
Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Coping with NP-Completeness

T. M. Murali

May 5, 7, 2014

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

How Do We Tackle an NP-Complete Problem?

I These problems come up in real life.

I NP-Complete means that a problem is hard to solve in the worst case. Can
we come up with better solutions at least in some cases?

I Develop algorithms that are exponential in one parameter in the problem.
I Consider special cases of the input, e.g., graphs that “look like” trees.
I Develop algorithms that can provably compute a solution close to the optimal.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

How Do We Tackle an NP-Complete Problem?

I These problems come up in real life.
I NP-Complete means that a problem is hard to solve in the worst case. Can

we come up with better solutions at least in some cases?

I Develop algorithms that are exponential in one parameter in the problem.
I Consider special cases of the input, e.g., graphs that “look like” trees.
I Develop algorithms that can provably compute a solution close to the optimal.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

How Do We Tackle an NP-Complete Problem?

I These problems come up in real life.

I NP-Complete means that a problem is hard to solve in the worst case. Can
we come up with better solutions at least in some cases?

I Develop algorithms that are exponential in one parameter in the problem.
I Consider special cases of the input, e.g., graphs that “look like” trees.
I Develop algorithms that can provably compute a solution close to the optimal.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

How Do We Tackle an NP-Complete Problem?

I These problems come up in real life.

I NP-Complete means that a problem is hard to solve in the worst case. Can
we come up with better solutions at least in some cases?

I Develop algorithms that are exponential in one parameter in the problem.
I Consider special cases of the input, e.g., graphs that “look like” trees.
I Develop algorithms that can provably compute a solution close to the optimal.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Vertex Cover Problem

Vertex cover

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain a vertex cover of size at most k?

I The problem has two parameters: k and n, the number of nodes in G .

I What is the running time of a brute-force algorithm?

O(kn
(
n
k

)
) = O(knk+1).

I Can we devise an algorithm whose running time is exponential in k but
polynomial in n, e.g., O(2kn)?

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Vertex Cover Problem

Vertex cover

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain a vertex cover of size at most k?

I The problem has two parameters: k and n, the number of nodes in G .

I What is the running time of a brute-force algorithm? O(kn
(
n
k

)
) = O(knk+1).

I Can we devise an algorithm whose running time is exponential in k but
polynomial in n, e.g., O(2kn)?

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Vertex Cover Problem

Vertex cover

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain a vertex cover of size at most k?

I The problem has two parameters: k and n, the number of nodes in G .

I What is the running time of a brute-force algorithm? O(kn
(
n
k

)
) = O(knk+1).

I Can we devise an algorithm whose running time is exponential in k but
polynomial in n, e.g., O(2kn)?

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Designing the Vertex Cover Algorithm

I Intution: if a graph has a small vertex cover, it cannot have too many edges.

I Claim: If G has n nodes and G has a vertex cover of size at most k, then G
has at most kn edges.

I Easy part of algorithm: Return no if G has more than kn edges.

I G − {u} is the graph G without node u and the edges incident on u.

I Consider an edge (u, v). Either u or v must be in the vertex cover.

I Claim: G has a vertex cover of size at most k iff for any edge (u, v) either
G − {u} or G − {v} has a vertex cover of size at most k − 1.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Designing the Vertex Cover Algorithm

I Intution: if a graph has a small vertex cover, it cannot have too many edges.

I Claim: If G has n nodes and G has a vertex cover of size at most k, then G
has at most kn edges.

I Easy part of algorithm: Return no if G has more than kn edges.

I G − {u} is the graph G without node u and the edges incident on u.

I Consider an edge (u, v). Either u or v must be in the vertex cover.

I Claim: G has a vertex cover of size at most k iff for any edge (u, v) either
G − {u} or G − {v} has a vertex cover of size at most k − 1.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Designing the Vertex Cover Algorithm

I Intution: if a graph has a small vertex cover, it cannot have too many edges.

I Claim: If G has n nodes and G has a vertex cover of size at most k, then G
has at most kn edges.

I Easy part of algorithm: Return no if G has more than kn edges.

I G − {u} is the graph G without node u and the edges incident on u.

I Consider an edge (u, v). Either u or v must be in the vertex cover.

I Claim: G has a vertex cover of size at most k iff for any edge (u, v) either
G − {u} or G − {v} has a vertex cover of size at most k − 1.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Designing the Vertex Cover Algorithm

I Intution: if a graph has a small vertex cover, it cannot have too many edges.

I Claim: If G has n nodes and G has a vertex cover of size at most k, then G
has at most kn edges.

I Easy part of algorithm: Return no if G has more than kn edges.

I G − {u} is the graph G without node u and the edges incident on u.

I Consider an edge (u, v). Either u or v must be in the vertex cover.

I Claim: G has a vertex cover of size at most k iff for any edge (u, v) either
G − {u} or G − {v} has a vertex cover of size at most k − 1.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Designing the Vertex Cover Algorithm

I Intution: if a graph has a small vertex cover, it cannot have too many edges.

I Claim: If G has n nodes and G has a vertex cover of size at most k, then G
has at most kn edges.

I Easy part of algorithm: Return no if G has more than kn edges.

I G − {u} is the graph G without node u and the edges incident on u.

I Consider an edge (u, v). Either u or v must be in the vertex cover.

I Claim: G has a vertex cover of size at most k iff for any edge (u, v) either
G − {u} or G − {v} has a vertex cover of size at most k − 1.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Designing the Vertex Cover Algorithm

I Intution: if a graph has a small vertex cover, it cannot have too many edges.

I Claim: If G has n nodes and G has a vertex cover of size at most k, then G
has at most kn edges.

I Easy part of algorithm: Return no if G has more than kn edges.

I G − {u} is the graph G without node u and the edges incident on u.

I Consider an edge (u, v). Either u or v must be in the vertex cover.

I Claim: G has a vertex cover of size at most k iff for any edge (u, v) either
G − {u} or G − {v} has a vertex cover of size at most k − 1.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Vertex Cover Algorithm

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Analysing the Vertex Cover Algorithm

I Develop a recurrence relation for the algorithm with parameters

n and k.

I Let T (n, k) denote the worst-case running time of the algorithm on an
instance of Vertex Cover with parameters n and k.

I T (n, 1) ≤ cn.

I T (n, k) ≤ 2T (n, k − 1) + ckn.
I We need O(kn) time to count the number of edges.

I Claim: T (n, k) = O(2kkn).

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Analysing the Vertex Cover Algorithm

I Develop a recurrence relation for the algorithm with parameters n and k.

I Let T (n, k) denote the worst-case running time of the algorithm on an
instance of Vertex Cover with parameters n and k.

I T (n, 1) ≤ cn.

I T (n, k) ≤ 2T (n, k − 1) + ckn.
I We need O(kn) time to count the number of edges.

I Claim: T (n, k) = O(2kkn).

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Analysing the Vertex Cover Algorithm

I Develop a recurrence relation for the algorithm with parameters n and k.

I Let T (n, k) denote the worst-case running time of the algorithm on an
instance of Vertex Cover with parameters n and k.

I T (n, 1) ≤ cn.

I T (n, k) ≤ 2T (n, k − 1) + ckn.
I We need O(kn) time to count the number of edges.

I Claim: T (n, k) = O(2kkn).

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Analysing the Vertex Cover Algorithm

I Develop a recurrence relation for the algorithm with parameters n and k.

I Let T (n, k) denote the worst-case running time of the algorithm on an
instance of Vertex Cover with parameters n and k.

I T (n, 1) ≤ cn.

I T (n, k) ≤ 2T (n, k − 1) + ckn.
I We need O(kn) time to count the number of edges.

I Claim: T (n, k) = O(2kkn).

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Analysing the Vertex Cover Algorithm

I Develop a recurrence relation for the algorithm with parameters n and k.

I Let T (n, k) denote the worst-case running time of the algorithm on an
instance of Vertex Cover with parameters n and k.

I T (n, 1) ≤ cn.

I T (n, k) ≤ 2T (n, k − 1) + ckn.
I We need O(kn) time to count the number of edges.

I Claim: T (n, k) = O(2kkn).

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Solving NP-Hard Problems on Trees

I “NP-Hard”: at least as hard as NP-Complete. We will use NP-Hard to
refer to optimisation versions of decision problems.

I Many NP-Hard problems can be solved efficiently on trees.

I Intuition: subtree rooted at any node v of the tree “interacts” with the rest
of tree only through v . Therefore, depending on whether we include v in the
solution or not, we can decouple solving the problem in v ’s subtree from the
rest of the tree.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Solving NP-Hard Problems on Trees

I “NP-Hard”: at least as hard as NP-Complete. We will use NP-Hard to
refer to optimisation versions of decision problems.

I Many NP-Hard problems can be solved efficiently on trees.

I Intuition: subtree rooted at any node v of the tree “interacts” with the rest
of tree only through v . Therefore, depending on whether we include v in the
solution or not, we can decouple solving the problem in v ’s subtree from the
rest of the tree.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Designing Greedy Algorithm for Independent Set

I Optimisation problem: Find the largest independent set in a tree.

I Claim: Every tree T (V ,E) has a leaf, a node with degree 1.
I Claim: If a tree T has a leaf v , then there exists a maximum-size

independent set in T that contains v . Prove by exchange argument.
I Let S be a maximum-size independent set that does not contain v .
I Let v be connected to u.
I u must be in S ; otherwise, we can add v to S , which means S is not

maximum size.
I Since u is in S , we can swap u and v .

I Claim: If a tree T has a a leaf v , then a maximum-size independent set in T
is v and a maximum-size independent set in T − {v}.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Designing Greedy Algorithm for Independent Set

I Optimisation problem: Find the largest independent set in a tree.
I Claim: Every tree T (V ,E) has a leaf, a node with degree 1.
I Claim: If a tree T has a leaf v , then there exists a maximum-size

independent set in T that contains v .

Prove by exchange argument.
I Let S be a maximum-size independent set that does not contain v .
I Let v be connected to u.
I u must be in S ; otherwise, we can add v to S , which means S is not

maximum size.
I Since u is in S , we can swap u and v .

I Claim: If a tree T has a a leaf v , then a maximum-size independent set in T
is v and a maximum-size independent set in T − {v}.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Designing Greedy Algorithm for Independent Set

I Optimisation problem: Find the largest independent set in a tree.
I Claim: Every tree T (V ,E) has a leaf, a node with degree 1.
I Claim: If a tree T has a leaf v , then there exists a maximum-size

independent set in T that contains v . Prove by exchange argument.
I Let S be a maximum-size independent set that does not contain v .
I Let v be connected to u.
I u must be in S ; otherwise, we can add v to S , which means S is not

maximum size.
I Since u is in S , we can swap u and v .

I Claim: If a tree T has a a leaf v , then a maximum-size independent set in T
is v and a maximum-size independent set in T − {v}.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Designing Greedy Algorithm for Independent Set

I Optimisation problem: Find the largest independent set in a tree.
I Claim: Every tree T (V ,E) has a leaf, a node with degree 1.
I Claim: If a tree T has a leaf v , then there exists a maximum-size

independent set in T that contains v . Prove by exchange argument.
I Let S be a maximum-size independent set that does not contain v .
I Let v be connected to u.
I u must be in S ; otherwise, we can add v to S , which means S is not

maximum size.
I Since u is in S , we can swap u and v .

I Claim: If a tree T has a a leaf v , then a maximum-size independent set in T
is v and a maximum-size independent set in T − {v}.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Greedy Algorithm for Independent Set

I A forest is a graph where every connected component is a tree.

I Running time of the algorithm is O(n).

I The algorithm works correctly on any graph for which we can repeatedly find
a leaf.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Greedy Algorithm for Independent Set

I A forest is a graph where every connected component is a tree.

I Running time of the algorithm is O(n).

I The algorithm works correctly on any graph for which we can repeatedly find
a leaf.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Greedy Algorithm for Independent Set

I A forest is a graph where every connected component is a tree.

I Running time of the algorithm is O(n).

I The algorithm works correctly on any graph for which we can repeatedly find
a leaf.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Maximum Weight Independent Set

I Consider the Independent Set problem but with a weight wv on every
node v .

I Goal is to find an independent set S such that
∑

v∈S wv is as large as
possible.

I Can we extend the greedy algorithm? Exchange argument fails: if u is a
parent of a leaf v , wu may be larger than wv .

I But there are still only two possibilities: either include u in the independent
set or include all neighbours of u that are leaves.

I Suggests dynamic programming algorithm.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Maximum Weight Independent Set

I Consider the Independent Set problem but with a weight wv on every
node v .

I Goal is to find an independent set S such that
∑

v∈S wv is as large as
possible.

I Can we extend the greedy algorithm?

Exchange argument fails: if u is a
parent of a leaf v , wu may be larger than wv .

I But there are still only two possibilities: either include u in the independent
set or include all neighbours of u that are leaves.

I Suggests dynamic programming algorithm.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Maximum Weight Independent Set

I Consider the Independent Set problem but with a weight wv on every
node v .

I Goal is to find an independent set S such that
∑

v∈S wv is as large as
possible.

I Can we extend the greedy algorithm? Exchange argument fails: if u is a
parent of a leaf v , wu may be larger than wv .

I But there are still only two possibilities: either include u in the independent
set or include all neighbours of u that are leaves.

I Suggests dynamic programming algorithm.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Maximum Weight Independent Set

I Consider the Independent Set problem but with a weight wv on every
node v .

I Goal is to find an independent set S such that
∑

v∈S wv is as large as
possible.

I Can we extend the greedy algorithm? Exchange argument fails: if u is a
parent of a leaf v , wu may be larger than wv .

I But there are still only two possibilities: either include u in the independent
set or include all neighbours of u that are leaves.

I Suggests dynamic programming algorithm.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Maximum Weight Independent Set

I Consider the Independent Set problem but with a weight wv on every
node v .

I Goal is to find an independent set S such that
∑

v∈S wv is as large as
possible.

I Can we extend the greedy algorithm? Exchange argument fails: if u is a
parent of a leaf v , wu may be larger than wv .

I But there are still only two possibilities: either include u in the independent
set or include all neighbours of u that are leaves.

I Suggests dynamic programming algorithm.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Designing Dynamic Programming Algorithm

I Dynamic programming algorithm needs a set of sub-problems, recursion to
combine sub-problems, and order over sub-problems.

I What are the sub-problems?

I Pick a node r and root tree at r : orient edges towards r .
I parent p(u) of a node u is the node adjacent to u along the path to r .
I Sub-problems are Tu: subtree induced by u and all its descendants.

I Ordering the sub-problems: start at leaves and work our way up to the root.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Designing Dynamic Programming Algorithm

I Dynamic programming algorithm needs a set of sub-problems, recursion to
combine sub-problems, and order over sub-problems.

I What are the sub-problems?
I Pick a node r and root tree at r : orient edges towards r .
I parent p(u) of a node u is the node adjacent to u along the path to r .
I Sub-problems are Tu: subtree induced by u and all its descendants.

I Ordering the sub-problems: start at leaves and work our way up to the root.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Designing Dynamic Programming Algorithm

I Dynamic programming algorithm needs a set of sub-problems, recursion to
combine sub-problems, and order over sub-problems.

I What are the sub-problems?
I Pick a node r and root tree at r : orient edges towards r .
I parent p(u) of a node u is the node adjacent to u along the path to r .
I Sub-problems are Tu: subtree induced by u and all its descendants.

I Ordering the sub-problems: start at leaves and work our way up to the root.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Recursion for Dynamic Programming Algorithm

I Either we include u in an optimal solution or exclude u.
I OPTin(u): maximum weight of an independent set in Tu that includes u.
I OPTout(u): maximum weight of an independent set in Tu that excludes u.

I Base cases: For a leaf u, OPTin(u) = wu and OPTout(u) = 0.

I Recurrence: Include u or exclude u.

1. If we include u, all children must be excluded.
OPTin(u) = wu +

∑
v∈children(u) OPTout(v)

2. If we exclude u, a child may or may not be excluded.
OPTout(u) =

∑
v∈children(u) max (OPTin(v),OPTout(v))

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Recursion for Dynamic Programming Algorithm

I Either we include u in an optimal solution or exclude u.
I OPTin(u): maximum weight of an independent set in Tu that includes u.
I OPTout(u): maximum weight of an independent set in Tu that excludes u.

I Base cases:

For a leaf u, OPTin(u) = wu and OPTout(u) = 0.

I Recurrence: Include u or exclude u.

1. If we include u, all children must be excluded.
OPTin(u) = wu +

∑
v∈children(u) OPTout(v)

2. If we exclude u, a child may or may not be excluded.
OPTout(u) =

∑
v∈children(u) max (OPTin(v),OPTout(v))

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Recursion for Dynamic Programming Algorithm

I Either we include u in an optimal solution or exclude u.
I OPTin(u): maximum weight of an independent set in Tu that includes u.
I OPTout(u): maximum weight of an independent set in Tu that excludes u.

I Base cases: For a leaf u, OPTin(u) = wu and OPTout(u) = 0.

I Recurrence: Include u or exclude u.

1. If we include u, all children must be excluded.
OPTin(u) = wu +

∑
v∈children(u) OPTout(v)

2. If we exclude u, a child may or may not be excluded.
OPTout(u) =

∑
v∈children(u) max (OPTin(v),OPTout(v))

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Recursion for Dynamic Programming Algorithm

I Either we include u in an optimal solution or exclude u.
I OPTin(u): maximum weight of an independent set in Tu that includes u.
I OPTout(u): maximum weight of an independent set in Tu that excludes u.

I Base cases: For a leaf u, OPTin(u) = wu and OPTout(u) = 0.

I Recurrence: Include u or exclude u.

1. If we include u, all children must be excluded.
OPTin(u) = wu +

∑
v∈children(u) OPTout(v)

2. If we exclude u, a child may or may not be excluded.
OPTout(u) =

∑
v∈children(u) max (OPTin(v),OPTout(v))

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Recursion for Dynamic Programming Algorithm

I Either we include u in an optimal solution or exclude u.
I OPTin(u): maximum weight of an independent set in Tu that includes u.
I OPTout(u): maximum weight of an independent set in Tu that excludes u.

I Base cases: For a leaf u, OPTin(u) = wu and OPTout(u) = 0.

I Recurrence: Include u or exclude u.

1. If we include u, all children must be excluded.
OPTin(u) = wu +

∑
v∈children(u) OPTout(v)

2. If we exclude u, a child may or may not be excluded.
OPTout(u) =

∑
v∈children(u) max (OPTin(v),OPTout(v))

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Dynamic Programming Algorithm

I Running time of the algorithm is O(n).

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Dynamic Programming Algorithm

I Running time of the algorithm is O(n).

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Approximation Algorithms

I Methods for optimisation versions of NP-Complete problems.

I Run in polynomial time.

I Solution returned is guaranteed to be within a small factor of the optimal
solution

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Load Balancing Problem

1

4
3

1 1
2

1
2

4

Jobs

1

3

2 3 4 5 6 7 8 9 10

3

2 Job index

Job time

I Given set of m machines M1,M2, . . .Mm.

I Given a set of n jobs: job j has processing time tj .

I Assign each job to one machine so that the total time spent is minimised.

I Let A(i) be the set of jobs assigned to machine Mi .

I Total time spent on machine i is Ti =
∑

k∈A(i) tk .

I Minimise makespan T = maxi Ti , the largest load on any machine.

I Minimising makespan is NP-Complete.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Load Balancing Problem

1

4
3

1 1
2

1
2

4

1

1
1

1

3
3 4

42 2

Jobs Machines

1

3

2 3 4 5 6 7 8 9 10

3

2 Job index

Job time

1 2 3
4

5
6 7 8
9 10

I Given set of m machines M1,M2, . . .Mm.

I Given a set of n jobs: job j has processing time tj .

I Assign each job to one machine so that the total time spent is minimised.

I Let A(i) be the set of jobs assigned to machine Mi .

I Total time spent on machine i is Ti =
∑

k∈A(i) tk .

I Minimise makespan T = maxi Ti , the largest load on any machine.

I Minimising makespan is NP-Complete.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Load Balancing Problem

1

4
3

1 1
2

1
2

4

1

1
1

1

3
3 4

42 2

Jobs Machines

1

3

2 3 4 5 6 7 8 9 10

3

2 Job index

Job time

1 2 3
4

5
6 7 8
9 10

I Given set of m machines M1,M2, . . .Mm.

I Given a set of n jobs: job j has processing time tj .

I Assign each job to one machine so that the total time spent is minimised.

I Let A(i) be the set of jobs assigned to machine Mi .

I Total time spent on machine i is Ti =
∑

k∈A(i) tk .

I Minimise makespan T = maxi Ti , the largest load on any machine.

I Minimising makespan is NP-Complete.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Greedy-Balance Algorithm

I Adopt a greedy approach.

I Process jobs in any order.

I Assign next job to the processor that has smallest total load so far.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Example of Greedy-Balance Algorithm

1

4
3

1 1
2

1
2

4

1

1
1

1

3
3 4

42 2

Jobs Machines

1

3

2 3 4 5 6 7 8 9 10

3

2 Job index

Job time

1 2 3
4

5
6 7 8
9 10

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Lower Bounds on the Optimal Makespan

I We need a lower bound on the optimum makespan T ∗.

I The two bounds below will suffice:

T ∗ ≥ 1

m

∑
j

tj

T ∗ ≥ max
j

tj

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Lower Bounds on the Optimal Makespan

I We need a lower bound on the optimum makespan T ∗.

I The two bounds below will suffice:

T ∗ ≥ 1

m

∑
j

tj

T ∗ ≥ max
j

tj

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Analysing Greedy-Balance
Machines I Claim: Computed makespan T ≤ 2T ∗.

I Let Mi be the machine whose load is T
and j be the last job placed on Mi .

I What was the situation just before
placing this job?

I Mi had the smallest load and its load
was T − tj .

I For every machine Mk , load
Tk ≥ T − tj .∑

k

Tk ≥ m(T − tj), where k ranges over all machines∑
j

tj ≥ m(T − tj), where j ranges over all jobs

T − tj ≤ 1/m
∑
j

tj ≤ T ∗

T ≤ 2T ∗, since tj ≤ T ∗

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Analysing Greedy-Balance
Machines

Added
after j

I Claim: Computed makespan T ≤ 2T ∗.

I Let Mi be the machine whose load is T
and j be the last job placed on Mi .

I What was the situation just before
placing this job?

I Mi had the smallest load and its load
was T − tj .

I For every machine Mk , load
Tk ≥ T − tj .∑

k

Tk ≥ m(T − tj), where k ranges over all machines∑
j

tj ≥ m(T − tj), where j ranges over all jobs

T − tj ≤ 1/m
∑
j

tj ≤ T ∗

T ≤ 2T ∗, since tj ≤ T ∗

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Analysing Greedy-Balance
Machines

Added
after j

I Claim: Computed makespan T ≤ 2T ∗.

I Let Mi be the machine whose load is T
and j be the last job placed on Mi .

I What was the situation just before
placing this job?

I Mi had the smallest load and its load
was T − tj .

I For every machine Mk , load
Tk ≥ T − tj .

∑
k

Tk ≥ m(T − tj), where k ranges over all machines∑
j

tj ≥ m(T − tj), where j ranges over all jobs

T − tj ≤ 1/m
∑
j

tj ≤ T ∗

T ≤ 2T ∗, since tj ≤ T ∗

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Analysing Greedy-Balance
Machines

Added
after j

I Claim: Computed makespan T ≤ 2T ∗.

I Let Mi be the machine whose load is T
and j be the last job placed on Mi .

I What was the situation just before
placing this job?

I Mi had the smallest load and its load
was T − tj .

I For every machine Mk , load
Tk ≥ T − tj .∑

k

Tk ≥ m(T − tj), where k ranges over all machines∑
j

tj ≥ m(T − tj), where j ranges over all jobs

T − tj ≤ 1/m
∑
j

tj ≤ T ∗

T ≤ 2T ∗, since tj ≤ T ∗

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Improving the Bound

I It is easy to construct an example for which the greedy algorithm produces a
solution close to a factor of 2 away from optimal.

I How can we improve the algorithm?

I What if we process the jobs in decreasing order of processing time?

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Improving the Bound

I It is easy to construct an example for which the greedy algorithm produces a
solution close to a factor of 2 away from optimal.

I How can we improve the algorithm?

I What if we process the jobs in decreasing order of processing time?

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Improving the Bound

I It is easy to construct an example for which the greedy algorithm produces a
solution close to a factor of 2 away from optimal.

I How can we improve the algorithm?

I What if we process the jobs in decreasing order of processing time?

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Sorted-Balance Algorithm

I This algorithm assigns the first m jobs to m distinct machines.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Sorted-Balance Algorithm

I This algorithm assigns the first m jobs to m distinct machines.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Example of Sorted-Balance Algorithm

1

4
3

11
2

1
2

4

Jobs

1

3

2 3 4 5 6 7 8 9 10

3

2 Job index

Job time Machines

1
1

1 1

344

2 2

1 2 3

3
4

5 6

7 8 9
10

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Analyzing Sorted-Balance

I Claim: if there are fewer than m jobs, algorithm is optimal.

I Claim: if there are more than m jobs, then T ∗ ≥ 2tm+1.

I Consider only the first m + 1 jobs in sorted order.
I Consider any assignment of these m + 1 jobs to machines.
I Some machine must be assigned two jobs, each with processing time at least

tm+1.
I This machine will have load at least 2tm+1.

I Claim: T ≤ 3T ∗/2.

I Let Mi be the machine whose load
is T and j be the last job placed on
Mi . (Mi has at least two jobs.)

tj ≤ tm+1 ≤ T ∗/2, since j ≥ m + 1

T − tj ≤ T ∗, Greedy-Balance proof

T ≤ 3T ∗/2

Machines

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Analyzing Sorted-Balance

I Claim: if there are fewer than m jobs, algorithm is optimal.

I Claim: if there are more than m jobs, then T ∗ ≥ 2tm+1.
I Consider only the first m + 1 jobs in sorted order.
I Consider any assignment of these m + 1 jobs to machines.
I Some machine must be assigned two jobs, each with processing time at least

tm+1.
I This machine will have load at least 2tm+1.

I Claim: T ≤ 3T ∗/2.

I Let Mi be the machine whose load
is T and j be the last job placed on
Mi . (Mi has at least two jobs.)

tj ≤ tm+1 ≤ T ∗/2, since j ≥ m + 1

T − tj ≤ T ∗, Greedy-Balance proof

T ≤ 3T ∗/2

Machines

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Analyzing Sorted-Balance

I Claim: if there are fewer than m jobs, algorithm is optimal.

I Claim: if there are more than m jobs, then T ∗ ≥ 2tm+1.
I Consider only the first m + 1 jobs in sorted order.
I Consider any assignment of these m + 1 jobs to machines.
I Some machine must be assigned two jobs, each with processing time at least

tm+1.
I This machine will have load at least 2tm+1.

I Claim: T ≤ 3T ∗/2.

I Let Mi be the machine whose load
is T and j be the last job placed on
Mi . (Mi has at least two jobs.)

tj ≤ tm+1 ≤ T ∗/2, since j ≥ m + 1

T − tj ≤ T ∗, Greedy-Balance proof

T ≤ 3T ∗/2

Machines

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Analyzing Sorted-Balance

I Claim: if there are fewer than m jobs, algorithm is optimal.

I Claim: if there are more than m jobs, then T ∗ ≥ 2tm+1.
I Consider only the first m + 1 jobs in sorted order.
I Consider any assignment of these m + 1 jobs to machines.
I Some machine must be assigned two jobs, each with processing time at least

tm+1.
I This machine will have load at least 2tm+1.

I Claim: T ≤ 3T ∗/2.

I Let Mi be the machine whose load
is T and j be the last job placed on
Mi . (Mi has at least two jobs.)

tj ≤ tm+1 ≤ T ∗/2, since j ≥ m + 1

T − tj ≤ T ∗, Greedy-Balance proof

T ≤ 3T ∗/2

Machines

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Analyzing Sorted-Balance

I Claim: if there are fewer than m jobs, algorithm is optimal.

I Claim: if there are more than m jobs, then T ∗ ≥ 2tm+1.
I Consider only the first m + 1 jobs in sorted order.
I Consider any assignment of these m + 1 jobs to machines.
I Some machine must be assigned two jobs, each with processing time at least

tm+1.
I This machine will have load at least 2tm+1.

I Claim: T ≤ 3T ∗/2.

I Let Mi be the machine whose load
is T and j be the last job placed on
Mi . (Mi has at least two jobs.)

tj ≤ tm+1 ≤ T ∗/2, since j ≥ m + 1

T − tj ≤ T ∗, Greedy-Balance proof

T ≤ 3T ∗/2

Machines

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Set Cover

Set Cover
INSTANCE: A set U of n elements, a collection S1,S2, . . . ,Sm of
subsets of U, each with an associated weight w .
SOLUTION: A collection C of sets in the collection such that⋃

Si∈C Si = U and
∑

Si∈C wi is minimised.

1

7

5

3

2

4

6

8

1.1 1.1

1

1

1

1

5
Element in
universe
Element label

0.25
Element cost

1
Set

Set weight

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Greedy Approach

1

7

5

3

2

4

6

8

1.1 1.1

1

1

1

1

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Greedy Approach

1

7

5

3

2

4

6

8

1.1 1.1

1

1

1

1

0.25 0.25

0.250.25

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Greedy Approach

1

7

5

3

2

4

6

8

1.1 1.1

1

1

1

1

0.25 0.25

0.250.25

0.5 0.5

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Greedy Approach

1

7

5

3

2

4

6

8

1.1 1.1

1

1

1

1

0.25 0.25

0.250.25

0.5 0.5

1

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Greedy Approach

1

7

5

3

2

4

6

8

1.1 1.1

1

1

1

1

0.25 0.25

0.250.25

0.5 0.5

11

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Greedy Approach

1

7

5

3

2

4

6

8

1.1 1.1

1

1

1

1

0.25 0.25

0.250.25

0.5 0.5

11

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Greedy-Set-Cover

I To get a greedy algorithm, in what order should we process the sets?

I Maintain set R of uncovered elements.

I Process set in decreasing order of wi/|Si ∩ R|.

I The algorithm computes a set cover whose weight is at most O(log n) times
the optimal weight (Johnson 1974, Lovász 1975, Chvatal 1979).

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Greedy-Set-Cover

I To get a greedy algorithm, in what order should we process the sets?

I Maintain set R of uncovered elements.

I Process set in decreasing order of wi/|Si ∩ R|.

I The algorithm computes a set cover whose weight is at most O(log n) times
the optimal weight (Johnson 1974, Lovász 1975, Chvatal 1979).

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Greedy-Set-Cover

I To get a greedy algorithm, in what order should we process the sets?

I Maintain set R of uncovered elements.

I Process set in decreasing order of wi/|Si ∩ R|.

I The algorithm computes a set cover whose weight is at most O(log n) times
the optimal weight (Johnson 1974, Lovász 1975, Chvatal 1979).

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Greedy-Set-Cover

I To get a greedy algorithm, in what order should we process the sets?

I Maintain set R of uncovered elements.

I Process set in decreasing order of wi/|Si ∩ R|.

I The algorithm computes a set cover whose weight is at most O(log n) times
the optimal weight (Johnson 1974, Lovász 1975, Chvatal 1979).

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Add Bookkeeping to Greedy-Set-Cover

I Good lower bounds on the weight
w∗ of the optimum set cover are
not easy to obtain.

I Bookkeeping: record the
per-element cost paid when
selecting Si .

I In the algorithm, after selecting Si ,
add the line

Define cs = wi/|Si ∩ R| for all

s ∈ Si ∩ R.

I As each set Si is selected, distribute
its weight over the costs cs of the
newly-covered elements.

I Each element in the universe
assigned cost exactly once.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Add Bookkeeping to Greedy-Set-Cover

I Good lower bounds on the weight
w∗ of the optimum set cover are
not easy to obtain.

I Bookkeeping: record the
per-element cost paid when
selecting Si .

I In the algorithm, after selecting Si ,
add the line

Define cs = wi/|Si ∩ R| for all

s ∈ Si ∩ R.

I As each set Si is selected, distribute
its weight over the costs cs of the
newly-covered elements.

I Each element in the universe
assigned cost exactly once.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Add Bookkeeping to Greedy-Set-Cover

I Good lower bounds on the weight
w∗ of the optimum set cover are
not easy to obtain.

I Bookkeeping: record the
per-element cost paid when
selecting Si .

I In the algorithm, after selecting Si ,
add the line

Define cs = wi/|Si ∩ R| for all

s ∈ Si ∩ R.

I As each set Si is selected, distribute
its weight over the costs cs of the
newly-covered elements.

I Each element in the universe
assigned cost exactly once.

1

7

5

3

2

4

6

8

1.1 1.1

1

1

1

1

0.25 0.25

0.250.25

0.5 0.5

11

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Add Bookkeeping to Greedy-Set-Cover

I Good lower bounds on the weight
w∗ of the optimum set cover are
not easy to obtain.

I Bookkeeping: record the
per-element cost paid when
selecting Si .

I In the algorithm, after selecting Si ,
add the line

Define cs = wi/|Si ∩ R| for all

s ∈ Si ∩ R.

I As each set Si is selected, distribute
its weight over the costs cs of the
newly-covered elements.

I Each element in the universe
assigned cost exactly once.

1

7

5

3

2

4

6

8

1.1 1.1

1

1

1

1

0.25 0.25

0.250.25

0.5 0.5

11

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Starting the Analysis of Greedy-Set-Cover

I Let C be the set cover computed by Greedy-Set-Cover.

I Claim:
∑

Si∈C wi =
∑

s∈U cs .

∑
Si∈C

wi =
∑
Si∈C

(∑
s∈Si∩R

cs

)
, by definition of cs

=
∑
s∈U

cs , since each element in the universe contributes exactly once

I In other words, the total weight of the solution computed by
Greedy-Set-Cover is the total costs it assigns to the elements in the
universe.

I Can “switch” between set-based weight of solution and element-based costs.

I Note: sets have weights whereas Greedy-Set-Cover assigns costs to
elements.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Intuition Behind the Proof

I Suppose C∗ is the optimal set cover: w∗ =
∑

Sj∈C∗ wj .
I Goal is to relate total weight of sets in C to total weight of sets in C∗.

I What is the total cost assigned by Greedy-Set-Cover to the elements in
the sets in the optimal cover C∗?

I Since C∗ is a set cover,
∑
Sj∈C∗

∑
s∈Sj

cs

 ≥

∑
s∈U

cs =
∑
Si∈C

wi = w .

I In the sum on the left, Sj is a set in C∗ (need not be a set in C). How large
can total cost of elements in such a set be?

I For any set Sk , suppose we can prove
∑

s∈Sk
cs ≤ αwk , for some fixed α > 0,

i.e., total cost assigned by Greedy-Set-Cover to the elements in Sk
cannot be much larger than the weight of sk .

I Then w ≤
∑
Sj∈C∗

∑
s∈Sj

cs

 ≤ ∑
Sj∈C∗

αwj = αw∗.

I For every set Sk in the input, goal is to prove an upper bound on

∑
s∈Sk

cs

wk
.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Intuition Behind the Proof

I Suppose C∗ is the optimal set cover: w∗ =
∑

Sj∈C∗ wj .
I Goal is to relate total weight of sets in C to total weight of sets in C∗.
I What is the total cost assigned by Greedy-Set-Cover to the elements in

the sets in the optimal cover C∗?

I Since C∗ is a set cover,
∑
Sj∈C∗

∑
s∈Sj

cs

 ≥ ∑
s∈U

cs =
∑
Si∈C

wi = w .

I In the sum on the left, Sj is a set in C∗ (need not be a set in C). How large
can total cost of elements in such a set be?

I For any set Sk , suppose we can prove
∑

s∈Sk
cs ≤ αwk , for some fixed α > 0,

i.e., total cost assigned by Greedy-Set-Cover to the elements in Sk
cannot be much larger than the weight of sk .

I Then w ≤
∑
Sj∈C∗

∑
s∈Sj

cs

 ≤ ∑
Sj∈C∗

αwj = αw∗.

I For every set Sk in the input, goal is to prove an upper bound on

∑
s∈Sk

cs

wk
.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Intuition Behind the Proof

I Suppose C∗ is the optimal set cover: w∗ =
∑

Sj∈C∗ wj .
I Goal is to relate total weight of sets in C to total weight of sets in C∗.
I What is the total cost assigned by Greedy-Set-Cover to the elements in

the sets in the optimal cover C∗?

I Since C∗ is a set cover,
∑
Sj∈C∗

∑
s∈Sj

cs

 ≥ ∑
s∈U

cs =
∑
Si∈C

wi = w .

I In the sum on the left, Sj is a set in C∗ (need not be a set in C). How large
can total cost of elements in such a set be?

I For any set Sk , suppose we can prove
∑

s∈Sk
cs ≤ αwk , for some fixed α > 0,

i.e., total cost assigned by Greedy-Set-Cover to the elements in Sk
cannot be much larger than the weight of sk .

I Then w ≤
∑
Sj∈C∗

∑
s∈Sj

cs

 ≤ ∑
Sj∈C∗

αwj = αw∗.

I For every set Sk in the input, goal is to prove an upper bound on

∑
s∈Sk

cs

wk
.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Intuition Behind the Proof

I Suppose C∗ is the optimal set cover: w∗ =
∑

Sj∈C∗ wj .
I Goal is to relate total weight of sets in C to total weight of sets in C∗.
I What is the total cost assigned by Greedy-Set-Cover to the elements in

the sets in the optimal cover C∗?

I Since C∗ is a set cover,
∑
Sj∈C∗

∑
s∈Sj

cs

 ≥ ∑
s∈U

cs =
∑
Si∈C

wi = w .

I In the sum on the left, Sj is a set in C∗ (need not be a set in C). How large
can total cost of elements in such a set be?

I For any set Sk , suppose we can prove
∑

s∈Sk
cs ≤ αwk , for some fixed α > 0,

i.e., total cost assigned by Greedy-Set-Cover to the elements in Sk
cannot be much larger than the weight of sk .

I Then w ≤
∑
Sj∈C∗

∑
s∈Sj

cs

 ≤ ∑
Sj∈C∗

αwj = αw∗.

I For every set Sk in the input, goal is to prove an upper bound on

∑
s∈Sk

cs

wk
.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Intuition Behind the Proof

I Suppose C∗ is the optimal set cover: w∗ =
∑

Sj∈C∗ wj .
I Goal is to relate total weight of sets in C to total weight of sets in C∗.
I What is the total cost assigned by Greedy-Set-Cover to the elements in

the sets in the optimal cover C∗?

I Since C∗ is a set cover,
∑
Sj∈C∗

∑
s∈Sj

cs

 ≥ ∑
s∈U

cs =
∑
Si∈C

wi = w .

I In the sum on the left, Sj is a set in C∗ (need not be a set in C). How large
can total cost of elements in such a set be?

I For any set Sk , suppose we can prove
∑

s∈Sk
cs ≤ αwk , for some fixed α > 0,

i.e., total cost assigned by Greedy-Set-Cover to the elements in Sk
cannot be much larger than the weight of sk .

I Then w ≤
∑
Sj∈C∗

∑
s∈Sj

cs

 ≤ ∑
Sj∈C∗

αwj = αw∗.

I For every set Sk in the input, goal is to prove an upper bound on

∑
s∈Sk

cs

wk
.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Intuition Behind the Proof

I Suppose C∗ is the optimal set cover: w∗ =
∑

Sj∈C∗ wj .
I Goal is to relate total weight of sets in C to total weight of sets in C∗.
I What is the total cost assigned by Greedy-Set-Cover to the elements in

the sets in the optimal cover C∗?

I Since C∗ is a set cover,
∑
Sj∈C∗

∑
s∈Sj

cs

 ≥ ∑
s∈U

cs =
∑
Si∈C

wi = w .

I In the sum on the left, Sj is a set in C∗ (need not be a set in C). How large
can total cost of elements in such a set be?

I For any set Sk , suppose we can prove
∑

s∈Sk
cs ≤ αwk , for some fixed α > 0,

i.e., total cost assigned by Greedy-Set-Cover to the elements in Sk
cannot be much larger than the weight of sk .

I Then w ≤
∑
Sj∈C∗

∑
s∈Sj

cs

 ≤ ∑
Sj∈C∗

αwj = αw∗.

I For every set Sk in the input, goal is to prove an upper bound on

∑
s∈Sk

cs

wk
.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Intuition Behind the Proof

I Suppose C∗ is the optimal set cover: w∗ =
∑

Sj∈C∗ wj .
I Goal is to relate total weight of sets in C to total weight of sets in C∗.
I What is the total cost assigned by Greedy-Set-Cover to the elements in

the sets in the optimal cover C∗?

I Since C∗ is a set cover,
∑
Sj∈C∗

∑
s∈Sj

cs

 ≥ ∑
s∈U

cs =
∑
Si∈C

wi = w .

I In the sum on the left, Sj is a set in C∗ (need not be a set in C). How large
can total cost of elements in such a set be?

I For any set Sk , suppose we can prove
∑

s∈Sk
cs ≤ αwk , for some fixed α > 0,

i.e., total cost assigned by Greedy-Set-Cover to the elements in Sk
cannot be much larger than the weight of sk .

I Then w ≤
∑
Sj∈C∗

∑
s∈Sj

cs

 ≤ ∑
Sj∈C∗

αwj = αw∗.

I For every set Sk in the input, goal is to prove an upper bound on

∑
s∈Sk

cs

wk
.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Upper Bounding Cost-by-Weight Ratio

I Consider any set Sk (even one not
selected by the algorithm).

I How large can

∑
s∈Sk

cs

wk
get?

I The harmonic function

H(n) =
n∑

i=1

1

i
= Θ(ln n).

I Claim: For every set Sk , the sum∑
s∈Sk

cs ≤ H(|SK |)wk .

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Upper Bounding Cost-by-Weight Ratio

I Consider any set Sk (even one not
selected by the algorithm).

I How large can

∑
s∈Sk

cs

wk
get?

I The harmonic function

H(n) =
n∑

i=1

1

i
= Θ(ln n).

I Claim: For every set Sk , the sum∑
s∈Sk

cs ≤ H(|SK |)wk .

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Upper Bounding Cost-by-Weight Ratio

I Consider any set Sk (even one not
selected by the algorithm).

I How large can

∑
s∈Sk

cs

wk
get?

I The harmonic function

H(n) =
n∑

i=1

1

i
= Θ(ln n).

I Claim: For every set Sk , the sum∑
s∈Sk

cs ≤ H(|SK |)wk .

1

7

5

3

2

4

6

8

1.1 1.1

1

1

1

1

0.25 0.25

0.250.25

0.5 0.5

11

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Renumbering Elements in Sk

I Renumber elements in U so that
elements in Sk are the first d = |Sk |
elements of U, i.e.,
Sk = {s1, s2, . . . , sd}.

I Order elements of S in the order
they get covered by the algorithm
(i.e., when they get assigned a cost
by Greedy-Set-Cover).

1

7

5

3

2

4

6

8

1.1 1.1

1

1

1

1

0.25 0.25

0.250.25

0.5 0.5

11

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Renumbering Elements in Sk

I Renumber elements in U so that
elements in Sk are the first d = |Sk |
elements of U, i.e.,
Sk = {s1, s2, . . . , sd}.

I Order elements of S in the order
they get covered by the algorithm
(i.e., when they get assigned a cost
by Greedy-Set-Cover).

1 5

3 7

2

4

6

8

1.1 1.1

1

1

1

1

0.25 0.25

0.250.25

0.5 0.5

11

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Proving
∑

s∈Sk cs ≤ H(|SK |)wk

I What happens in the iteration when the
algorithm covers element sj ∈ Sk , j ≤ d?

I At the start of this iteration, R must contain
sj , sj+1, . . . sd , i.e., |Sk ∩ R| ≥ d − j + 1. (R
may contain other elements of Sk as well.)

I Therefore,
wk

|Sk ∩ R|
≤ wk

d − j + 1
.

I What cost did the algorithm assign to sj?

I Suppose the algorithm selected set Si in this
iteration.
csj =

wi

|Si ∩ R|

≤ wk

|Sk ∩ R|
≤ wk

d − j + 1
.

I We are done!∑
s∈Sk

cs =
d∑

j=1

csj ≤
d∑

j=1

wk

d − j + 1
= H(d)wk .

1 5

3 7

2

4

6

8

1.1 1.1

1

1

1

1

0.25 0.25

0.250.25

0.5 0.5

11

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Proving
∑

s∈Sk cs ≤ H(|SK |)wk

I What happens in the iteration when the
algorithm covers element sj ∈ Sk , j ≤ d?

I At the start of this iteration, R must contain
sj , sj+1, . . . sd , i.e., |Sk ∩ R| ≥ d − j + 1. (R
may contain other elements of Sk as well.)

I Therefore,
wk

|Sk ∩ R|
≤ wk

d − j + 1
.

I What cost did the algorithm assign to sj?

I Suppose the algorithm selected set Si in this
iteration.
csj =

wi

|Si ∩ R|
≤ wk

|Sk ∩ R|
≤ wk

d − j + 1
.

I We are done!∑
s∈Sk

cs =
d∑

j=1

csj ≤
d∑

j=1

wk

d − j + 1
= H(d)wk .

1 5

3 7

2

4

6

8

1.1 1.1

1

1

1

1

0.25 0.25

0.250.25

0.5 0.5

11

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Proving
∑

s∈Sk cs ≤ H(|SK |)wk

I What happens in the iteration when the
algorithm covers element sj ∈ Sk , j ≤ d?

I At the start of this iteration, R must contain
sj , sj+1, . . . sd , i.e., |Sk ∩ R| ≥ d − j + 1. (R
may contain other elements of Sk as well.)

I Therefore,
wk

|Sk ∩ R|
≤ wk

d − j + 1
.

I What cost did the algorithm assign to sj?

I Suppose the algorithm selected set Si in this
iteration.
csj =

wi

|Si ∩ R|
≤ wk

|Sk ∩ R|
≤ wk

d − j + 1
.

I We are done!∑
s∈Sk

cs =
d∑

j=1

csj ≤
d∑

j=1

wk

d − j + 1
= H(d)wk .

1 5

3 7

2

4

6

8

1.1 1.1

1

1

1

1

0.25 0.25

0.250.25

0.5 0.5

11

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Proving
∑

s∈Sk cs ≤ H(|SK |)wk

I What happens in the iteration when the
algorithm covers element sj ∈ Sk , j ≤ d?

I At the start of this iteration, R must contain
sj , sj+1, . . . sd , i.e., |Sk ∩ R| ≥ d − j + 1. (R
may contain other elements of Sk as well.)

I Therefore,
wk

|Sk ∩ R|
≤ wk

d − j + 1
.

I What cost did the algorithm assign to sj?

I Suppose the algorithm selected set Si in this
iteration.
csj =

wi

|Si ∩ R|
≤ wk

|Sk ∩ R|
≤ wk

d − j + 1
.

I We are done!∑
s∈Sk

cs =
d∑

j=1

csj ≤
d∑

j=1

wk

d − j + 1
= H(d)wk .

1 5

3 7

2

4

6

8

1.1 1.1

1

1

1

1

0.25 0.25

0.250.25

0.5 0.5

11

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Proving
∑

s∈Sk cs ≤ H(|SK |)wk

I What happens in the iteration when the
algorithm covers element sj ∈ Sk , j ≤ d?

I At the start of this iteration, R must contain
sj , sj+1, . . . sd , i.e., |Sk ∩ R| ≥ d − j + 1. (R
may contain other elements of Sk as well.)

I Therefore,
wk

|Sk ∩ R|
≤ wk

d − j + 1
.

I What cost did the algorithm assign to sj?

I Suppose the algorithm selected set Si in this
iteration.
csj =

wi

|Si ∩ R|
≤ wk

|Sk ∩ R|
≤ wk

d − j + 1
.

I We are done!∑
s∈Sk

cs =
d∑

j=1

csj ≤
d∑

j=1

wk

d − j + 1
= H(d)wk .

1 5

3 7

2

4

6

8

1.1 1.1

1

1

1

1

0.25 0.25

0.250.25

0.5 0.5

11

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Proving Upper Bound on Cost of Greedy-Set-Cover

I Let us assume
∑

s∈Sk
cs ≤ H(|SK |)wk .

I Let d∗ be the size of the largest set in the collection.

I Recall that C∗ is the optimal set cover and w∗ =
∑

Si∈C∗ wi .

I For each set Sj in C∗, we have wj ≥
∑

s∈Sj
cs

H(|Si |)
≥
∑

s∈Sj
cs

H(d∗)
.

I Combining with
∑

Si∈C wi =
∑

s∈U cs , we have

w∗ =
∑
Sj∈C∗

wj ≥
∑
Sj∈C∗

1

H(d∗)

∑
s∈Sj

cs ≥
1

H(d∗)

∑
s∈U

cs =
1

H(d∗)

∑
Si∈C

wi = w .

I We have proven that Greedy-Set-Cover computes a set cover whose
weight is at most H(d∗) times the optimal weight.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Proving Upper Bound on Cost of Greedy-Set-Cover

I Let us assume
∑

s∈Sk
cs ≤ H(|SK |)wk .

I Let d∗ be the size of the largest set in the collection.

I Recall that C∗ is the optimal set cover and w∗ =
∑

Si∈C∗ wi .

I For each set Sj in C∗, we have wj ≥
∑

s∈Sj
cs

H(|Si |)
≥
∑

s∈Sj
cs

H(d∗)
.

I Combining with
∑

Si∈C wi =
∑

s∈U cs , we have

w∗ =
∑
Sj∈C∗

wj

≥
∑
Sj∈C∗

1

H(d∗)

∑
s∈Sj

cs ≥
1

H(d∗)

∑
s∈U

cs =
1

H(d∗)

∑
Si∈C

wi = w .

I We have proven that Greedy-Set-Cover computes a set cover whose
weight is at most H(d∗) times the optimal weight.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Proving Upper Bound on Cost of Greedy-Set-Cover

I Let us assume
∑

s∈Sk
cs ≤ H(|SK |)wk .

I Let d∗ be the size of the largest set in the collection.

I Recall that C∗ is the optimal set cover and w∗ =
∑

Si∈C∗ wi .

I For each set Sj in C∗, we have wj ≥
∑

s∈Sj
cs

H(|Si |)
≥
∑

s∈Sj
cs

H(d∗)
.

I Combining with
∑

Si∈C wi =
∑

s∈U cs , we have

w∗ =
∑
Sj∈C∗

wj ≥
∑
Sj∈C∗

1

H(d∗)

∑
s∈Sj

cs ≥
1

H(d∗)

∑
s∈U

cs

=
1

H(d∗)

∑
Si∈C

wi = w .

I We have proven that Greedy-Set-Cover computes a set cover whose
weight is at most H(d∗) times the optimal weight.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Proving Upper Bound on Cost of Greedy-Set-Cover

I Let us assume
∑

s∈Sk
cs ≤ H(|SK |)wk .

I Let d∗ be the size of the largest set in the collection.

I Recall that C∗ is the optimal set cover and w∗ =
∑

Si∈C∗ wi .

I For each set Sj in C∗, we have wj ≥
∑

s∈Sj
cs

H(|Si |)
≥
∑

s∈Sj
cs

H(d∗)
.

I Combining with
∑

Si∈C wi =
∑

s∈U cs , we have

w∗ =
∑
Sj∈C∗

wj ≥
∑
Sj∈C∗

1

H(d∗)

∑
s∈Sj

cs ≥
1

H(d∗)

∑
s∈U

cs =
1

H(d∗)

∑
Si∈C

wi = w .

I We have proven that Greedy-Set-Cover computes a set cover whose
weight is at most H(d∗) times the optimal weight.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

Proving Upper Bound on Cost of Greedy-Set-Cover

I Let us assume
∑

s∈Sk
cs ≤ H(|SK |)wk .

I Let d∗ be the size of the largest set in the collection.

I Recall that C∗ is the optimal set cover and w∗ =
∑

Si∈C∗ wi .

I For each set Sj in C∗, we have wj ≥
∑

s∈Sj
cs

H(|Si |)
≥
∑

s∈Sj
cs

H(d∗)
.

I Combining with
∑

Si∈C wi =
∑

s∈U cs , we have

w∗ =
∑
Sj∈C∗

wj ≥
∑
Sj∈C∗

1

H(d∗)

∑
s∈Sj

cs ≥
1

H(d∗)

∑
s∈U

cs =
1

H(d∗)

∑
Si∈C

wi = w .

I We have proven that Greedy-Set-Cover computes a set cover whose
weight is at most H(d∗) times the optimal weight.

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

How Badly Can Greedy-Set-Cover Perform?

1

7

5

3

2

4

6

8

1.1 1.1

1

1

1

1

0.25 0.25

0.250.25

0.5 0.5

11

I Generalise this example to show
that algorithm produces a set cover
of weight Ω(log n) even though
optimal weight is 2 + ε.

I More complex constructions show
greedy algorithm incurs a weight
close to H(n) times the optimal
weight.

I No polynomial time algorithm can
achieve an approximation bound
better than H(n) times optimal
unless P = NP (Lund and
Yannakakis, 1994).

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

Solving NP-Complete Problems Small Vertex Covers Trees Load Balancing Set Cover

How Badly Can Greedy-Set-Cover Perform?

1

7

5

3

2

4

6

8

1.1 1.1

1

1

1

1

0.25 0.25

0.250.25

0.5 0.5

11

I Generalise this example to show
that algorithm produces a set cover
of weight Ω(log n) even though
optimal weight is 2 + ε.

I More complex constructions show
greedy algorithm incurs a weight
close to H(n) times the optimal
weight.

I No polynomial time algorithm can
achieve an approximation bound
better than H(n) times optimal
unless P = NP (Lund and
Yannakakis, 1994).

T. M. Murali May 5, 7, 2014 Coping with NP-Completeness

	Solving NP-Complete Problems
	Small Vertex Covers
	Trees
	Load Balancing
	Set Cover

