFS)

> Idea: explore G starting at s and going “outward” in all directions, adding
nodes one layer at a time.
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Breadth-First Search (BFS)

> Idea: explore G starting at s and going “outward” in all directions, adding
nodes one layer at a time.

» Layer Ly contains only s.
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Breadth-First Search (BFS)

> Idea: explore G starting at s and going “outward” in all directions, adding
nodes one layer at a time.

» Layer Ly contains only s.

» Layer L; contains all neighbours of s.
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Breadth-First Search (BFS)

> Idea: explore G starting at s and going “outward” in all directions, adding
nodes one layer at a time.

» Layer Ly contains only s.

» Layer L; contains all neighbours of s.

> Given layers Lo, Ly,...,L;, layer Lj;; contains all nodes that

1. do not belong to an earlier layer and
2. are connected by an edge to a node in layer L;.
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Breadth-First Search (BFS)

> Idea: explore G starting at s and going “outward” in all directions, adding
nodes one layer at a time.

» Layer Ly contains only s.

» Layer L; contains all neighbours of s.

> Given layers Lo, Ly,...,L;, layer Lj;; contains all nodes that

1. do not belong to an earlier layer and
2. are connected by an edge to a node in layer L;.
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Properties of BFS
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» We have not yet described how to compute these layers.
> Claim: For each j > 1, layer L; consists of all nodes
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Properties of BFS
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» We have not yet described how to compute these layers.
> Claim: For each j > 1, layer L; consists of all nodes exactly at distance j
from S. Proof
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Properties of BFS
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» We have not yet described how to compute these layers.

> Claim: For each j > 1, layer L; consists of all nodes exactly at distance j
from S. Proof by induction on j.

» Claim: There is a path from s to t if and only if ¢ is a member of some layer.
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Properties of BFS
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We have not yet described how to compute these layers.

Claim: For each j > 1, layer L; consists of all nodes exactly at distance j
from S. Proof by induction on j.

Claim: There is a path from s to t if and only if t is a member of some layer.
Let v be a node in layer L;;; and u be the “first” node in L; such that (u,v)
is an edge in G. Consider the graph T formed by all such edges, directed
from u to v.

vy

vy
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Properties of BFS
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We have not yet described how to compute these layers.
Claim: For each j > 1, layer L; consists of all nodes exactly at distance j
from S. Proof by induction on j.
Claim: There is a path from s to t if and only if t is a member of some layer.
Let v be a node in layer L;;; and u be the “first” node in L; such that (u,v)
is an edge in G. Consider the graph T formed by all such edges, directed
from u to v.

» Whyis T a tree?

vy

vy
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Properties of BFS

(W
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We have not yet described how to compute these layers.
Claim: For each j > 1, layer L; consists of all nodes exactly at distance j
from S. Proof by induction on j.
Claim: There is a path from s to t if and only if t is a member of some layer.
Let v be a node in layer L;;; and u be the “first” node in L; such that (u,v)
is an edge in G. Consider the graph T formed by all such edges, directed
from u to v.

» Why is T a tree? It is connected. The number of edges in T is the number of

nodes in all the layers minus 1.
» T is called the breadth-first search tree.

vy

vy
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BFS Trees
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> Non-tree edge: an edge of G that does not belong to the BFS tree T.

» Claim: Let T be a BFS tree, let x and y be nodes in T belonging to layers L;
and L;, respectively, and let (x, y) be an edge of G. Then |i —j] < 1.
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BFS Trees

Sody

> Non-tree edge: an edge of G that does not belong to the BFS tree T.
» Claim: Let T be a BFS tree, let x and y be nodes in T belonging to layers L;
and L;, respectively, and let (x, y) be an edge of G. Then |i —j] < 1.

> Proof by contradiction: Suppose i < j — 1. Node x € L; = all nodes adjacent
to x are in layers Ly, Ly, ... L;1 1. Hence y must be in layer L; ;1 or earlier.
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BFS Trees

Sody

> Non-tree edge: an edge of G that does not belong to the BFS tree T.

» Claim: Let T be a BFS tree, let x and y be nodes in T belonging to layers L;
and L;, respectively, and let (x, y) be an edge of G. Then |i —j] < 1.

> Proof by contradiction: Suppose i < j — 1. Node x € L; = all nodes adjacent
to x are in layers Ly, Ly, ... L;1 1. Hence y must be in layer L; ;1 or earlier.

» Still unresolved: an efficient implementation of BFS.
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Depth-First Search (DFS)

> Explore G as if it were a maze: start from s, traverse first edge out (to node
v), traverse first edge out of v, ..., reach a dead-end, backtrack, ......
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Depth-First Search (DFS)

> Explore G as if it were a maze: start from s, traverse first edge out (to node
v), traverse first edge out of v, ..., reach a dead-end, backtrack, ......

1. Mark all nodes as “Unexplored’.
2. Invoke DFS(s).

DFS(u):
Mark u as "Explored" and add u to R
For each edge (u,v) incident to u
If v is not marked "Explored" then
Recursively invoke DFS(v)
Endif
Endfor
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Depth-First Search (DFS)

> Explore G as if it were a maze: start from s, traverse first edge out (to node
v), traverse first edge out of v, ..., reach a dead-end, backtrack, ......

1. Mark all nodes as “Unexplored’.
2. Invoke DFS(s).

DFS(u):
Mark u as "Explored" and add u to R
For each edge (u,v) incident to u
If v is not marked "Explored" then
Recursively invoke DFS(v)
Endif
Endfor

» Depth-first search tree is a tree T: when DFS(v) is invoked directly during
the call to DFS(v), add edge (u,v) to T.
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Example of DFS
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Example of DFS
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BFS vs. DFS

» Both visit the same set of nodes but in a different order.
» Both traverse all the edges in the connected component but in a different
order.
» BFS trees have root-to-leaf paths that look as short as possible while paths in
DFS trees tend to be long and deep.
» Non-tree edges
BFS within the same level or between adjacent levels.
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BFS vs. DFS

» Both visit the same set of nodes but in a different order.
» Both traverse all the edges in the connected component but in a different
order.
» BFS trees have root-to-leaf paths that look as short as possible while paths in
DFS trees tend to be long and deep.
» Non-tree edges
BFS within the same level or between adjacent levels.
DFS connect ancestors to descendants.
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Properties of DFS Trees

DFS(u) :
Mark u as "Explored" and add u to R
For each edge (u,v) incident to u
If v is not marked "Explored" then
Recursively invoke DFS(v)
Endif
Endfor

> Observation: All nodes marked as “Explored’ between the start of DFS(u)
and its end are descendants of v in the DFS tree T.
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Properties of DFS Trees

DFS(u) :
Mark u as "Explored" and add u to R
For each edge (u,v) incident to u
If v is not marked "Explored" then
Recursively invoke DFS(v)
Endif
Endfor

> Observation: All nodes marked as “Explored’ between the start of DFS(u)
and its end are descendants of u in the DFS tree T.

» Claim: Let x and y be nodes in a DFS tree T such that (x, y) is an edge of
G but not of T. Then one of x or y is an ancestor of the other in T.
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Properties of DFS Trees

DFS(u) :
Mark u as "Explored" and add u to R
For each edge (u,v) incident to u
If v is not marked "Explored" then
Recursively invoke DFS(v)
Endif
Endfor

> Observation: All nodes marked as “Explored’ between the start of DFS(u)
and its end are descendants of u in the DFS tree T.
» Claim: Let x and y be nodes in a DFS tree T such that (x, y) is an edge of
G but not of T. Then one of x or y is an ancestor of the other in T.
> Proof: Assume, without loss of generality, that DFS(u) reached x first.
» Since (x,y) is an edge in G, it is examined during DFS(x).
» Since (x,y) € T, y must be marked as "Explored” during DFS(x) but before
(x,y) is examined.
» Since y was not marked as “Explored” before DFS(x) was invoked, it must be
marked as “Explored” between the start and the end of DFS(x).
» Therefore, y must be a descendant of x in T.
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All Connected Components

» We have discussed the component containing a particular node s.

» Each node belongs to a component.
» What is the relationship between all these components?
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All Connected Components

» We have discussed the component containing a particular node s.

» Each node belongs to a component.
» What is the relationship between all these components?

> If visin u's component, is u in v's component?
» If v is not in u’s component, can u be in v's component?

T. M. Murali January 28, February 2, 4, 2016
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All Connected Components

v

We have discussed the component containing a particular node s.

v

Each node belongs to a component.

v

What is the relationship between all these components?

> If visin u's component, is u in v's component?
» If v is not in u’s component, can u be in v's component?

v

Claim: For any two nodes s and t in a graph, their connected components
are either equal or disjoint.
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All Connected Components

» We have discussed the component containing a particular node s.
» Each node belongs to a component.
» What is the relationship between all these components?
> If visin u's component, is u in v's component?
» If v is not in u’s component, can u be in v's component?
» Claim: For any two nodes s and t in a graph, their connected components
are either equal or disjoint.
> Proof in two parts (sketch):

1. If G has an s-t path, then the connected components of s and t are the same.
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All Connected Components

v

We have discussed the component containing a particular node s.

v

Each node belongs to a component.

v

What is the relationship between all these components?

> If visin u's component, is u in v's component?
» If v is not in u’s component, can u be in v's component?

v

Claim: For any two nodes s and t in a graph, their connected components
are either equal or disjoint.

v

Proof in two parts (sketch):

1. If G has an s-t path, then the connected components of s and t are the same.
2. If G has no s-t path, then there cannot be a node v that is in both connected
components.
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Computing All Connected Components

Pick an arbitrary node s in G.
Compute its connected component using BFS (or DFS).
Find a node (say v, not already visited) and repeat the BFS from v.

e

Repeat this process until all nodes are visited.
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Representing Graphs

» Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
> Size of the graph is defined to be m + n.
» Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

T. M. Murali January 28, February 2, 4, 2016 CS4104: Graphs



Basic Definitions Graph Traversal BFS DFS All Comp

Representing Graphs

» Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
> Size of the graph is defined to be m + n.
» Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

> Assume V ={1,2,...,n—1,n}.

» Adjacency matrix representation: n x n Boolean matrix, where the entry in
row i and column j is 1 iff the graph contains the edge (i, J).

» Space used is
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Representing Graphs

» Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
> Size of the graph is defined to be m + n.
» Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

> Assume V ={1,2,...,n—1,n}.
» Adjacency matrix representation: n x n Boolean matrix, where the entry in
row i and column j is 1 iff the graph contains the edge (i, J).

» Space used is ©(n?), which is optimal in the worst case.
> Check if there is an edge between node i/ and node j in
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Representing Graphs

» Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
> Size of the graph is defined to be m + n.
» Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).
> Assume V ={1,2,...,n—1,n}.
» Adjacency matrix representation: n x n Boolean matrix, where the entry in
row i and column j is 1 iff the graph contains the edge (i, J).

» Space used is ©(n?), which is optimal in the worst case.
» Check if there is an edge between node i and node j in O(1) time.
> lterate over all the edges incident on node i in ©(n) time.

> Adjacency list representation: array Adj, where Adj[v] stores the list of all
nodes adjacent to v.

» An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
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Representing Graphs

» Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
> Size of the graph is defined to be m + n.
» Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

> Assume V ={1,2,...,n—1,n}.
» Adjacency matrix representation: n x n Boolean matrix, where the entry in
row i and column j is 1 iff the graph contains the edge (i, J).
» Space used is ©(n?), which is optimal in the worst case.

» Check if there is an edge between node i and node j in O(1) time.
> lterate over all the edges incident on node i in ©(n) time.

> Adjacency list representation: array Adj, where Adj[v] stores the list of all
nodes adjacent to v.
» An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
n, = the number of neighbours of node v.
Space used is O(n+ 3 ¢ nv) = O(n+ m), which is optimal for every graph.
Check if there is an edge between node u and node v in
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Representing Graphs
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> Size of the graph is defined to be m + n.
» Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

> Assume V ={1,2,...,n—1,n}.
» Adjacency matrix representation: n x n Boolean matrix, where the entry in
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nodes adjacent to v.
» An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
n, = the number of neighbours of node v.
Space used is O(n+ 3" ¢ nv) = O(n+ m), which is optimal for every graph.
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Representing Graphs

» Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
> Size of the graph is defined to be m + n.
» Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

> Assume V ={1,2,...,n—1,n}.
» Adjacency matrix representation: n x n Boolean matrix, where the entry in
row i and column j is 1 iff the graph contains the edge (i, J).
» Space used is ©(n?), which is optimal in the worst case.

» Check if there is an edge between node i and node j in O(1) time.
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> Adjacency list representation: array Adj, where Adj[v] stores the list of all
nodes adjacent to v.
» An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
n, = the number of neighbours of node v.
Space used is O(n+ 3" ¢ nv) = O(n+ m), which is optimal for every graph.
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Iterate over all the edges incident on node u in ©(ny) time.
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Data Structures for Implementation

» “Implementation” of BFS and DFS: fully specify the algorithms and data
structures so that we can obtain provably efficient times.

> Inner loop of both BFS and DFS: process the set of edges incident on a given
node and the set of visited nodes.

» How do we store the set of visited nodes? Order in which we process the
nodes is crucial.
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Data Structures for Implementation

» “Implementation” of BFS and DFS: fully specify the algorithms and data
structures so that we can obtain provably efficient times.

> Inner loop of both BFS and DFS: process the set of edges incident on a given
node and the set of visited nodes.

» How do we store the set of visited nodes? Order in which we process the
nodes is crucial.
» BFS: store visited nodes in a queue (first-in, first-out).
» DFS: store visited nodes in a stack (last-in, first-out)
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Implementing BFS

» Maintain an array Discovered and set (®
Discovered[v] = true as soon as the algorithm sees v. S
O——©
BFS(s) : [s]7]s]«]

Set Discovered[s] = true and Discovered[v] = false for all other v
Initialize L[0] to consist of the single element s

Pe
N

Set the layer counter i=0
Set the current BFS tree T=0§
While L[i] is not empty

Initialize an empty list L[i+1]

2@

Ll @
O,
©

For each node u € LI[i]

Consider each edge (u,v) incident to u

Q.O

i
© Q‘

If Discovered[v] = false then
Set Discovered[v] = true

Add edge (u,v) to the tree T
Add v to the list L[i+1]

Endif @ (D
Endfor e.o‘e
Increment the layer counter i by one .

Endwhile
O——0
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Using a Queue in BFS

> Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

o (S) : = true

Set Discovered[s] =

Set Discovered[v] = false, for all other nodes v a 0

Initialize L to consist of the single element s

While L is not empty
Pop the node u at the head of L
Consider each edge (u,v) incident on u a e e
If Discovered[v] = false then

Set Discovered[v] = true
Add edge (u,v) to the tree T

Push v to the back of L 0 e e
Endif

Endwhile
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Using a Queue in BFS

> Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s): 6 [|
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v a 0

Initialize L to consist of the single element s

While L is not empty
Pop the node u at the head of L
Consider each edge (u,v) incident on u e e e
If Discovered[v] = false then

Set Discovered[v] = true
Add edge (u,v) to the tree T

Push v to the back of L 0 e e
Endif

Endwhile
» Simple to modify this procedure to keep track of layer numbers as well.
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Using a Queue in BFS

> Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s): 6 I]
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v a 0

Initialize L to consist of the single element s

While L is not empty
Pop the node u at the head of L
Consider each edge (u,v) incident on u e e e
If Discovered[v] = false then

Set Discovered[v] = true
Add edge (u,v) to the tree T

Push v to the back of L 0 e e
Endif

Endwhile
» Simple to modify this procedure to keep track of layer numbers as well. Store
the pair (u, l,), where I, is the index of the layer containing u.
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Using a Queue in BFS

> Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s): 6 I]
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v a 0

Initialize L to consist of the single element s

While L is not empty
Pop the node u at the head of L
Consider each edge (u,v) incident on u a e e
If Discovered[v] = false then

Set Discovered[v] = true
Add edge (u,v) to the tree T

Push v to the back of L 0 e e
Endif

Endwhile

» Simple to modify this procedure to keep track of layer numbers as well. Store
the pair (u, l,), where I, is the index of the layer containing u.

» Claim: Nodes in layer i + 1 will appear in L immediately after nodes in layer
i
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Using a Queue in BFS

> Instead of storing each layer in a different list, maintain all the layers in a
single queue L.

BFS(s): 6 I]
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v ° 0

Initialize L to consist of the single element s

While L is not empty
Pop the node u at the head of L
Consider each edge (u,v) incident on u a e e
If Discovered[v] = false then

Set Discovered[v] = true
Add edge (u,v) to the tree T

Push v to the back of L o e e
Endif

Endwhile

» Simple to modify this procedure to keep track of layer numbers as well. Store
the pair (u, l,), where I, is the index of the layer containing u.

» Claim: Nodes in layer i + 1 will appear in L immediately after nodes in layer
i. More formally: If BFS(s) pops (v, /,) from L immediately after it pops
(u, 1), then either |, =1, or I, =1, + 1.
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Analysis of BFS Implementation

BFS(s):
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty
Pop the node u at the head of L
Consider each edge (u,v) incident on u
If Discovered[v] = false then
Set Discovered[v] = true
Add edge (u,v) to the tree T
Push v to the back of L
Endif
Endwhile

» Naive bound on running time is
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Consider each edge (u,v) incident on u
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» Naive bound on running time is O(n?): For each node, we spend O(n) time.
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» Naive bound on running time is O(n?): For each node, we spend O(n) time.

» Improved bound:
» How many times is a node popped from L?
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Analysis of BFS Implementation

BFS(s):
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» Naive bound on running time is O(n?): For each node, we spend O(n) time.

» Improved bound:
» How many times is a node popped from L? Exactly once.
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Analysis of BFS Implementation

BFS(s):
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty
Pop the node u at the head of L
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» Naive bound on running time is O(n?): For each node, we spend O(n) time.
» Improved bound:

» How many times is a node popped from L? Exactly once.

» Time used by for loop for a node u:
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Analysis of BFS Implementation

BFS(s):
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v

Initialize L to consist of the single element s
While L is not empty
Pop the node u at the head of L
Consider each edge (u,v) incident on u
If Discovered[v] = false then
Set Discovered[v] = true
Add edge (u,v) to the tree T
Push v to the back of L
Endif
Endwhile

» Naive bound on running time is O(n?): For each node, we spend O(n) time.
» Improved bound:
» How many times is a node popped from L? Exactly once.
Time used by for loop for a node u: O(n,) time.
Total time for all for loops: ), . O(n.) = O(m) time.
Maintaining layer information:
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Analysis of BFS Implementation

BFS(s):
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty
Pop the node u at the head of L
Consider each edge (u,v) incident on u
If Discovered[v] = false then
Set Discovered[v] = true
Add edge (u,v) to the tree T
Push v to the back of L
Endif
Endwhile

» Naive bound on running time is O(n?): For each node, we spend O(n) time.
» Improved bound:
» How many times is a node popped from L? Exactly once.
Time used by for loop for a node u: O(n,) time.
Total time for all for loops: ), . O(n.) = O(m) time.
Maintaining layer information: O(1) time per node.

otal time O(n -+ m
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Basic Definitions Graph Traversal BFS DFS All Comp Impl

Recursive DFS

DFS(u):
Mark u as "Explored" and add u to R
For each edge (u,v) incident to u
If v is not marked "Explored" then
Recursively invoke DFS(v)
Endif
Endfor

» Procedure has “tail recursion”: recursive call is the last step.
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Recursive DFS

DFS(u):
Mark u as "Explored" and add u to R
For each edge (u,v) incident to u
If v is not marked "Explored" then
Recursively invoke DFS(v)
Endif
Endfor

» Procedure has “tail recursion”: recursive call is the last step.

» Can replace the recursion by an iteration: use a stack to explicitly implement
the recursion.
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Implementing DFS

» Maintain a stack S to store nodes to be explored.

» Maintain an array Explored and set Explored[v] = true when the algorithm
pops v from the stack.

» Read textbook on how to construct the DFS tree.

DFS(s):
Initialize S to be a stack with one element s
While S is not empty
Take a node u from S
If Explored[u] = false then
Set Explored[u] = true
For each edge (u,v) incident to u
Add v to the stack S
Endfor
Endif
Endwhile
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Implementing DFS

» Maintain a stack S to store nodes to be explored.

» Maintain an array Explored and set Explored[v] = true when the algorithm
pops v from the stack.

» Read textbook on how to construct the DFS tree.

DFS(s):
Initialize S to be a stack with one element s Q a

While S is not empty

Take a node u from S
If Explored[u] = false then e 9 G
Set Explored[u] = true
For each edge (u,v) incident to u
Add v to the stack S
Endfor

(O——©

Endwhile
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Implementing DFS

» Maintain a stack S to store nodes to be explored.

» Maintain an array Explored and set Explored[v] = true when the algorithm
pops v from the stack.

» Read textbook on how to construct the DFS tree.

DFS(s):
Initialize S to be a stack with one element s

While S is not empty Add parent
pointer when
pushing to
stack

Take a node u from S
If Explored[u] = false then
Set Explored[u] = true
For each edge (u,v) incident to u
Add v to the stack S
Endfor
Endif
Endwhile
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Implementing DFS

» Maintain a stack S to store nodes to be explored.

» Maintain an array Explored and set Explored[v] = true when the algorithm
pops v from the stack.

» Read textbook on how to construct the DFS tree.

DFS(s):

P . . Node may
Initialize S to be a stack with one element s

be on stack
more than
once

While S is not empty

Take a node u from S 8
If Explored[u] = false then
Set Explored[u] = true 7
For each edge (u,v) incident to u S:gxrg:inter it 5
Add v to the stack S pushing node
again 2
Endfor
Endif 3V 2
Endwhile
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Implementing DFS

» Maintain a stack S to store nodes to be explored.

» Maintain an array Explored and set Explored[v] = true when the algorithm
pops v from the stack.

» Read textbook on how to construct the DFS tree.

DFS(s):
Initialize S to be a stack with one element s o a

While S is not empty

Take a node u from S

If Explored[u] = false then e e e L
Set Explored[u] = true 7

For each edge (u,v) incident to u ?

Add v to the stack S —

Endfor i
O——0 s

Endwhile _
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Implementing DFS

» Maintain a stack S to store nodes to be explored.

» Maintain an array Explored and set Explored[v] = true when the algorithm
pops v from the stack.

» Read textbook on how to construct the DFS tree.

DFS(s):
Initialize S to be a stack with one element s o o

While S is not empty

Take a node u from S
If Explored[u] = false then
Set Explored[u] = true

For each edge (u,v) incident to u
Add v to the stack S
Endfor
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Endwhile
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Implementing DFS

» Maintain a stack S to store nodes to be explored.

» Maintain an array Explored and set Explored[v] = true when the algorithm
pops v from the stack.

» Read textbook on how to construct the DFS tree.

DFS(s):
Initialize S to be a stack with one element s o o

While S is not empty

Take a node u from S
If Explored[u] = false then
Set Explored[u] = true

For each edge (u,v) incident to u ‘

Add v to the stack S
Endfor
(D—)—©) 7

Endif
Endwhile
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Implementing DFS

» Maintain a stack S to store nodes to be explored.

» Maintain an array Explored and set Explored[v] = true when the algorithm
pops v from the stack.

» Read textbook on how to construct the DFS tree.

DFS(s):
Initialize S to be a stack with one element s o o

While S is not empty

Take a node u from S

If Explored[u] = false then e e e i
Set Explored[u] = true 4

For each edge (u,v) incident to u T

Add v to the stack S —

Endfor i
OO0 s

Endwhile _
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Implementing DFS

» Maintain a stack S to store nodes to be explored.

» Maintain an array Explored and set Explored[v] = true when the algorithm
pops v from the stack.

» Read textbook on how to construct the DFS tree.

DFS(s):
Initialize S to be a stack with one element s o o
While S is not empty
Take a node u from S
If Explored[u] = false then e e e
Set Explored[u] = true n
For each edge (u,v) incident to u
Add v to the stack S
Endfor
O—O—@ o2

Endwhile
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Implementing DFS

» Maintain a stack S to store nodes to be explored.

» Maintain an array Explored and set Explored[v] = true when the algorithm
pops v from the stack.

» Read textbook on how to construct the DFS tree.

DFS(s):
Initialize S to be a stack with one element s o o

While S is not empty

Take a node u from S
If Explored[u] = false then
Set Explored[u] = true

For each edge (u,v) incident to u ‘

Add v to the stack S
Endfor
O—6—©

Endif
Endwhile
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Implementing DFS

» Maintain a stack S to store nodes to be explored.

» Maintain an array Explored and set Explored[v] = true when the algorithm
pops v from the stack.

» Read textbook on how to construct the DFS tree.

DFS(s):
Initialize S to be a stack with one element s o o

While S is not empty

Take a node u from S
If Explored[u] = false then

Set Explored[u] = true e e e
For each edge (u,v) incident to u
Add v to the stack S
2

Endfor

2
Endif 0 e e 2

Endwhile
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Comparing Recursion and lteration

DFS(u):
Mark u as "Explored" and add u to R
For each edge (u,v) incident to u
If v is not marked "Explored" then
Recursively invoke DFS(v)
Endif
Endfor

DFS(s):
Initialize S to be a stack with one element s
While S is not empty
Take a node u from S
If Explored[u] = false then
Set Explored[u] = true
For each edge (u,v) incident to u
Add v to the stack S
Endfor
Endif
Endwhile
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Analysing DFS

DFS(s):
Initialize S to be a stack with one element s
While S is not empty
Take a node u from S
If Explored[u] = false then
Set Explored[u] = true
For each edge (u,v) incident to u
Add v to the stack S
Endfor
Endif
Endwhile

» How many times is a node's adjacency list scanned?
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Analysing DFS

DFS(s):
Initialize S to be a stack with one element s
While S is not empty
Take a node u from S
If Explored[u] = false then
Set Explored[u] = true
For each edge (u,v) incident to u
Add v to the stack S
Endfor
Endif
Endwhile

» How many times is a node's adjacency list scanned? Exactly once.
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Analysing DFS

DFS(s):
Initialize S to be a stack with one element s
While S is not empty
Take a node u from S
If Explored[u] = false then
Set Explored[u] = true
For each edge (u,v) incident to u
Add v to the stack S
Endfor
Endif
Endwhile

» How many times is a node's adjacency list scanned? Exactly once.
» The total amount of time to process edges incident on node u's is
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Analysing DFS

DFS(s):
Initialize S to be a stack with one element s
While S is not empty
Take a node u from S
If Explored[u] = false then
Set Explored[u] = true
For each edge (u,v) incident to u
Add v to the stack S
Endfor
Endif
Endwhile

» How many times is a node's adjacency list scanned? Exactly once.
> The total amount of time to process edges incident on node u's is O(n,).

» The total running time of the algorithm is
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Analysing DFS

DFS(s):
Initialize S to be a stack with one element s
While S is not empty
Take a node u from S
If Explored[u] = false then
Set Explored[u] = true
For each edge (u,v) incident to u
Add v to the stack S
Endfor
Endif
Endwhile

» How many times is a node's adjacency list scanned? Exactly once.
> The total amount of time to process edges incident on node u's is O(n,).
» The total running time of the algorithm is O(n + m).
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