Solving $\mathcal{NP} ext{-}Complete$ Problems	Small Vertex Covers	Trees	Load Balancing	Set Cover

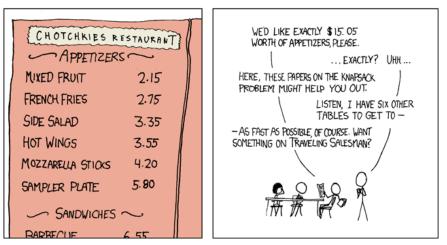
Coping with NP-Completeness

T. M. Murali

May 5, 7, 2014

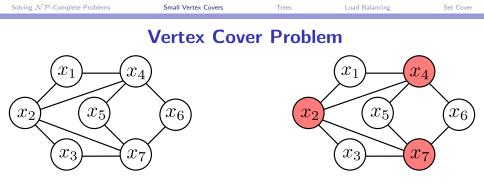
▶ These problems come up in real life.

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS



- ▶ These problems come up in real life.
- ► *NP*-Complete means that a problem is hard to solve in the *worst case*. Can we come up with better solutions at least in *some* cases?

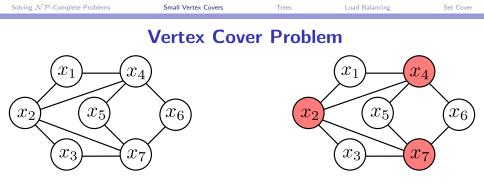
- ▶ These problems come up in real life.
- ► *NP*-Complete means that a problem is hard to solve in the *worst case*. Can we come up with better solutions at least in *some* cases?
 - > Develop algorithms that are exponential in one parameter in the problem.
 - Consider special cases of the input, e.g., graphs that "look like" trees.
 - Develop algorithms that can provably compute a solution close to the optimal.



Vertex cover

INSTANCE: Undirected graph *G* and an integer *k* **QUESTION:** Does *G* contain a vertex cover of size at most *k*?

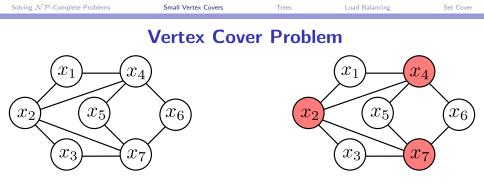
- The problem has two parameters: k and n, the number of nodes in G.
- What is the running time of a brute-force algorithm?



Vertex cover

INSTANCE: Undirected graph *G* and an integer *k* **QUESTION:** Does *G* contain a vertex cover of size at most *k*?

- ▶ The problem has two parameters: *k* and *n*, the number of nodes in *G*.
- What is the running time of a brute-force algorithm? $O(kn\binom{n}{k}) = O(kn^{k+1})$.



Vertex cover

INSTANCE: Undirected graph *G* and an integer *k* **QUESTION:** Does *G* contain a vertex cover of size at most *k*?

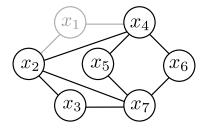
- ▶ The problem has two parameters: *k* and *n*, the number of nodes in *G*.
- ▶ What is the running time of a brute-force algorithm? $O(kn\binom{n}{k}) = O(kn^{k+1})$.
- Can we devise an algorithm whose running time is exponential in k but polynomial in n, e.g., O(2^kn)?

▶ Intution: if a graph has a small vertex cover, it cannot have too many edges.

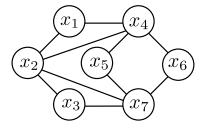
- ▶ Intution: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.

- ▶ Intution: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.
- Easy part of algorithm: Return no if G has more than kn edges.

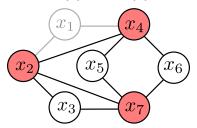
- Intution: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.
- ▶ Easy part of algorithm: Return no if *G* has more than *kn* edges.
- $G \{u\}$ is the graph G without node u and the edges incident on u.

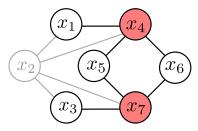


- Intution: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.
- ▶ Easy part of algorithm: Return no if *G* has more than *kn* edges.
- $G \{u\}$ is the graph G without node u and the edges incident on u.
- Consider an edge (u, v). Either u or v must be in the vertex cover.



- ▶ Intution: if a graph has a small vertex cover, it cannot have too many edges.
- Claim: If G has n nodes and G has a vertex cover of size at most k, then G has at most kn edges.
- ▶ Easy part of algorithm: Return no if *G* has more than *kn* edges.
- $G \{u\}$ is the graph G without node u and the edges incident on u.
- Consider an edge (u, v). Either u or v must be in the vertex cover.
- ► Claim: G has a vertex cover of size at most k iff for any edge (u, v) either G - {u} or G - {v} has a vertex cover of size at most k - 1.





Solving $\mathcal{NP} ext{-}Complete$ Problems	Small Vertex Covers	Trees	Load Balancing	Set Cover
	Vertex Cove	r Algori	thm	
To search for a k -	-node vertex cover	: in G:		
If G contains no	o edges, then the	empty set	is a vertex cover	
If G contains> k	$k \mid V \mid$ edges, then :	it has no <i>l</i>	k-node vertex cover	:
Else let $e = (u, v)$) be an edge of G			
Recursively ch	neck if either of	$G-\{u\}$ or ($G - \{v\}$	
ha	as a vertex cover	of size k	- 1	

If neither of them does, then G has no k-node vertex cover Else, one of them (say, $G-\{u\}$) has a (k-1)-node vertex cover T

In this case, $T \cup \{u\}$ is a k-node vertex cover of G

Endif

Endif

> Develop a recurrence relation for the algorithm with parameters

- Develop a recurrence relation for the algorithm with parameters *n* and *k*.
- ► Let T(n, k) denote the worst-case running time of the algorithm on an instance of VERTEX COVER with parameters n and k.

- Develop a recurrence relation for the algorithm with parameters *n* and *k*.
- ▶ Let T(n, k) denote the worst-case running time of the algorithm on an instance of VERTEX COVER with parameters n and k.
- $T(n,1) \leq cn$.

- Develop a recurrence relation for the algorithm with parameters *n* and *k*.
- ▶ Let T(n, k) denote the worst-case running time of the algorithm on an instance of VERTEX COVER with parameters n and k.
- $T(n,1) \leq cn$.
- $T(n,k) \le 2T(n,k-1) + ckn$.
 - ▶ We need *O*(*kn*) time to count the number of edges.

- Develop a recurrence relation for the algorithm with parameters *n* and *k*.
- ► Let T(n, k) denote the worst-case running time of the algorithm on an instance of VERTEX COVER with parameters n and k.
- $T(n,1) \leq cn$.
- $T(n,k) \le 2T(n,k-1) + ckn$.
 - ▶ We need *O*(*kn*) time to count the number of edges.
- Claim: $T(n, k) = O(2^k kn)$.

Solving $\mathcal{NP}\text{-}\textsc{Hard}$ Problems on Trees

► "*NP*-Hard": at least as hard as *NP*-Complete. We will use *NP*-Hard to refer to optimisation versions of decision problems.

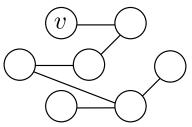
Solving \mathcal{NP} -Hard Problems on Trees

- ► "*NP*-Hard": at least as hard as *NP*-Complete. We will use *NP*-Hard to refer to optimisation versions of decision problems.
- Many \mathcal{NP} -Hard problems can be solved efficiently on trees.
- Intuition: subtree rooted at any node v of the tree "interacts" with the rest of tree only through v. Therefore, depending on whether we include v in the solution or not, we can decouple solving the problem in v's subtree from the rest of the tree.

Solving $\mathcal{NP} ext{-}Complete$ Problems	Small Vertex Covers	Trees	Load Balancing	Set Cover
Designing G	reedy Algorit	hm for	Independent	: Set
	\bigcirc	$-\bigcirc$		
	\bigcirc		\supset	

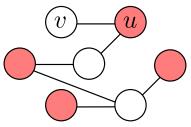
> Optimisation problem: Find the largest independent set in a tree.

Designing Greedy Algorithm for Independent Set



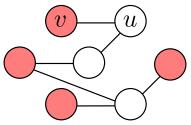
- Optimisation problem: Find the largest independent set in a tree.
- Claim: Every tree T(V, E) has a *leaf*, a node with degree 1.
- Claim: If a tree T has a leaf v, then there exists a maximum-size independent set in T that contains v.

Designing Greedy Algorithm for Independent Set



- Optimisation problem: Find the largest independent set in a tree.
- Claim: Every tree T(V, E) has a *leaf*, a node with degree 1.
- Claim: If a tree T has a leaf v, then there exists a maximum-size independent set in T that contains v. Prove by exchange argument.
 - Let S be a maximum-size independent set that does not contain v.
 - Let v be connected to u.
 - u must be in S; otherwise, we can add v to S, which means S is not maximum size.
 - Since *u* is in *S*, we can swap *u* and *v*.

Designing Greedy Algorithm for Independent Set



- Optimisation problem: Find the largest independent set in a tree.
- Claim: Every tree T(V, E) has a *leaf*, a node with degree 1.
- Claim: If a tree T has a leaf v, then there exists a maximum-size independent set in T that contains v. Prove by exchange argument.
 - Let S be a maximum-size independent set that does not contain v.
 - Let v be connected to u.
 - u must be in S; otherwise, we can add v to S, which means S is not maximum size.
 - Since u is in S, we can swap u and v.
- ► Claim: If a tree T has a a leaf v, then a maximum-size independent set in T is v and a maximum-size independent set in T {v}.

Greedy Algorithm for Independent Set

► A *forest* is a graph where every connected component is a tree.

To find a maximum-size independent set in a forest F: Let S be the independent set to be constructed (initially empty) While F has at least one edge Let e = (u, v) be an edge of F such that v is a leaf Add v to SDelete from F nodes u and v, and all edges incident to them Endwhile Beturn S

Greedy Algorithm for Independent Set

- ► A *forest* is a graph where every connected component is a tree.
- Running time of the algorithm is O(n).

To find a maximum-size independent set in a forest F: Let S be the independent set to be constructed (initially empty) While F has at least one edge Let e = (u, v) be an edge of F such that v is a leaf Add v to SDelete from F nodes u and v, and all edges incident to them Endwhile Return S

Greedy Algorithm for Independent Set

- ► A *forest* is a graph where every connected component is a tree.
- Running time of the algorithm is O(n).
- The algorithm works correctly on any graph for which we can repeatedly find a leaf.

To find a maximum-size independent set in a forest F: Let S be the independent set to be constructed (initially empty) While F has at least one edge Let e = (u, v) be an edge of F such that v is a leaf Add v to SDelete from F nodes u and v, and all edges incident to them Endwhile Return S

Maximum Weight Independent Set

- ► Consider the INDEPENDENT SET problem but with a weight w_v on every node v.
- ► Goal is to find an independent set S such that ∑_{v∈S} w_v is as large as possible.

Solving $\mathcal{NP} ext{-}Complete$ Problems	Small Vertex Covers	Trees	Load Balancing	Set Cover
Maxim	um Weight	Indepe	ndent Set	
	<u>v</u>	-u		
		$\left(\right)$		

- Consider the INDEPENDENT SET problem but with a weight w_v on every node v.
- ► Goal is to find an independent set S such that ∑_{v∈S} w_v is as large as possible.
- Can we extend the greedy algorithm?

Solving $\mathcal{NP}\text{-}Complete$ Problems	Small Vertex Covers	Trees	Load Balancing	Set Cover
Maxim	um Weight	Indepe	ndent Set	
	v—			
	\frown			

- Consider the INDEPENDENT SET problem but with a weight w_v on every node v.
- ► Goal is to find an independent set S such that ∑_{v∈S} w_v is as large as possible.
- Can we extend the greedy algorithm? Exchange argument fails: if u is a parent of a leaf v, wu may be larger than wv.

Solving $\mathcal{NP} ext{-Complete Problems}$	Small Vertex Covers	Trees	Load Balancing	Set Cover
Maxin	num Weight	Indepe	ndent Set	

- Consider the INDEPENDENT SET problem but with a weight w_v on every node v.
- ► Goal is to find an independent set S such that ∑_{v∈S} w_v is as large as possible.
- Can we extend the greedy algorithm? Exchange argument fails: if u is a parent of a leaf v, wu may be larger than wv.
- But there are still only two possibilities: either include u in the independent set or include all neighbours of u that are leaves.

Solving $\mathcal{NP}\text{-}Complete$ Problems	Small Vertex Covers	Trees	Load Balancing	Set Cover
Maxim	um Weight	Indepe	ndent Set	
			_	

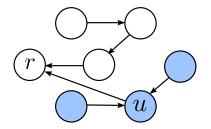
- Consider the INDEPENDENT SET problem but with a weight w_v on every node v.
- ► Goal is to find an independent set S such that ∑_{v∈S} w_v is as large as possible.
- Can we extend the greedy algorithm? Exchange argument fails: if u is a parent of a leaf v, wu may be larger than wv.
- But there are still only two possibilities: either include u in the independent set or include all neighbours of u that are leaves.
- Suggests dynamic programming algorithm.

Designing Dynamic Programming Algorithm

- Dynamic programming algorithm needs a set of sub-problems, recursion to combine sub-problems, and order over sub-problems.
- What are the sub-problems?

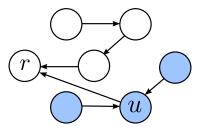
Designing Dynamic Programming Algorithm

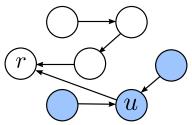
- Dynamic programming algorithm needs a set of sub-problems, recursion to combine sub-problems, and order over sub-problems.
- What are the sub-problems?
 - Pick a node *r* and *root* tree at *r*: orient edges towards *r*.
 - parent p(u) of a node u is the node adjacent to u along the path to r.
 - Sub-problems are T_u : subtree induced by u and all its descendants.



Designing Dynamic Programming Algorithm

- Dynamic programming algorithm needs a set of sub-problems, recursion to combine sub-problems, and order over sub-problems.
- What are the sub-problems?
 - Pick a node r and root tree at r: orient edges towards r.
 - parent p(u) of a node u is the node adjacent to u along the path to r.
 - Sub-problems are T_u : subtree induced by u and all its descendants.
- > Ordering the sub-problems: start at leaves and work our way up to the root.





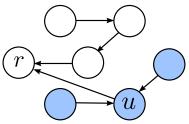
- Either we include *u* in an optimal solution or exclude *u*.
 - $OPT_{in}(u)$: maximum weight of an independent set in T_u that includes u.
 - $OPT_{out}(u)$: maximum weight of an independent set in T_u that excludes u.



- Either we include *u* in an optimal solution or exclude *u*.
 - $OPT_{in}(u)$: maximum weight of an independent set in T_u that includes u.
 - $OPT_{out}(u)$: maximum weight of an independent set in T_u that excludes u.
- Base cases:



- Either we include *u* in an optimal solution or exclude *u*.
 - $OPT_{in}(u)$: maximum weight of an independent set in T_u that includes u.
 - $OPT_{out}(u)$: maximum weight of an independent set in T_u that excludes u.
- ▶ Base cases: For a leaf u, $OPT_{in}(u) = w_u$ and $OPT_{out}(u) = 0$.
- Recurrence: Include *u* or exclude *u*.



- Either we include *u* in an optimal solution or exclude *u*.
 - $OPT_{in}(u)$: maximum weight of an independent set in T_u that includes u.
 - $OPT_{out}(u)$: maximum weight of an independent set in T_u that excludes u.
- ▶ Base cases: For a leaf u, $OPT_{in}(u) = w_u$ and $OPT_{out}(u) = 0$.
- Recurrence: Include *u* or exclude *u*.
 - 1. If we include *u*, all children must be excluded. $OPT_{in}(u) = w_u + \sum_{v \in children(u)} OPT_{out}(v)$



- Either we include *u* in an optimal solution or exclude *u*.
 - $OPT_{in}(u)$: maximum weight of an independent set in T_u that includes u.
 - $OPT_{out}(u)$: maximum weight of an independent set in T_u that excludes u.
- ▶ Base cases: For a leaf u, $OPT_{in}(u) = w_u$ and $OPT_{out}(u) = 0$.
- Recurrence: Include *u* or exclude *u*.
 - 1. If we include u, all children must be excluded. $OPT_{in}(u) = w_u + \sum_{v \in children(u)} OPT_{out}(v)$
 - 2. If we exclude u, a child may or may not be excluded. $OPT_{out}(u) = \sum_{v \in children(u)} max(OPT_{in}(v), OPT_{out}(v))$

Dynamic Programming Algorithm

```
To find a maximum-weight independent set of a tree T:
    Root the tree at a node r
    For all nodes u of T in post-order
         If u is a leaf then set the values:
               M_{out}[u] = 0
               M_{in}[u] = w_n
         Else set the values:
               M_{out}[u] =
                             \sum \max(M_{out}[v], M_{in}[v])
                          v \in children(u)
               M_{in}[u] = w_u + \sum M_{out}[u].
                                 v \in children(u)
         Endif
    Endfor
    Return \max(M_{out}[r], M_{in}[r])
```

Dynamic Programming Algorithm

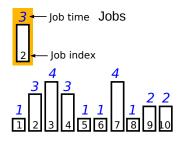
```
To find a maximum-weight independent set of a tree T:
    Root the tree at a node r
    For all nodes u of T in post-order
         If u is a leaf then set the values:
               M_{out}[u] = 0
               M_{in}[u] = w_n
         Else set the values:
               M_{out}[u] =
                             \sum \max(M_{out}[v], M_{in}[v])
                          v \in children(u)
               M_{in}[u] = w_u + \sum M_{out}[u].
                                 v \in children(u)
         Endif
    Endfor
    Return \max(M_{out}[r], M_{in}[r])
```

• Running time of the algorithm is O(n).

Approximation Algorithms

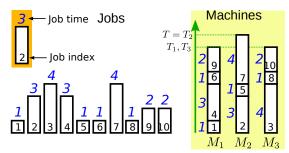
- \blacktriangleright Methods for optimisation versions of $\mathcal{NP}\text{-}\mathsf{Complete}$ problems.
- Run in polynomial time.
- Solution returned is guaranteed to be within a small factor of the optimal solution

Load Balancing Problem



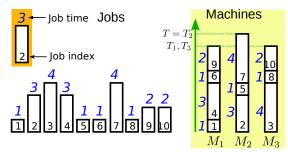
- Given set of *m* machines $M_1, M_2, \ldots M_m$.
- ▶ Given a set of *n* jobs: job *j* has processing time *t_j*.
- Assign each job to one machine so that the total time spent is minimised.

Load Balancing Problem



- Given set of m machines $M_1, M_2, \ldots M_m$.
- ▶ Given a set of *n* jobs: job *j* has processing time *t_j*.
- Assign each job to one machine so that the total time spent is minimised.
- ▶ Let A(i) be the set of jobs assigned to machine M_i.
- Total time spent on machine *i* is $T_i = \sum_{k \in A(i)} t_k$.
- Minimise makespan $T = \max_i T_i$, the largest load on any machine.

Load Balancing Problem



- Given set of m machines $M_1, M_2, \ldots M_m$.
- ▶ Given a set of *n* jobs: job *j* has processing time *t_j*.
- Assign each job to one machine so that the total time spent is minimised.
- Let A(i) be the set of jobs assigned to machine M_i .
- Total time spent on machine *i* is $T_i = \sum_{k \in A(i)} t_k$.
- Minimise makespan $T = \max_i T_i$, the largest load on any machine.
- ▶ Minimising makespan is *NP*-Complete.

Greedy-Balance Algorithm

- Adopt a greedy approach.
- Process jobs in any order.
- Assign next job to the processor that has smallest total load so far.

```
Greedy-Balance:

Start with no jobs assigned

Set T_i = 0 and A(i) = \emptyset for all machines M_i

For j = 1, \ldots, n

Let M_i be a machine that achieves the minimum \min_k T_k

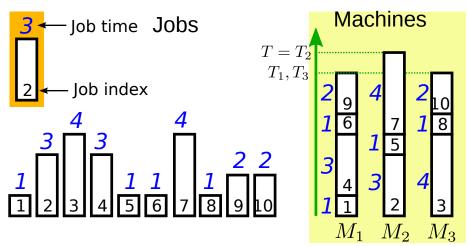
Assign job j to machine M_i

Set A(i) \leftarrow A(i) \cup \{j\}

Set T_i \leftarrow T_i + t_j

EndFor
```

Example of Greedy-Balance Algorithm



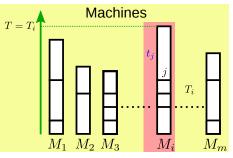
Lower Bounds on the Optimal Makespan

• We need a lower bound on the optimum makespan T^* .

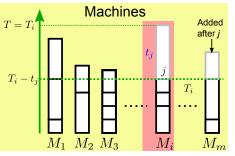
Lower Bounds on the Optimal Makespan

- We need a lower bound on the optimum makespan T^* .
- ► The two bounds below will suffice:

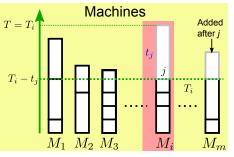
$$T^* \ge rac{1}{m} \sum_j t_j$$
 $T^* \ge \max_j t_j$



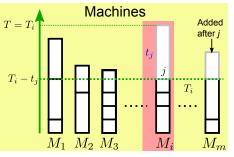
• Claim: Computed makespan $T \leq 2T^*$.



- Claim: Computed makespan $T \leq 2T^*$.
- Let M_i be the machine whose load is T and j be the last job placed on M_i.
- What was the situation just before placing this job?



- Claim: Computed makespan $T \leq 2T^*$.
- Let M_i be the machine whose load is T and j be the last job placed on M_i.
- What was the situation just before placing this job?
- ► M_i had the smallest load and its load was T t_j.
- For every machine M_k , load $T_k \ge T t_j$.



- Claim: Computed makespan $T \leq 2T^*$.
- Let M_i be the machine whose load is T and j be the last job placed on M_i.
- What was the situation just before placing this job?
- ► M_i had the smallest load and its load was T t_j.
- For every machine M_k , load $T_k \ge T t_j$.

 $\sum_{k} T_{k} \ge m(T - t_{j}), \text{ where } k \text{ ranges over all machines}$ $\sum_{j} t_{j} \ge m(T - t_{j}), \text{ where } j \text{ ranges over all jobs}$ $T - t_{j} \le 1/m \sum_{j} t_{j} \le T^{*}$ $T \le 2T^{*}, \text{ since } t_{i} \le T^{*}$

Improving the Bound

It is easy to construct an example for which the greedy algorithm produces a solution close to a factor of 2 away from optimal.

Improving the Bound

- It is easy to construct an example for which the greedy algorithm produces a solution close to a factor of 2 away from optimal.
- How can we improve the algorithm?

Improving the Bound

- It is easy to construct an example for which the greedy algorithm produces a solution close to a factor of 2 away from optimal.
- How can we improve the algorithm?
- What if we process the jobs in decreasing order of processing time?

Sorted-Balance Algorithm

```
Sorted-Balance:
Start with no jobs assigned
Set T_i = 0 and A(i) = \emptyset for all machines M_i
Sort jobs in decreasing order of processing times t_i
Assume that t_1 \geq t_2 \geq \ldots \geq t_n
For i = 1, ..., n
  Let M_i be the machine that achieves the minimum \min_k T_k
  Assign job j to machine M_i
  Set A(i) \leftarrow A(i) \cup \{i\}
  Set T_i \leftarrow T_i + t_i
EndFor
```

Sorted-Balance Algorithm

```
Sorted-Balance:
Start with no jobs assigned
Set T_i = 0 and A(i) = \emptyset for all machines M_i
Sort jobs in decreasing order of processing times t_i
Assume that t_1 \geq t_2 \geq \ldots \geq t_n
For i = 1, ..., n
  Let M_i be the machine that achieves the minimum \min_k T_k
  Assign job j to machine M_i
  Set A(i) \leftarrow A(i) \cup \{i\}
  Set T_i \leftarrow T_i + t_i
EndFor
```

▶ This algorithm assigns the first *m* jobs to *m* distinct machines.

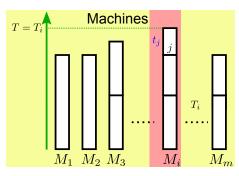
Solving $\mathcal{NP} ext{-}Complete$ Problems	Small Vertex Covers	Trees	Load Balancing	Set Cover
Example of Sorted-Balance Algorithm				
<mark>3</mark> ← Job time	Jobs		Machi	nes
$2 \leftarrow Job index$		$T = T_1$ T_2, T_3	2 2	8 19 6 3
1 2 3 4 5	2 1 1 678	1 1 9 10	4 4 1 1 M ₁ N	$\begin{array}{c} 4\\ 3\\ 3\\ 3\\ M_2 \\ M_3 \end{array}$

- ▶ Claim: if there are fewer than *m* jobs, algorithm is optimal.
- ▶ Claim: if there are more than *m* jobs, then $T^* \ge 2t_{m+1}$.

- ▶ Claim: if there are fewer than *m* jobs, algorithm is optimal.
- ▶ Claim: if there are more than *m* jobs, then $T^* \ge 2t_{m+1}$.
 - Consider only the first m + 1 jobs in sorted order.
 - Consider any assignment of these m + 1 jobs to machines.
 - Some machine must be assigned two jobs, each with processing time at least t_{m+1} .
 - This machine will have load at least $2t_{m+1}$.

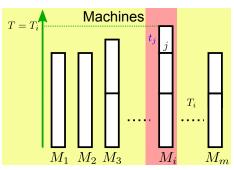
- \blacktriangleright Claim: if there are fewer than *m* jobs, algorithm is optimal.
- Claim: if there are more than m jobs, then $T^* \ge 2t_{m+1}$.
 - Consider only the first m+1 jobs in sorted order.
 - Consider any assignment of these m + 1 jobs to machines.
 - Some machine must be assigned two jobs, each with processing time at least t_{m+1} .
 - This machine will have load at least $2t_{m+1}$.
- Claim: $T \leq 3T^*/2$.

- ▶ Claim: if there are fewer than *m* jobs, algorithm is optimal.
- Claim: if there are more than m jobs, then $T^* \ge 2t_{m+1}$.
 - Consider only the first m + 1 jobs in sorted order.
 - Consider any assignment of these m + 1 jobs to machines.
 - Some machine must be assigned two jobs, each with processing time at least t_{m+1} .
 - ▶ This machine will have load at least 2*t*_{*m*+1}.
- Claim: $T \leq 3T^*/2$.
- Let M_i be the machine whose load is T and j be the last job placed on M_i. (M_i has at least two jobs.)

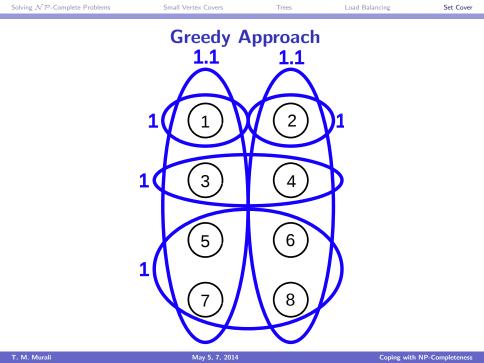


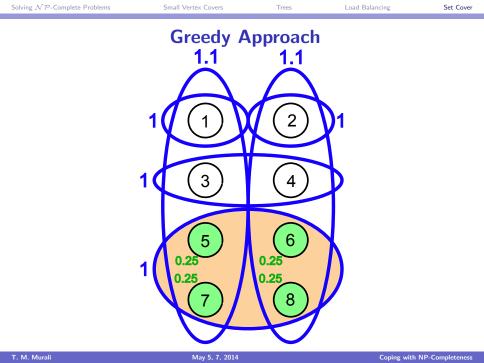
- ▶ Claim: if there are fewer than *m* jobs, algorithm is optimal.
- Claim: if there are more than m jobs, then $T^* \ge 2t_{m+1}$.
 - Consider only the first m + 1 jobs in sorted order.
 - Consider any assignment of these m + 1 jobs to machines.
 - Some machine must be assigned two jobs, each with processing time at least t_{m+1} .
 - ▶ This machine will have load at least 2*t*_{*m*+1}.
- Claim: $T \leq 3T^*/2$.
- Let M_i be the machine whose load is T and j be the last job placed on M_i. (M_i has at least two jobs.)

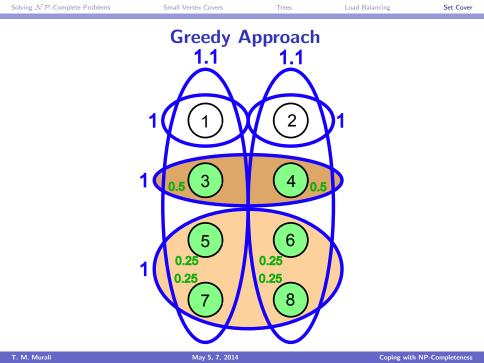
$$t_j \leq t_{m+1} \leq T^*/2$$
, since $j \geq m+1$
 $T - t_j \leq T^*$, GREEDY-BALANCE proof
 $T \leq 3T^*/2$

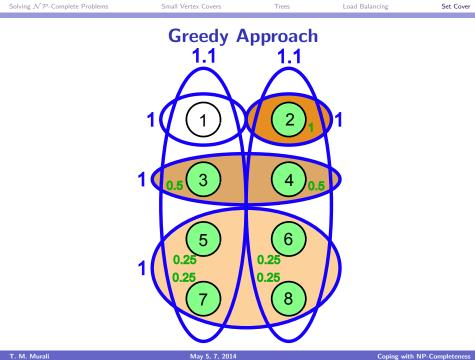


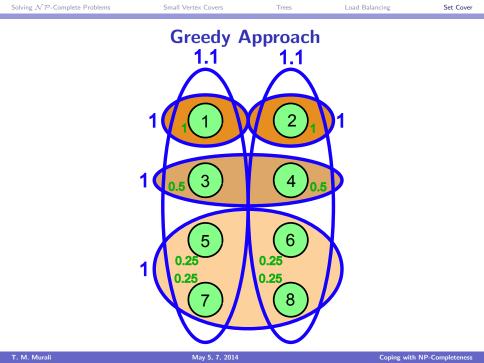
Set Cover **INSTANCE:** A set U of n elements, a collection S_1, S_2, \ldots, S_m of subsets of U, each with an associated weight w. **SOLUTION:** A collection \mathcal{C} of sets in the collection such that $\bigcup_{S_i \in C} S_i = U$ and $\sum_{S_i \in C} w_i$ is minimised. 1.1 1.1 Element in universe Element label Element cost -Set weight Set 6 5

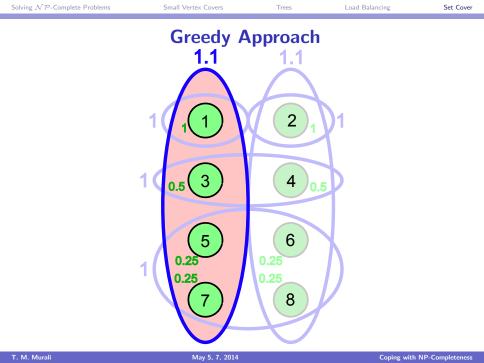












▶ To get a greedy algorithm, in what order should we process the sets?

- > To get a greedy algorithm, in what order should we process the sets?
- ▶ Maintain set *R* of uncovered elements.
- ▶ Process set in decreasing order of $w_i/|S_i \cap R|$.

- > To get a greedy algorithm, in what order should we process the sets?
- Maintain set R of uncovered elements.
- ▶ Process set in decreasing order of $w_i/|S_i \cap R|$.

```
Greedy-Set-Cover:

Start with R = U and no sets selected

While R \neq \emptyset

Select set S_i that minimizes w_i/|S_i \cap R|

Delete set S_i from R

EndWhile

Return the selected sets
```

- > To get a greedy algorithm, in what order should we process the sets?
- Maintain set R of uncovered elements.
- ▶ Process set in decreasing order of $w_i/|S_i \cap R|$.

```
Greedy-Set-Cover:

Start with R = U and no sets selected

While R \neq \emptyset

Select set S_i that minimizes w_i/|S_i \cap R|

Delete set S_i from R

EndWhile

Return the selected sets
```

The algorithm computes a set cover whose weight is at most O(log n) times the optimal weight (Johnson 1974, Lovász 1975, Chvatal 1979).

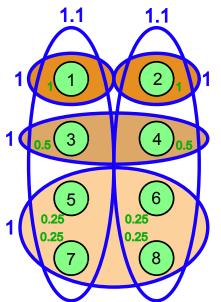
 Good lower bounds on the weight w* of the optimum set cover are not easy to obtain.

- Good lower bounds on the weight w* of the optimum set cover are not easy to obtain.
- Bookkeeping: record the per-element *cost* paid when selecting S_i.

- Good lower bounds on the weight w* of the optimum set cover are not easy to obtain.
- Bookkeeping: record the per-element *cost* paid when selecting *S_i*.
- In the algorithm, after selecting S_i, add the line

Define $c_s = w_i / |S_i \cap R|$ for all $s \in S_i \cap R$.

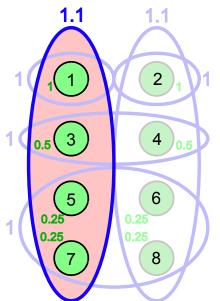
- As each set S_i is selected, distribute its weight over the costs c_s of the *newly*-covered elements.
- Each element in the universe assigned cost exactly once.



- Good lower bounds on the weight w* of the optimum set cover are not easy to obtain.
- Bookkeeping: record the per-element *cost* paid when selecting *S_i*.
- In the algorithm, after selecting S_i, add the line

Define $c_s = w_i / |S_i \cap R|$ for all $s \in S_i \cap R$.

- As each set S_i is selected, distribute its weight over the costs c_s of the *newly*-covered elements.
- Each element in the universe assigned cost exactly once.



Starting the Analysis of Greedy-Set-Cover

 \blacktriangleright Let ${\mathcal C}$ be the set cover computed by <code>GREEDY-SET-COVER</code>.

• Claim:
$$\sum_{S_i \in \mathcal{C}} w_i = \sum_{s \in U} c_s$$
.

$$\sum_{S_i \in \mathcal{C}} w_i = \sum_{S_i \in \mathcal{C}} \left(\sum_{s \in S_i \cap R} c_s \right), \text{ by definition of } c_s$$
$$= \sum_{s \in U} c_s, \text{ since each element in the universe contributes exactly once}$$

- In other words, the total weight of the solution computed by GREEDY-SET-COVER is the total costs it assigns to the elements in the universe.
- ► Can "switch" between set-based weight of solution and element-based costs.
- ► Note: sets have weights whereas GREEDY-SET-COVER assigns costs to elements.

- Suppose C^* is the optimal set cover: $w^* = \sum_{S_i \in C^*} w_j$.
- ▶ Goal is to relate total weight of sets in C to total weight of sets in C^* .

- Suppose C^* is the optimal set cover: $w^* = \sum_{S_j \in C^*} w_j$.
- ▶ Goal is to relate total weight of sets in C to total weight of sets in C*.
- ► What is the total cost assigned by GREEDY-SET-COVER to the elements in the sets in the optimal cover C*?

- Suppose C^* is the optimal set cover: $w^* = \sum_{S_j \in C^*} w_j$.
- ▶ Goal is to relate total weight of sets in C to total weight of sets in C*.
- ► What is the total cost assigned by GREEDY-SET-COVER to the elements in the sets in the optimal cover C*?

► Since
$$C^*$$
 is a set cover, $\sum_{S_j \in C^*} \left(\sum_{s \in S_j} c_s \right) \ge \sum_{s \in U} c_s = \sum_{S_i \in C} w_i = w$

- Suppose C^* is the optimal set cover: $w^* = \sum_{S_j \in C^*} w_j$.
- ▶ Goal is to relate total weight of sets in C to total weight of sets in C*.
- ► What is the total cost assigned by GREEDY-SET-COVER to the elements in the sets in the optimal cover C*?

► Since
$$C^*$$
 is a set cover, $\sum_{S_j \in C^*} \left(\sum_{s \in S_j} c_s \right) \ge \sum_{s \in U} c_s = \sum_{S_i \in C} w_i = w$

► In the sum on the left, S_j is a set in C* (need not be a set in C). How large can total cost of elements in such a set be?

- Suppose \mathcal{C}^* is the optimal set cover: $w^* = \sum_{S_j \in \mathcal{C}^*} w_j$.
- ▶ Goal is to relate total weight of sets in C to total weight of sets in C*.
- ► What is the total cost assigned by GREEDY-SET-COVER to the elements in the sets in the optimal cover C*?

► Since
$$C^*$$
 is a set cover, $\sum_{S_j \in C^*} \left(\sum_{s \in S_j} c_s \right) \ge \sum_{s \in U} c_s = \sum_{S_i \in C} w_i = w_i$

- ► In the sum on the left, S_j is a set in C* (need not be a set in C). How large can total cost of elements in such a set be?
- ▶ For any set S_k , suppose we can prove $\sum_{s \in S_k} c_s \le \alpha w_k$, for some fixed $\alpha > 0$, i.e., total cost assigned by GREEDY-SET-COVER to the elements in S_k cannot be much larger than the weight of s_k .

- Suppose \mathcal{C}^* is the optimal set cover: $w^* = \sum_{S_j \in \mathcal{C}^*} w_j$.
- ▶ Goal is to relate total weight of sets in C to total weight of sets in C*.
- ► What is the total cost assigned by GREEDY-SET-COVER to the elements in the sets in the optimal cover C*?

► Since
$$C^*$$
 is a set cover, $\sum_{S_j \in C^*} \left(\sum_{s \in S_j} c_s \right) \ge \sum_{s \in U} c_s = \sum_{S_i \in C} w_i = w$

- ► In the sum on the left, S_j is a set in C* (need not be a set in C). How large can total cost of elements in such a set be?
- For any set S_k, suppose we can prove ∑_{s∈S_k} c_s ≤ αw_k, for some fixed α > 0, i.e., total cost assigned by GREEDY-SET-COVER to the elements in S_k cannot be much larger than the weight of s_k.

► Then
$$w \leq \sum_{S_j \in \mathcal{C}^*} \left(\sum_{s \in S_j} c_s \right) \leq \sum_{S_j \in \mathcal{C}^*} \alpha w_j = \alpha w^*.$$

- Suppose C^* is the optimal set cover: $w^* = \sum_{S_j \in C^*} w_j$.
- ▶ Goal is to relate total weight of sets in C to total weight of sets in C*.
- ▶ What is the total cost assigned by GREEDY-SET-COVER to the elements in the sets in the optimal cover C*?

► Since
$$C^*$$
 is a set cover, $\sum_{S_j \in C^*} \left(\sum_{s \in S_j} c_s \right) \ge \sum_{s \in U} c_s = \sum_{S_i \in C} w_i = w$

- ► In the sum on the left, S_j is a set in C* (need not be a set in C). How large can total cost of elements in such a set be?
- For any set S_k, suppose we can prove ∑_{s∈S_k} c_s ≤ αw_k, for some fixed α > 0, i.e., total cost assigned by GREEDY-SET-COVER to the elements in S_k cannot be much larger than the weight of s_k.

► Then
$$w \leq \sum_{S_j \in \mathcal{C}^*} \left(\sum_{s \in S_j} c_s \right) \leq \sum_{S_j \in \mathcal{C}^*} \alpha w_j = \alpha w^*.$$

For every set S_k in the input, goal is to prove an upper bound on $\frac{\sum s}{\sum k}$

Upper Bounding Cost-by-Weight Ratio

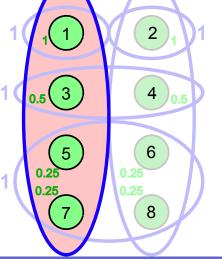
- Consider any set S_k (even one not selected by the algorithm).
- How large can $\frac{\sum_{s \in S_k} c_s}{w_k}$ get?

Upper Bounding Cost-by-Weight Ratio

- Consider any set S_k (even one not selected by the algorithm).
- How large can $\frac{\sum_{s \in S_k} c_s}{W_k}$ get?
- ► The harmonic function

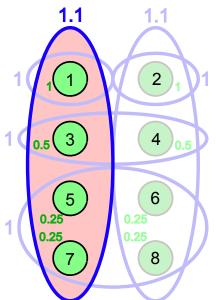
$$H(n) = \sum_{i=1}^{n} \frac{1}{i} = \Theta(\ln n).$$

• Claim: For every set S_k , the sum $\sum_{s \in S_k} c_s \le H(|S_K|)w_k$.



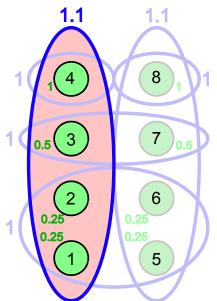
Renumbering Elements in S_k

- Renumber elements in U so that elements in S_k are the first d = |S_k| elements of U, i.e., S_k = {s₁, s₂,..., s_d}.
- Order elements of S in the order they get covered by the algorithm (i.e., when they get assigned a cost by GREEDY-SET-COVER).



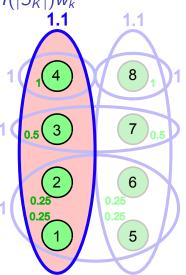
Renumbering Elements in S_k

- Renumber elements in U so that elements in S_k are the first d = |S_k| elements of U, i.e., S_k = {s₁, s₂,..., s_d}.
- Order elements of S in the order they get covered by the algorithm (i.e., when they get assigned a cost by GREEDY-SET-COVER).



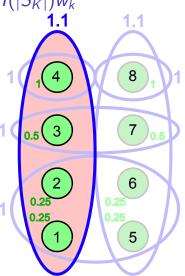
What happens in the iteration when the algorithm covers element s_j ∈ S_k, j ≤ d?

- What happens in the iteration when the algorithm covers element s_j ∈ S_k, j ≤ d?
- At the start of this iteration, R must contain s_j, s_{j+1},... s_d, i.e., |S_k ∩ R| ≥ d − j + 1. (R may contain other elements of S_k as well.)



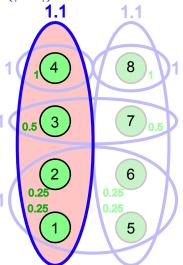
- What happens in the iteration when the algorithm covers element s_j ∈ S_k, j ≤ d?
- At the start of this iteration, R must contain s_j, s_{j+1},... s_d, i.e., |S_k ∩ R| ≥ d − j + 1. (R may contain other elements of S_k as well.)

► Therefore,
$$\frac{w_k}{|S_k \cap R|} \leq \frac{w_k}{d-j+1}$$
.



- What happens in the iteration when the algorithm covers element s_j ∈ S_k, j ≤ d?
- At the start of this iteration, R must contain s_j, s_{j+1},... s_d, i.e., |S_k ∩ R| ≥ d − j + 1. (R may contain other elements of S_k as well.)
- Therefore, $\frac{w_k}{|S_k \cap R|} \leq \frac{w_k}{d-j+1}$.
- What cost did the algorithm assign to s_j?
- ► Suppose the algorithm selected set *S_i* in this iteration.

$$c_{s_j} = \frac{w_i}{|S_i \cap R|} \leq \frac{w_k}{|S_k \cap R|} \leq \frac{w_k}{d-j+1}.$$



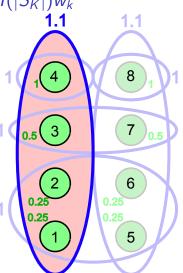
Proving $\sum_{s \in S_k} c_s \leq H(|S_{\mathcal{K}}|) w_k$

- What happens in the iteration when the algorithm covers element s_j ∈ S_k, j ≤ d?
- At the start of this iteration, R must contain s_j, s_{j+1},... s_d, i.e., |S_k ∩ R| ≥ d − j + 1. (R may contain other elements of S_k as well.)
- Therefore, $\frac{w_k}{|S_k \cap R|} \leq \frac{w_k}{d-j+1}$.
- What cost did the algorithm assign to s_j?
- ► Suppose the algorithm selected set *S_i* in this iteration.

$$c_{s_j} = rac{w_i}{|S_i \cap R|} \leq rac{w_k}{|S_k \cap R|} \leq rac{w_k}{d-j+1}.$$

► We are done!

$$\sum_{s \in S_k} c_s = \sum_{j=1}^d c_{s_j} \le \sum_{j=1}^d \frac{w_k}{d-j+1} = H(d)w_k.$$



- Let us assume $\sum_{s \in S_k} c_s \leq H(|S_{\mathcal{K}}|)w_k$.
- Let d^* be the size of the largest set in the collection.
- Recall that C^* is the optimal set cover and $w^* = \sum_{S_i \in C^*} w_i$.

• Let us assume
$$\sum_{s \in S_k} c_s \leq H(|S_K|) w_k$$
.

- Let d^* be the size of the largest set in the collection.
- Recall that C^* is the optimal set cover and $w^* = \sum_{S_i \in C^*} w_i$.

For each set
$$S_j$$
 in C^* , we have $w_j \ge \frac{\sum_{s \in S_j} c_s}{H(|S_i|)} \ge \frac{\sum_{s \in S_j} c_s}{H(d^*)}$.

• Combining with $\sum_{S_i \in C} w_i = \sum_{s \in U} c_s$, we have

$$w^* = \sum_{S_j \in \mathcal{C}^*} w_j$$

• Let us assume
$$\sum_{s \in S_k} c_s \leq H(|S_K|) w_k$$
.

- Let d^* be the size of the largest set in the collection.
- Recall that C^* is the optimal set cover and $w^* = \sum_{S_i \in C^*} w_i$.
- For each set S_j in \mathcal{C}^* , we have $w_j \geq \frac{\sum_{s \in S_j} c_s}{H(|S_i|)} \geq \frac{\sum_{s \in S_j} c_s}{H(d^*)}$.
- Combining with $\sum_{S_i \in C} w_i = \sum_{s \in U} c_s$, we have

$$w^* = \sum_{S_j \in \mathcal{C}^*} w_j \geq \sum_{S_j \in \mathcal{C}^*} rac{1}{H(d^*)} \sum_{s \in S_j} c_s \geq rac{1}{H(d^*)} \sum_{s \in U} c_s$$

• Let us assume
$$\sum_{s \in S_k} c_s \leq H(|S_K|) w_k$$
.

- Let d^* be the size of the largest set in the collection.
- Recall that C^* is the optimal set cover and $w^* = \sum_{S_i \in C^*} w_i$.
- For each set S_j in \mathcal{C}^* , we have $w_j \ge \frac{\sum_{s \in S_j} c_s}{H(|S_j|)} \ge \frac{\sum_{s \in S_j} c_s}{H(d^*)}$.
- Combining with $\sum_{S_i \in C} w_i = \sum_{s \in U} c_s$, we have

$$w^* = \sum_{S_j \in \mathcal{C}^*} w_j \geq \sum_{S_j \in \mathcal{C}^*} rac{1}{H(d^*)} \sum_{s \in S_j} c_s \geq rac{1}{H(d^*)} \sum_{s \in U} c_s = rac{1}{H(d^*)} \sum_{S_i \in \mathcal{C}} w_i = w.$$

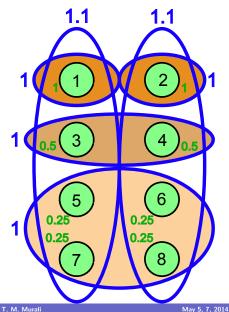
• Let us assume
$$\sum_{s \in S_k} c_s \leq H(|S_{\mathcal{K}}|) w_k$$
.

- Let d^* be the size of the largest set in the collection.
- Recall that C^* is the optimal set cover and $w^* = \sum_{S_i \in C^*} w_i$.
- For each set S_j in \mathcal{C}^* , we have $w_j \geq \frac{\sum_{s \in S_j} c_s}{H(|S_j|)} \geq \frac{\sum_{s \in S_j} c_s}{H(d^*)}$.
- Combining with $\sum_{S_i \in C} w_i = \sum_{s \in U} c_s$, we have

$$w^* = \sum_{S_j \in \mathcal{C}^*} w_j \geq \sum_{S_j \in \mathcal{C}^*} \frac{1}{H(d^*)} \sum_{s \in S_j} c_s \geq \frac{1}{H(d^*)} \sum_{s \in U} c_s = \frac{1}{H(d^*)} \sum_{S_i \in \mathcal{C}} w_i = w.$$

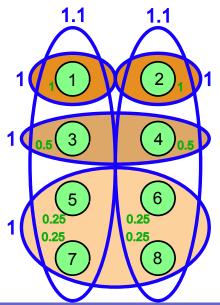
▶ We have proven that GREEDY-SET-COVER computes a set cover whose weight is at most H(d*) times the optimal weight.

How Badly Can Greedy-Set-Cover Perform?



- Generalise this example to show that algorithm produces a set cover of weight Ω(log n) even though optimal weight is 2 + ε.
- More complex constructions show greedy algorithm incurs a weight close to H(n) times the optimal weight.

How Badly Can Greedy-Set-Cover Perform?



- Generalise this example to show that algorithm produces a set cover of weight Ω(log n) even though optimal weight is 2 + ε.
- More complex constructions show greedy algorithm incurs a weight close to H(n) times the optimal weight.
- No polynomial time algorithm can achieve an approximation bound better than H(n) times optimal unless P = NP (Lund and Yannakakis, 1994).