Divide and Conquer Algorithms

T. M. Murali

March 19 and 24, 2013

Divide and Conquer Algorithms

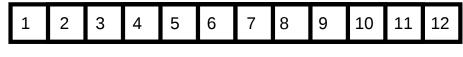
- Study three divide and conquer algorithms:
 - Counting inversions.
 - Finding the closest pair of points.
 - ▶ Integer multiplication.
- First two problems use clever conquer strategies.
- ▶ Third problem uses a clever divide strategy.

Motivation

- Collaborative filtering: match one user's preferences to those of other users, e.g., music.
- ► Meta-search engines: merge results of multiple search engines to into a better search result.

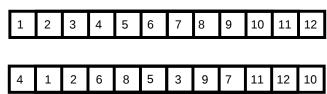
Motivation

- Collaborative filtering: match one user's preferences to those of other users, e.g., music.
- ▶ Meta-search engines: merge results of multiple search engines to into a better search result.
- Fundamental question: how do we compare a pair of rankings?
 - ▶ My ranking of songs: ordered list of integers from 1 to n.
 - ▶ Your ranking of songs: $a_1, a_2, ..., a_n$, a permutation of the integers from 1 to n



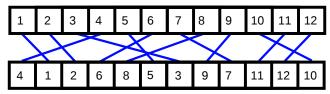
4 1 2 6 8 5 3 9 7 11 12 10

Comparing Rankings



 Suggestion: two rankings of songs are very similar if they have few inversions.

Comparing Rankings



- Suggestion: two rankings of songs are very similar if they have few inversions.
 - ► The second ranking has an inversion if there exist i, j such that i < j but a_i > a_j.
 - ► The number of inversions *s* is a measure of the difference between the rankings.
- ▶ Question also arises in statistics: *Kendall's rank correlation* of two lists of numbers is 1 2s/(n(n-1)).

Counting Inversions

Count Inversions

INSTANCE: A list $L = x_1, x_2, \dots, x_n$ of distinct integers between

1 and *n*.

SOLUTION: The number of pairs $(i, j), 1 \le i < j \le n$ such

 $x_i > x_j$.

Counting Inversions

COUNT INVERSIONS

INSTANCE: A list $L = x_1, x_2, \dots, x_n$ of distinct integers between

1 and *n*.

SOLUTION: The number of pairs $(i, j), 1 \le i < j \le n$ such

 $x_i > x_j$.

4 1 2 6 8 5 3 9 7 11 12 10

T. M. Murali

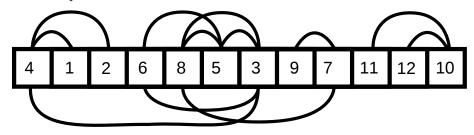
Counting Inversions

COUNT INVERSIONS

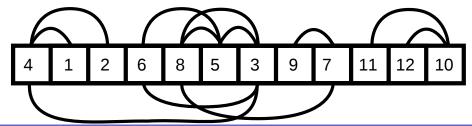
INSTANCE: A list $L = x_1, x_2, \dots, x_n$ of distinct integers between 1 and n.

SOLUTION: The number of pairs $(i, j), 1 \le i < j \le n$ such

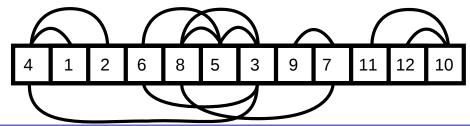
 $x_i > x_i$.



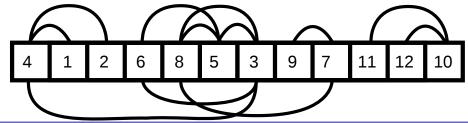
▶ How many inversions can be there in a list of *n* numbers?



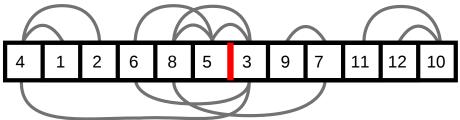
▶ How many inversions can be there in a list of n numbers? $\Omega(n^2)$. We cannot afford to compute each inversion explicitly.



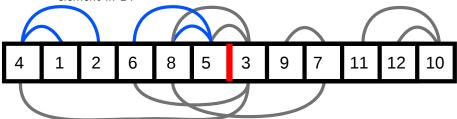
- ▶ How many inversions can be there in a list of n numbers? $\Omega(n^2)$. We cannot afford to compute each inversion explicitly.
- ▶ Sorting removes all inversions in $O(n \log n)$ time. Can we modify the Mergesort algorithm to count inversions?



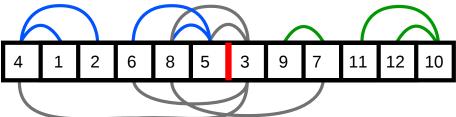
- ▶ How many inversions can be there in a list of n numbers? $\Omega(n^2)$. We cannot afford to compute each inversion explicitly.
- ▶ Sorting removes all inversions in $O(n \log n)$ time. Can we modify the Mergesort algorithm to count inversions?
- Candidate algorithm:
 - 1. Partition L into two lists A and B of size n/2 each.
 - 2. Recursively count the number of inversions in *A*.
 - 3. Recursively count the number of inversions in *B*.
 - 4. Count the number of inversions involving one element in *A* and one element in *B*.



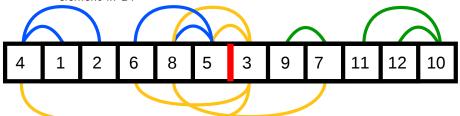
- ▶ How many inversions can be there in a list of n numbers? $\Omega(n^2)$. We cannot afford to compute each inversion explicitly.
- ▶ Sorting removes all inversions in $O(n \log n)$ time. Can we modify the Mergesort algorithm to count inversions?
- Candidate algorithm:
 - 1. Partition L into two lists A and B of size n/2 each.
 - 2. Recursively count the number of inversions in A.
 - 3. Recursively count the number of inversions in B.
 - 4. Count the number of inversions involving one element in *A* and one element in *B*.



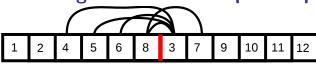
- ▶ How many inversions can be there in a list of n numbers? $\Omega(n^2)$. We cannot afford to compute each inversion explicitly.
- ▶ Sorting removes all inversions in $O(n \log n)$ time. Can we modify the Mergesort algorithm to count inversions?
- Candidate algorithm:
 - 1. Partition L into two lists A and B of size n/2 each.
 - 2. Recursively count the number of inversions in *A*.
 - 3. Recursively count the number of inversions in B.
 - 4. Count the number of inversions involving one element in *A* and one element in *B*.



- ▶ How many inversions can be there in a list of n numbers? $\Omega(n^2)$. We cannot afford to compute each inversion explicitly.
- ▶ Sorting removes all inversions in $O(n \log n)$ time. Can we modify the Mergesort algorithm to count inversions?
- Candidate algorithm:
 - 1. Partition L into two lists A and B of size n/2 each.
 - 2. Recursively count the number of inversions in A.
 - 3. Recursively count the number of inversions in B.
 - 4. Count the number of inversions involving one element in *A* and one element in *B*.



▶ Given lists $A = a_1, a_2, ..., a_m$ and $B = b_1, b_2, ..., b_m$, compute the number of pairs a_i and b_i such $a_i > b_i$.



- ▶ Given lists $A = a_1, a_2, ..., a_m$ and $B = b_1, b_2, ..., b_m$, compute the number of pairs a_i and b_i such $a_i > b_i$.
- ▶ Key idea: problem is much easier if A and B are sorted!

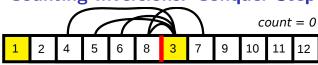
- ▶ Given lists $A = a_1, a_2, ..., a_m$ and $B = b_1, b_2, ..., b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.
- ▶ Key idea: problem is much easier if A and B are sorted!
- ► MERGE procedure:
 - 1. Maintain a current pointer for each list.
 - 3. Initialise each pointer to the front of the list.
 - 4. While both lists are nonempty:
 - 4.1 Let a_i and b_j be the elements pointed to by the *current* pointers.
 - 4.2 Append the smaller of the two to the output list.
 - 4.4 Advance *current* in the list containing the smaller element.
 - 5. Append the rest of the non-empty list to the output.
 - 6. Return the merged list.



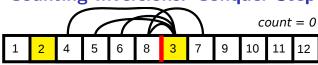
- ▶ Given lists $A = a_1, a_2, ..., a_m$ and $B = b_1, b_2, ..., b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.
- ▶ Key idea: problem is much easier if A and B are sorted!
- ► MERGE-AND-COUNT procedure:
 - 1. Maintain a *current* pointer for each list.
 - 2. Maintain a variable *count* initialised to 0.
 - 3. Initialise each pointer to the front of the list.
 - 4. While both lists are nonempty:
 - 4.1 Let a_i and b_j be the elements pointed to by the *current* pointers.
 - 4.2 Append the smaller of the two to the output list.
 - 4.3 If $b_i < a_i$, increment *count* by the number of elements remaining in A.
 - 4.4 Advance *current* in the list containing the smaller element.
 - Append the rest of the non-empty list to the output.
 - 6. Return count and the merged list.



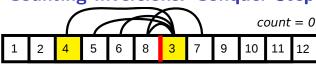
- ▶ Given lists $A = a_1, a_2, ..., a_m$ and $B = b_1, b_2, ..., b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.
- ▶ Key idea: problem is much easier if A and B are sorted!
- ► MERGE-AND-COUNT procedure:
 - 1. Maintain a *current* pointer for each list.
 - 2. Maintain a variable *count* initialised to 0.
 - 3. Initialise each pointer to the front of the list.
 - 4. While both lists are nonempty:
 - 4.1 Let a_i and b_j be the elements pointed to by the *current* pointers.
 - 4.2 Append the smaller of the two to the output list.
 - 4.3 If $b_j < a_i$, increment *count* by the number of elements remaining in A.
 - 4.4 Advance *current* in the list containing the smaller element.
 - 5. Append the rest of the non-empty list to the output.
 - 6. Return *count* and the merged list.
- Running time of this algorithm is O(m).



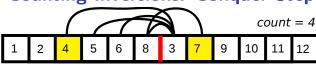
- ▶ Given lists $A = a_1, a_2, ..., a_m$ and $B = b_1, b_2, ..., b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.
- Key idea: problem is much easier if A and B are sorted!
- ► MERGE-AND-COUNT procedure:
 - 1. Maintain a *current* pointer for each list.
 - 2. Maintain a variable *count* initialised to 0.
 - 3. Initialise each pointer to the front of the list.
 - 4. While both lists are nonempty:
 - 4.1 Let a_i and b_j be the elements pointed to by the *current* pointers.
 - 4.2 Append the smaller of the two to the output list.
 - 4.3 If $b_j < a_i$, increment *count* by the number of elements remaining in A.
 - 4.4 Advance *current* in the list containing the smaller element.
 - 5. Append the rest of the non-empty list to the output.
 - 6. Return *count* and the merged list.
- Running time of this algorithm is O(m).



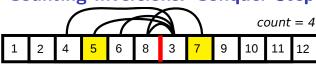
- ▶ Given lists $A = a_1, a_2, ..., a_m$ and $B = b_1, b_2, ..., b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.
- Key idea: problem is much easier if A and B are sorted!
- ► MERGE-AND-COUNT procedure:
 - 1. Maintain a *current* pointer for each list.
 - 2. Maintain a variable *count* initialised to 0.
 - 3. Initialise each pointer to the front of the list.
 - 4. While both lists are nonempty:
 - 4.1 Let a_i and b_j be the elements pointed to by the *current* pointers.
 - 4.2 Append the smaller of the two to the output list.
 - 4.3 If $b_j < a_i$, increment *count* by the number of elements remaining in A.
 - 4.4 Advance *current* in the list containing the smaller element.
 - 5. Append the rest of the non-empty list to the output.
 - 6. Return *count* and the merged list.
- ▶ Running time of this algorithm is O(m).



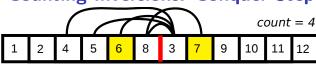
- ▶ Given lists $A = a_1, a_2, ..., a_m$ and $B = b_1, b_2, ..., b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.
- ▶ Key idea: problem is much easier if A and B are sorted!
- ► MERGE-AND-COUNT procedure:
 - 1. Maintain a *current* pointer for each list.
 - 2. Maintain a variable *count* initialised to 0.
 - 3. Initialise each pointer to the front of the list.
 - 4. While both lists are nonempty:
 - 4.1 Let a_i and b_j be the elements pointed to by the *current* pointers.
 - 4.2 Append the smaller of the two to the output list.
 - 4.3 If $b_j < a_i$, increment *count* by the number of elements remaining in A.
 - 4.4 Advance *current* in the list containing the smaller element.
 - 5. Append the rest of the non-empty list to the output.
 - 6. Return *count* and the merged list.
- ▶ Running time of this algorithm is O(m).



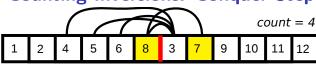
- ▶ Given lists $A = a_1, a_2, ..., a_m$ and $B = b_1, b_2, ..., b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.
- ► Key idea: problem is much easier if A and B are sorted!
- ► MERGE-AND-COUNT procedure:
 - 1. Maintain a *current* pointer for each list.
 - 2. Maintain a variable *count* initialised to 0.
 - 3. Initialise each pointer to the front of the list.
 - 4. While both lists are nonempty:
 - 4.1 Let a_i and b_j be the elements pointed to by the *current* pointers.
 - 4.2 Append the smaller of the two to the output list.
 - 4.3 If $b_j < a_i$, increment *count* by the number of elements remaining in A.
 - 4.4 Advance *current* in the list containing the smaller element.
 - 5. Append the rest of the non-empty list to the output.
 - 6. Return *count* and the merged list.
- ▶ Running time of this algorithm is O(m).



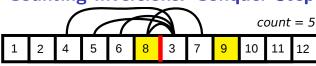
- ▶ Given lists $A = a_1, a_2, ..., a_m$ and $B = b_1, b_2, ..., b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.
- Key idea: problem is much easier if A and B are sorted!
- ► MERGE-AND-COUNT procedure:
 - 1. Maintain a *current* pointer for each list.
 - 2. Maintain a variable *count* initialised to 0.
 - 3. Initialise each pointer to the front of the list.
 - 4. While both lists are nonempty:
 - 4.1 Let a_i and b_j be the elements pointed to by the *current* pointers.
 - 4.2 Append the smaller of the two to the output list.
 - 4.3 If $b_j < a_i$, increment *count* by the number of elements remaining in A.
 - 4.4 Advance *current* in the list containing the smaller element.
 - 5. Append the rest of the non-empty list to the output.
 - 6. Return *count* and the merged list.
- ▶ Running time of this algorithm is O(m).



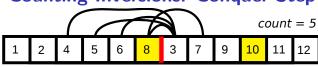
- ▶ Given lists $A = a_1, a_2, ..., a_m$ and $B = b_1, b_2, ..., b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.
- Key idea: problem is much easier if A and B are sorted!
- ► MERGE-AND-COUNT procedure:
 - 1. Maintain a *current* pointer for each list.
 - 2. Maintain a variable *count* initialised to 0.
 - 3. Initialise each pointer to the front of the list.
 - 4. While both lists are nonempty:
 - 4.1 Let a_i and b_j be the elements pointed to by the *current* pointers.
 - 4.2 Append the smaller of the two to the output list.
 - 4.3 If $b_j < a_i$, increment *count* by the number of elements remaining in A.
 - 4.4 Advance *current* in the list containing the smaller element.
 - 5. Append the rest of the non-empty list to the output.
 - 6. Return *count* and the merged list.
- ▶ Running time of this algorithm is O(m).



- ▶ Given lists $A = a_1, a_2, ..., a_m$ and $B = b_1, b_2, ..., b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.
- ▶ Key idea: problem is much easier if A and B are sorted!
- ► MERGE-AND-COUNT procedure:
 - 1. Maintain a *current* pointer for each list.
 - 2. Maintain a variable *count* initialised to 0.
 - 3. Initialise each pointer to the front of the list.
 - 4. While both lists are nonempty:
 - 4.1 Let a_i and b_j be the elements pointed to by the *current* pointers.
 - 4.2 Append the smaller of the two to the output list.
 - 4.3 If $b_j < a_i$, increment *count* by the number of elements remaining in A.
 - 4.4 Advance *current* in the list containing the smaller element.
 - 5. Append the rest of the non-empty list to the output.
 - 6. Return *count* and the merged list.
- ▶ Running time of this algorithm is O(m).



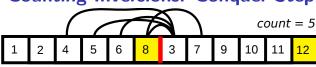
- ▶ Given lists $A = a_1, a_2, ..., a_m$ and $B = b_1, b_2, ..., b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.
- Key idea: problem is much easier if A and B are sorted!
- ► MERGE-AND-COUNT procedure:
 - 1. Maintain a *current* pointer for each list.
 - 2. Maintain a variable *count* initialised to 0.
 - 3. Initialise each pointer to the front of the list.
 - 4. While both lists are nonempty:
 - 4.1 Let a_i and b_j be the elements pointed to by the *current* pointers.
 - 4.2 Append the smaller of the two to the output list.
 - 4.3 If $b_j < a_i$, increment *count* by the number of elements remaining in A.
 - 4.4 Advance *current* in the list containing the smaller element.
 - 5. Append the rest of the non-empty list to the output.
 - 6. Return *count* and the merged list.
- ▶ Running time of this algorithm is O(m).



- ▶ Given lists $A = a_1, a_2, ..., a_m$ and $B = b_1, b_2, ..., b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.
- Key idea: problem is much easier if A and B are sorted!
- ► MERGE-AND-COUNT procedure:
 - 1. Maintain a *current* pointer for each list.
 - 2. Maintain a variable *count* initialised to 0.
 - 3. Initialise each pointer to the front of the list.
 - 4. While both lists are nonempty:
 - 4.1 Let a_i and b_j be the elements pointed to by the *current* pointers.
 - 4.2 Append the smaller of the two to the output list.
 - 4.3 If $b_j < a_i$, increment *count* by the number of elements remaining in A.
 - 4.4 Advance *current* in the list containing the smaller element.
 - 5. Append the rest of the non-empty list to the output.
 - 6. Return *count* and the merged list.
- ▶ Running time of this algorithm is O(m).



- ▶ Given lists $A = a_1, a_2, ..., a_m$ and $B = b_1, b_2, ..., b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.
- ▶ Key idea: problem is much easier if A and B are sorted!
- ► MERGE-AND-COUNT procedure:
 - 1. Maintain a *current* pointer for each list.
 - 2. Maintain a variable *count* initialised to 0.
 - 3. Initialise each pointer to the front of the list.
 - 4. While both lists are nonempty:
 - 4.1 Let a_i and b_j be the elements pointed to by the *current* pointers.
 - 4.2 Append the smaller of the two to the output list.
 - 4.3 If $b_j < a_i$, increment *count* by the number of elements remaining in A.
 - 4.4 Advance *current* in the list containing the smaller element.
 - 5. Append the rest of the non-empty list to the output.
 - 6. Return *count* and the merged list.
- ▶ Running time of this algorithm is O(m).



- ▶ Given lists $A = a_1, a_2, ..., a_m$ and $B = b_1, b_2, ..., b_m$, compute the number of pairs a_i and b_j such $a_i > b_j$.
- Key idea: problem is much easier if A and B are sorted!
- ► MERGE-AND-COUNT procedure:
 - 1. Maintain a *current* pointer for each list.
 - 2. Maintain a variable *count* initialised to 0.
 - 3. Initialise each pointer to the front of the list.
 - 4. While both lists are nonempty:
 - 4.1 Let a_i and b_j be the elements pointed to by the *current* pointers.
 - 4.2 Append the smaller of the two to the output list.
 - 4.3 If $b_j < a_i$, increment *count* by the number of elements remaining in A.
 - 4.4 Advance *current* in the list containing the smaller element.
 - 5. Append the rest of the non-empty list to the output.
 - 6. Return *count* and the merged list.
- Running time of this algorithm is O(m).

```
Sort-and-Count(L)
  If the list has one element then
      there are no inversions
  Else
      Divide the list into two halves:
         A contains the first \lceil n/2 \rceil elements
         B contains the remaining |n/2| elements
      (r_A, A) = Sort-and-Count(A)
      (r_B, B) = Sort-and-Count(B)
      (r, L) = Merge-and-Count(A, B)
   Endif
   Return r = r_A + r_B + r, and the sorted list L
```

```
Sort-and-Count(L)
  If the list has one element then
      there are no inversions
  Else
      Divide the list into two halves:
         A contains the first \lceil n/2 \rceil elements
         B contains the remaining |n/2| elements
      (r_A, A) = Sort-and-Count(A)
      (r_B, B) = Sort-and-Count(B)
      (r, L) = Merge-and-Count(A, B)
   Endif
   Return r = r_A + r_B + r, and the sorted list L
```

▶ Running time T(n) of the algorithm is $O(n \log n)$ because $T(n) \le 2T(n/2) + O(n)$.

Counting Inversions: Correctness of Sort-and-Count

▶ Prove by induction. Strategy: every inversion in the data is counted exactly once.

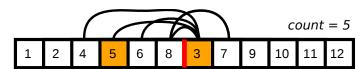
Counting Inversions: Correctness of Sort-and-Count

- ► Prove by induction. Strategy: every inversion in the data is counted exactly once.
- ▶ Base case: n = 1.
- ▶ Inductive hypothesis: Algorithm counts number of inversions correctly for all sets of n-1 or fewer numbers.
- ▶ Inductive step: Pick an arbitrary k and l such that k < l but $x_k > x_l$. When is this inversion counted by the algorithm?
 - $k, l \leq \lfloor n/2 \rfloor$:
 - $k, l \geq \lceil n/2 \rceil$:
 - $k \leq \lfloor n/2 \rfloor, l \geq \lceil n/2 \rceil$:

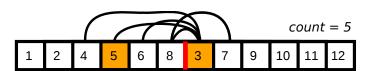
- ► Prove by induction. Strategy: every inversion in the data is counted exactly once.
- ▶ Base case: n = 1.
- ▶ Inductive hypothesis: Algorithm counts number of inversions correctly for all sets of n-1 or fewer numbers.
- Inductive step: Pick an arbitrary k and l such that k < l but $x_k > x_l$. When is this inversion counted by the algorithm?
 - ▶ $k, l \leq \lfloor n/2 \rfloor$: $x_k, x_l \in A$, counted in r_A .
 - ▶ $k, l \ge \lceil n/2 \rceil$: $x_k, x_l \in B$, counted in r_B .
 - $k \leq \lfloor n/2 \rfloor, l \geq \lceil n/2 \rceil$:



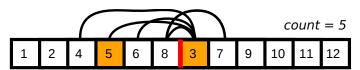
- ► Prove by induction. Strategy: every inversion in the data is counted exactly once.
- ▶ Base case: n = 1.
- ▶ Inductive hypothesis: Algorithm counts number of inversions correctly for all sets of n-1 or fewer numbers.
- Inductive step: Pick an arbitrary k and l such that k < l but $x_k > x_l$. When is this inversion counted by the algorithm?
 - ▶ $k, l \le \lfloor n/2 \rfloor$: $x_k, x_l \in A$, counted in r_A .
 - ▶ $k, l \ge \lceil n/2 \rceil$: $x_k, x_l \in B$, counted in r_B .
 - ▶ $k \leq \lfloor n/2 \rfloor$, $l \geq \lceil n/2 \rceil$: $x_k \in A$, $x_l \in B$. Is this inversion counted by MERGE-AND-COUNT?



- ► Prove by induction. Strategy: every inversion in the data is counted exactly once.
- ▶ Base case: n = 1.
- ▶ Inductive hypothesis: Algorithm counts number of inversions correctly for all sets of n-1 or fewer numbers.
- Inductive step: Pick an arbitrary k and l such that k < l but $x_k > x_l$. When is this inversion counted by the algorithm?
 - ▶ $k, l \le \lfloor n/2 \rfloor$: $x_k, x_l \in A$, counted in r_A .
 - ▶ $k, l \ge \lceil n/2 \rceil$: $x_k, x_l \in B$, counted in r_B .
 - ▶ $k \le \lfloor n/2 \rfloor$, $l \ge \lceil n/2 \rceil$: $x_k \in A$, $x_l \in B$. Is this inversion counted by MERGE-AND-COUNT? Yes, when x_l is output.



- ► Prove by induction. Strategy: every inversion in the data is counted exactly once.
- ▶ Base case: n = 1.
- ▶ Inductive hypothesis: Algorithm counts number of inversions correctly for all sets of n-1 or fewer numbers.
- Inductive step: Pick an arbitrary k and l such that k < l but $x_k > x_l$. When is this inversion counted by the algorithm?
 - ▶ $k, l \leq \lfloor n/2 \rfloor$: $x_k, x_l \in A$, counted in r_A .
 - ▶ $k, l \ge \lceil n/2 \rceil$: $x_k, x_l \in B$, counted in r_B .
 - ▶ $k \le \lfloor n/2 \rfloor$, $l \ge \lceil n/2 \rceil$: $x_k \in A$, $x_l \in B$. Is this inversion counted by MERGE-AND-COUNT? Yes, when x_l is output.
 - ► Why is no non-inversion counted, i.e., Why does every pair counted correspond to an inversion?



- ▶ Prove by induction. Strategy: every inversion in the data is counted exactly once.
- ▶ Base case: n = 1.
- ▶ Inductive hypothesis: Algorithm counts number of inversions correctly for all sets of n-1 or fewer numbers.
- Inductive step: Pick an arbitrary k and l such that k < l but $x_k > x_l$. When is this inversion counted by the algorithm?
 - ▶ $k, l \leq \lfloor n/2 \rfloor$: $x_k, x_l \in A$, counted in r_A .
 - ▶ $k, l \ge \lceil n/2 \rceil$: $x_k, x_l \in B$, counted in r_B .
 - ▶ $k \le \lfloor n/2 \rfloor$, $l \ge \lceil n/2 \rceil$: $x_k \in A$, $x_l \in B$. Is this inversion counted by MERGE-AND-COUNT? Yes, when x_l is output.
 - ▶ Why is no non-inversion counted, i.e., Why does every pair counted correspond to an inversion? When *x_I* is output, it is smaller than all remaining elements in *A*, since *A* is sorted.

Multiply Integers

INSTANCE: Two n-digit binary integers x and y

SOLUTION: The product *xy*

Multiply Integers

INSTANCE: Two *n*-digit binary integers *x* and *y*

SOLUTION: The product *xy*

▶ Multiply two *n*-digit integers.

Multiply Integers

INSTANCE: Two *n*-digit binary integers *x* and *y*

SOLUTION: The product *xy*

- ► Multiply two *n*-digit integers.
- Result has at most 2n digits.

Multiply Integers

INSTANCE: Two *n*-digit binary integers *x* and *y*

SOLUTION: The product *xy*

- ► Multiply two *n*-digit integers.
- Result has at most 2n digits.
- Algorithm we learnt in school takes

	1100
	× 1101
12	1100
$\times 13$	0000
36	1100
12	1100
156	10011100
(a)	(b)

Figure 5.8 The elementary-school algorithm for multiplying two integers, in (a) decimal and (b) binary representation.

Multiply Integers

INSTANCE: Two *n*-digit binary integers *x* and *y*

SOLUTION: The product *xy*

- Multiply two n-digit integers.
- Result has at most 2n digits.
- Algorithm we learnt in school takes $O(n^2)$ operations. Size of the input is not 2 but 2n,

	1100
	× 1101
12	1100
$\times 13$	0000
36	1100
12	1100
156	10011100
(a)	(b)

1100

Figure 5.8 The elementary-school algorithm for multiplying two integers, in (a) decimal and (b) binary representation.

- Assume integers are binary.
- Let us use divide and conquer

- Assume integers are binary.
- Let us use divide and conquer by splitting each number into first n/2 bits and last n/2 bits.
- Let x be split into x_0 (lower-order bits) and x_1 (higher-order bits) and y into y_0 (lower-order bits) and y_1 (higher-order bits).

$$xy =$$

- Assume integers are binary.
- Let us use divide and conquer by splitting each number into first n/2 bits and last n/2 bits.
- Let x be split into x_0 (lower-order bits) and x_1 (higher-order bits) and y into y_0 (lower-order bits) and y_1 (higher-order bits).

$$xy = (x_1 2^{n/2} + x_0)(y_1 2^{n/2} + y_0)$$

= $x_1 y_1 2^n + (x_1 y_0 + x_0 y_1)2^{n/2} + x_0 y_0.$

- Assume integers are binary.
- Let us use divide and conquer by splitting each number into first n/2 bits and last n/2 bits.
- Let x be split into x_0 (lower-order bits) and x_1 (higher-order bits) and y into y_0 (lower-order bits) and y_1 (higher-order bits).

$$xy = (x_1 2^{n/2} + x_0)(y_1 2^{n/2} + y_0)$$

= $x_1 y_1 2^n + (x_1 y_0 + x_0 y_1)2^{n/2} + x_0 y_0.$

Algorithm: each of x_1, x_0, y_1, y_0 has n/2 bits, so we can compute x_1y_1 , x_1y_0 , x_0y_1 , and x_0y_0 recursively, and merge the answers in O(n) time.

- Assume integers are binary.
- Let us use divide and conquer by splitting each number into first n/2 bits and last n/2 bits.
- Let x be split into x_0 (lower-order bits) and x_1 (higher-order bits) and y into y_0 (lower-order bits) and y_1 (higher-order bits).

$$xy = (x_1 2^{n/2} + x_0)(y_1 2^{n/2} + y_0)$$

= $x_1 y_1 2^n + (x_1 y_0 + x_0 y_1)2^{n/2} + x_0 y_0.$

- ▶ Algorithm: each of x_1, x_0, y_1, y_0 has n/2 bits, so we can compute x_1y_1, x_1y_0, x_0y_1 , and x_0y_0 recursively, and merge the answers in O(n) time.
- ▶ What is the running time T(n)?

- Assume integers are binary.
- Let us use divide and conquer by splitting each number into first n/2 bits and last n/2 bits.
- Let x be split into x_0 (lower-order bits) and x_1 (higher-order bits) and y into y_0 (lower-order bits) and y_1 (higher-order bits).

$$xy = (x_1 2^{n/2} + x_0)(y_1 2^{n/2} + y_0)$$

= $x_1 y_1 2^n + (x_1 y_0 + x_0 y_1) 2^{n/2} + x_0 y_0.$

- Algorithm: each of x_1, x_0, y_1, y_0 has n/2 bits, so we can compute x_1y_1, x_1y_0, x_0y_1 , and x_0y_0 recursively, and merge the answers in O(n) time.
- ▶ What is the running time T(n)?

$$T(n) \leq 4T(n/2) + cn$$

- Assume integers are binary.
- Let us use divide and conquer by splitting each number into first n/2 bits and last n/2 bits.
- Let x be split into x_0 (lower-order bits) and x_1 (higher-order bits) and y into y_0 (lower-order bits) and y_1 (higher-order bits).

$$xy = (x_1 2^{n/2} + x_0)(y_1 2^{n/2} + y_0)$$

= $x_1 y_1 2^n + (x_1 y_0 + x_0 y_1) 2^{n/2} + x_0 y_0.$

- ▶ Algorithm: each of x_1, x_0, y_1, y_0 has n/2 bits, so we can compute x_1y_1 , x_1y_0 , x_0y_1 , and x_0y_0 recursively, and merge the answers in O(n) time.
- ▶ What is the running time T(n)?

$$T(n) \leq 4T(n/2) + cn \leq O(n^2)$$

- ▶ Four sub-problems lead to an $O(n^2)$ algorithm.
- How can we reduce the number of sub-problems?

- ▶ Four sub-problems lead to an $O(n^2)$ algorithm.
- How can we reduce the number of sub-problems?
 - ▶ We do not need to compute x_1y_0 and x_0y_1 independently; we just need their sum.

- ▶ Four sub-problems lead to an $O(n^2)$ algorithm.
- How can we reduce the number of sub-problems?
 - ▶ We do not need to compute x_1y_0 and x_0y_1 independently; we just need their sum.
 - $x_1y_1 + (x_1y_0 + x_0y_1) + x_0y_0 = (x_0 + x_1)(y_0 + y_1)$
 - ► Compute x_1y_1 , x_0y_0 and $(x_0 + x_1)(y_0 + y_1)$ recursively and then compute $(x_1y_0 + x_0y_1)$ by subtraction.
 - ▶ We have three sub-problems of size n/2.
 - Strategy: simple arithmetic manipulations.
- ▶ What is the running time T(n)?

- ▶ Four sub-problems lead to an $O(n^2)$ algorithm.
- How can we reduce the number of sub-problems?
 - ▶ We do not need to compute x_1y_0 and x_0y_1 independently; we just need their sum.
 - $x_1y_1 + (x_1y_0 + x_0y_1) + x_0y_0 = (x_0 + x_1)(y_0 + y_1)$
 - ► Compute x_1y_1 , x_0y_0 and $(x_0 + x_1)(y_0 + y_1)$ recursively and then compute $(x_1y_0 + x_0y_1)$ by subtraction.
 - ▶ We have three sub-problems of size n/2.
 - Strategy: simple arithmetic manipulations.
- ▶ What is the running time T(n)?

$$T(n) \leq 3T(n/2) + cn$$

- ▶ Four sub-problems lead to an $O(n^2)$ algorithm.
- How can we reduce the number of sub-problems?
 - ▶ We do not need to compute x_1y_0 and x_0y_1 independently; we just need their sum.
 - $x_1y_1 + (x_1y_0 + x_0y_1) + x_0y_0 = (x_0 + x_1)(y_0 + y_1)$
 - ► Compute x_1y_1 , x_0y_0 and $(x_0 + x_1)(y_0 + y_1)$ recursively and then compute $(x_1y_0 + x_0y_1)$ by subtraction.
 - ▶ We have three sub-problems of size n/2.
 - Strategy: simple arithmetic manipulations.
- ▶ What is the running time T(n)?

$$T(n) \le 3T(n/2) + cn$$

 $\le O(n^{\log_2 3}) = O(n^{1.59})$

Final Algorithm

```
Recursive-Multiply(x,y):

Write x = x_1 \cdot 2^{n/2} + x_0
y = y_1 \cdot 2^{n/2} + y_0

Compute x_1 + x_0 and y_1 + y_0
p = \text{Recursive-Multiply}(x_1 + x_0, y_1 + y_0)
x_1y_1 = \text{Recursive-Multiply}(x_1, y_1)
x_0y_0 = \text{Recursive-Multiply}(x_0, y_0)
Return x_1y_1 \cdot 2^n + (p - x_1y_1 - x_0y_0) \cdot 2^{n/2} + x_0y_0
```

Computational Geometry

- ▶ Algorithms for geometric objects: points, lines, segments, triangles, spheres, polyhedra, ldots.
- Started in 1975 by Shamos and Hoey.
- Problems studied have applications in a vast number of fields: ecology, molecular biology, statistics, computational finance, computer graphics, computer vision, . . .

Computational Geometry

- ▶ Algorithms for geometric objects: points, lines, segments, triangles, spheres, polyhedra, ldots.
- Started in 1975 by Shamos and Hoey.
- Problems studied have applications in a vast number of fields: ecology, molecular biology, statistics, computational finance, computer graphics, computer vision, . . .

CLOSEST PAIR OF POINTS

INSTANCE: A set *P* of *n* points in the plane

SOLUTION: The pair of points in *P* that are the closest to each other.

Computational Geometry

- ▶ Algorithms for geometric objects: points, lines, segments, triangles, spheres, polyhedra, ldots.
- Started in 1975 by Shamos and Hoey.
- Problems studied have applications in a vast number of fields: ecology, molecular biology, statistics, computational finance, computer graphics, computer vision, . . .

CLOSEST PAIR OF POINTS

INSTANCE: A set *P* of *n* points in the plane

SOLUTION: The pair of points in *P* that are the closest to each other.

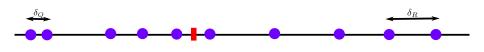
- ▶ At first glance, it seems any algorithm must take $\Omega(n^2)$ time.
- ▶ Shamos and Hoey figured out an ingenious $O(n \log n)$ divide and conquer algorithm.

- ▶ Let $P = \{p_1, p_2, ..., p_n\}$ with $p_i = (x_i, y_i)$.
- ▶ Use $d(p_i, p_j)$ to denote the Euclidean distance between p_i and p_j . For a specific pair of points, can compute $d(p_i, p_j)$ in O(1) time.
- ▶ Goal: find the pair of points p_i and p_i that minimise $d(p_i, p_i)$.

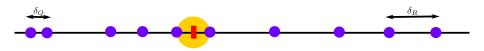
- ▶ Let $P = \{p_1, p_2, ..., p_n\}$ with $p_i = (x_i, y_i)$.
- ▶ Use $d(p_i, p_j)$ to denote the Euclidean distance between p_i and p_j . For a specific pair of points, can compute $d(p_i, p_j)$ in O(1) time.
- ▶ Goal: find the pair of points p_i and p_j that minimise $d(p_i, p_j)$.
- ▶ How do we solve the problem in 1D?

- ▶ Let $P = \{p_1, p_2, ..., p_n\}$ with $p_i = (x_i, y_i)$.
- ▶ Use $d(p_i, p_j)$ to denote the Euclidean distance between p_i and p_j . For a specific pair of points, can compute $d(p_i, p_j)$ in O(1) time.
- ▶ Goal: find the pair of points p_i and p_j that minimise $d(p_i, p_j)$.
- ▶ How do we solve the problem in 1D?
 - Sort: closest pair must be adjacent in the sorted order.

- ▶ Let $P = \{p_1, p_2, ..., p_n\}$ with $p_i = (x_i, y_i)$.
- ▶ Use $d(p_i, p_j)$ to denote the Euclidean distance between p_i and p_j . For a specific pair of points, can compute $d(p_i, p_j)$ in O(1) time.
- ▶ Goal: find the pair of points p_i and p_j that minimise $d(p_i, p_j)$.
- ▶ How do we solve the problem in 1D?
 - Sort: closest pair must be adjacent in the sorted order.
 - ▶ Divide and conquer after sorting: closest pair must be closest of
 - 1. closest pair in left half: distance δ_l .
 - 2. closest pair in right half: distance δ_r .
 - 3. closest among pairs that span the left and right halves and are at most $min(\delta_l, \delta_r)$ apart. How many such pairs do we need to consider?



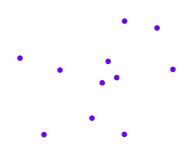
- ▶ Let $P = \{p_1, p_2, ..., p_n\}$ with $p_i = (x_i, y_i)$.
- ▶ Use $d(p_i, p_j)$ to denote the Euclidean distance between p_i and p_j . For a specific pair of points, can compute $d(p_i, p_j)$ in O(1) time.
- ▶ Goal: find the pair of points p_i and p_j that minimise $d(p_i, p_j)$.
- ▶ How do we solve the problem in 1D?
 - Sort: closest pair must be adjacent in the sorted order.
 - ▶ Divide and conquer after sorting: closest pair must be closest of
 - 1. closest pair in left half: distance δ_l .
 - 2. closest pair in right half: distance δ_r .
 - 3. closest among pairs that span the left and right halves and are at most $\min(\delta_l, \delta_r)$ apart. How many such pairs do we need to consider? Just one!



- ▶ Let $P = \{p_1, p_2, ..., p_n\}$ with $p_i = (x_i, y_i)$.
- ▶ Use $d(p_i, p_j)$ to denote the Euclidean distance between p_i and p_j . For a specific pair of points, can compute $d(p_i, p_j)$ in O(1) time.
- ▶ Goal: find the pair of points p_i and p_j that minimise $d(p_i, p_j)$.
- ▶ How do we solve the problem in 1D?
 - Sort: closest pair must be adjacent in the sorted order.
 - ▶ Divide and conquer after sorting: closest pair must be closest of
 - 1. closest pair in left half: distance δ_l .
 - 2. closest pair in right half: distance δ_r .
 - 3. closest among pairs that span the left and right halves and are at most $\min(\delta_l, \delta_r)$ apart. How many such pairs do we need to consider? Just one!
- Generalize the second idea to 2D.

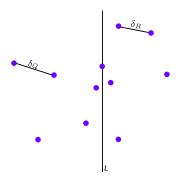
Closest Pair: Algorithm Skeleton

- 1. Divide P into two sets Q and R of n/2 points such that each point in Q has x-coordinate less than any point in R.
- 2. Recursively compute closest pair in Q and in R, respectively.



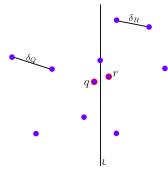
Closest Pair: Algorithm Skeleton

- 1. Divide P into two sets Q and R of n/2 points such that each point in Q has x-coordinate less than any point in R.
- 2. Recursively compute closest pair in Q and in R, respectively.
- 3. Let δ_Q be the distance computed for Q, δ_R be the distance computed for R, and $\delta = \min(\delta_Q, \delta_R)$.



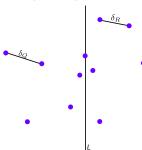
Closest Pair: Algorithm Skeleton

- 1. Divide P into two sets Q and R of n/2 points such that each point in Q has x-coordinate less than any point in R.
- 2. Recursively compute closest pair in Q and in R, respectively.
- 3. Let δ_Q be the distance computed for Q, δ_R be the distance computed for R, and $\delta = \min(\delta_Q, \delta_R)$.
- 4. Compute pair (q, r) of points such that $q \in Q$, $r \in R$, $d(q, r) < \delta$ and d(q, r) is the smallest possible.



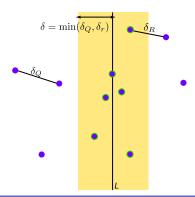
Closest Pair: Proof Sketch

- ▶ Prove by induction: Let (s, t) be the closest pair.
 - (i) both are in Q: computed correctly by recursive call.
 - (ii) both are in R: computed correctly by recursive call.
 - (iii) one is in Q and the other is in R: computed correctly in O(n) time by the procedure we will discuss.
- Strategy: Pairs of points for which we do not compute the distance between cannot be the closest pair.
- ▶ Overall running time is $O(n \log n)$.



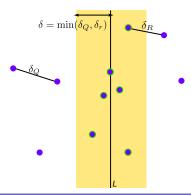
Closest Pair: Conquer Step

- ▶ Line *L* passes through right-most point in *Q*.
- ▶ Let S be the set of points within distance δ of L. (In image, $\delta = \delta_R$.)



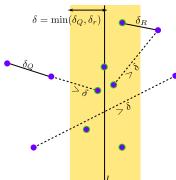
Closest Pair: Conquer Step

- ▶ Line *L* passes through right-most point in *Q*.
- ▶ Let S be the set of points within distance δ of L. (In image, $\delta = \delta_R$.)
- ▶ Claim: There exist $q \in Q$, $r \in R$ such that $d(q, r) < \delta$ if and only if $q, r \in S$.



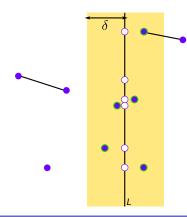
Closest Pair: Conquer Step

- ▶ Line *L* passes through right-most point in *Q*.
- ▶ Let S be the set of points within distance δ of L. (In image, $\delta = \delta_R$.)
- ▶ Claim: There exist $q \in Q$, $r \in R$ such that $d(q, r) < \delta$ if and only if $q, r \in S$.
- ▶ Corollary: If $t \in Q S$ or $u \in R S$, then (t, u) cannot be the closest pair.

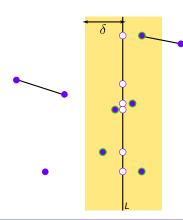


▶ Intuition: "too many" points in S that are closer than δ to each other \Rightarrow there must be a pair in Q or in R that are less than δ apart.

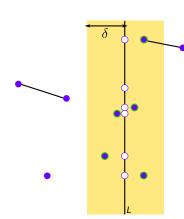
- ▶ Intuition: "too many" points in S that are closer than δ to each other \Rightarrow there must be a pair in Q or in R that are less than δ apart.
- Let S_y denote the set of points in S sorted by increasing y-coordinate and let s_y denote the y-coordinate of a point $s \in S$.



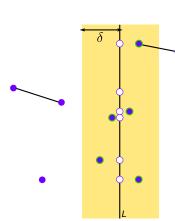
- ▶ Intuition: "too many" points in S that are closer than δ to each other \Rightarrow there must be a pair in Q or in R that are less than δ apart.
- Let S_y denote the set of points in S sorted by increasing y-coordinate and let s_y denote the y-coordinate of a point $s \in S$.
- ▶ Claim: If there exist $s, s' \in S$ such that $d(s, s') < \delta$ then s and s' are at most 15 indices apart in S_v .



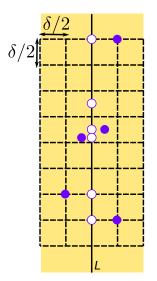
- ▶ Intuition: "too many" points in S that are closer than δ to each other \Rightarrow there must be a pair in Q or in R that are less than δ apart.
- Let S_y denote the set of points in S sorted by increasing y-coordinate and let s_y denote the y-coordinate of a point $s \in S$.
- ▶ Claim: If there exist $s, s' \in S$ such that $d(s, s') < \delta$ then s and s' are at most 15 indices apart in S_y .
- ▶ Converse of the claim: If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_y , then $s'_y s_y \ge \delta$.



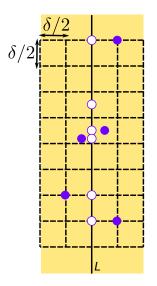
- Intuition: "too many" points in S that are closer than δ to each other \Rightarrow there must be a pair in Q or in R that are less than δ apart.
- Let S_y denote the set of points in S sorted by increasing y-coordinate and let s_y denote the y-coordinate of a point $s \in S$.
- ▶ Claim: If there exist $s, s' \in S$ such that $d(s, s') < \delta$ then s and s' are at most 15 indices apart in S_y .
- ► Converse of the claim: If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_y , then $s'_y s_y \ge \delta$.
- ▶ Use the claim in the algorithm: For every point $s \in S_y$, compute distances only to the next 15 points in S_y .
- Other pairs of points cannot be candidates for the closest pair.



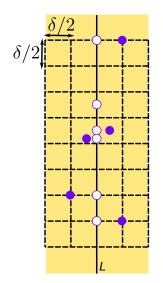
▶ Claim: If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_y , then $s'_y - s_y \ge \delta$.



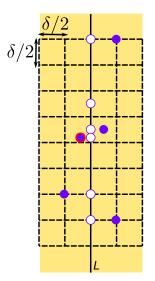
- ▶ Claim: If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_{v} , then $s'_{v} s_{v} \ge \delta$.
- Pack the plane with squares of side $\delta/2$.



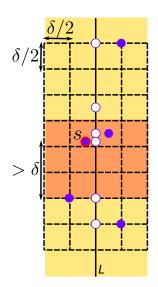
- ▶ Claim: If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_{v} , then $s'_{v} s_{v} \ge \delta$.
- ▶ Pack the plane with squares of side $\delta/2$.
- Each square contains at most one point.



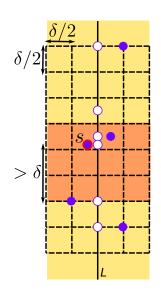
- ▶ Claim: If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_{v} , then $s'_{v} s_{v} \ge \delta$.
- Pack the plane with squares of side $\delta/2$.
- Each square contains at most one point.
- Let s lie in one of the squares.



- ▶ Claim: If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_y , then $s'_y s_y \ge \delta$.
- ▶ Pack the plane with squares of side $\delta/2$.
- Each square contains at most one point.
- Let s lie in one of the squares.
- Any point in the third row of the packing below s has a y-coordinate at least δ more than s_y .



- ▶ Claim: If there exist $s, s' \in S$ such that s' appears 16 or more indices after s in S_y , then $s'_y s_y \ge \delta$.
- ▶ Pack the plane with squares of side $\delta/2$.
- Each square contains at most one point.
- Let s lie in one of the squares.
- Any point in the third row of the packing below s has a y-coordinate at least δ more than s_y .
- ► We get a count of 12 or more indices (textbook says 16).



Closest Pair: Final Algorithm

```
Closest-Pair(P)
  Construct P_n and P_n (O(n \log n) time)
  (p_n^*, p_n^*) = \text{Closest-Pair-Rec}(P_r, P_n)
Closest-Pair-Rec(P_v, P_v)
  If |P| \leq 3 then
    find closest pair by measuring all pairwise distances
  Endif
  Construct Q_r, Q_v, R_r, R_v (O(n) time)
  (q_0^*, q_1^*) = \text{Closest-Pair-Rec}(Q_r, Q_r)
  (r_0^*, r_1^*) = \text{Closest-Pair-Rec}(R_x, R_y)
  \delta = \min(d(q_0^*, q_1^*), d(r_0^*, r_1^*))
  x^* = maximum x-coordinate of a point in set O
  L = \{(x,y) : x = x^*\}
  S = points in P within distance \delta of L.
  Construct S. (O(n) time)
  For each point s \in S_n, compute distance from s
      to each of next 15 points in S.
      Let s, s' be pair achieving minimum of these distances
      (O(n) \text{ time})
  If d(s,s') < \delta then
      Return (s,s')
  Else if d(q_0^*, q_1^*) < d(r_0^*, r_1^*) then
      Return (q_0^*, q_1^*)
  Else
      Return (r_0^*, r_1^*)
  Endif
```

Closest Pair: Final Algorithm

```
Closest-Pair(P)
  Construct P_x and P_y (O(n \log n) time)
  (p_0^*, p_1^*) = \text{Closest-Pair-Rec}(P_x, P_y)
Closest-Pair-Rec(P_x, P_y)
  If |P| < 3 then
     find closest pair by measuring all pairwise distances
  Endif
  Construct Q_x, Q_y, R_x, R_y (O(n) time)
  (q_0^*, q_1^*) = \text{Closest-Pair-Rec}(Q_x, Q_y)
  (r_0^*, r_1^*) = \text{Closest-Pair-Rec}(R_r, R_v)
  \delta = \min(d(q_0^*, q_1^*), d(r_0^*, r_1^*))
  x^* = maximum x-coordinate of a point in set Q
```

Closest Pair: Final Algorithm

```
x^* = maximum x-coordinate of a point in set Q
L = \{(x,y) : x = x^*\}
S = points in P within distance \delta of L.
Construct S_{\nu} (O(n) time)
For each point s \in S_{\gamma}, compute distance from s
   to each of next 15 points in S_{\nu}
   Let s, s' be pair achieving minimum of these distances
    (O(n) \text{ time})
If d(s,s') < \delta then
   Return (s,s')
Else if d(q_0^*, q_1^*) < d(r_0^*, r_1^*) then
   Return (q_0^*, q_1^*)
Else
   Return (r_0^*, r_1^*)
Endif
```

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms