
Counting Inversions Integer Multiplication Closest Pair of Points

Divide and Conquer Algorithms

T. M. Murali

March 19 and 24, 2013

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Divide and Conquer Algorithms

I Study three divide and conquer algorithms:
I Counting inversions.
I Finding the closest pair of points.
I Integer multiplication.

I First two problems use clever conquer strategies.

I Third problem uses a clever divide strategy.

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Motivation

I Collaborative filtering: match one user’s preferences to those of other
users, e.g., music.

I Meta-search engines: merge results of multiple search engines to into
a better search result.

I Fundamental question: how do we compare a pair of rankings?
I My ranking of songs: ordered list of integers from 1 to n.
I Your ranking of songs: a1, a2, . . . , an, a permutation of the integers

from 1 to n.

1 2 3 4 5 6 7 8 9 10 11 12

4 1 2 6 8 5 3 9 7 11 12 10

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Motivation

I Collaborative filtering: match one user’s preferences to those of other
users, e.g., music.

I Meta-search engines: merge results of multiple search engines to into
a better search result.

I Fundamental question: how do we compare a pair of rankings?
I My ranking of songs: ordered list of integers from 1 to n.
I Your ranking of songs: a1, a2, . . . , an, a permutation of the integers

from 1 to n.

1 2 3 4 5 6 7 8 9 10 11 12

4 1 2 6 8 5 3 9 7 11 12 10

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Comparing Rankings

1 2 3 4 5 6 7 8 9 10 11 12

4 1 2 6 8 5 3 9 7 11 12 10

I Suggestion: two rankings of songs are very similar if they have few
inversions.

I The second ranking has an inversion if there exist i , j such that i < j
but ai > aj .

I The number of inversions s is a measure of the difference between the
rankings.

I Question also arises in statistics: Kendall’s rank correlation of two
lists of numbers is 1− 2s/ (n(n − 1)).

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Comparing Rankings

1 2 3 4 5 6 7 8 9 10 11 12

4 1 2 6 8 5 3 9 7 11 12 10

I Suggestion: two rankings of songs are very similar if they have few
inversions.

I The second ranking has an inversion if there exist i , j such that i < j
but ai > aj .

I The number of inversions s is a measure of the difference between the
rankings.

I Question also arises in statistics: Kendall’s rank correlation of two
lists of numbers is 1− 2s/ (n(n − 1)).

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions

Count Inversions

INSTANCE: A list L = x1, x2, . . . , xn of distinct integers between
1 and n.

SOLUTION: The number of pairs (i , j), 1 ≤ i < j ≤ n such
xi > xj .

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions

Count Inversions

INSTANCE: A list L = x1, x2, . . . , xn of distinct integers between
1 and n.

SOLUTION: The number of pairs (i , j), 1 ≤ i < j ≤ n such
xi > xj .

4 1 2 6 8 5 3 9 7 11 12 10

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions

Count Inversions

INSTANCE: A list L = x1, x2, . . . , xn of distinct integers between
1 and n.

SOLUTION: The number of pairs (i , j), 1 ≤ i < j ≤ n such
xi > xj .

4 1 2 6 8 5 3 9 7 11 12 10

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Algorithm

I How many inversions can be there in a list of n numbers?

Ω(n2). We
cannot afford to compute each inversion explicitly.

I Sorting removes all inversions in O(n log n) time. Can we modify the
Mergesort algorithm to count inversions?

I Candidate algorithm:
1. Partition L into two lists A and B of size n/2 each.
2. Recursively count the number of inversions in A.
3. Recursively count the number of inversions in B.
4. Count the number of inversions involving one element in A and one

element in B.

4 1 2 6 8 5 3 9 7 11 12 10

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Algorithm

I How many inversions can be there in a list of n numbers? Ω(n2). We
cannot afford to compute each inversion explicitly.

I Sorting removes all inversions in O(n log n) time. Can we modify the
Mergesort algorithm to count inversions?

I Candidate algorithm:
1. Partition L into two lists A and B of size n/2 each.
2. Recursively count the number of inversions in A.
3. Recursively count the number of inversions in B.
4. Count the number of inversions involving one element in A and one

element in B.

4 1 2 6 8 5 3 9 7 11 12 10

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Algorithm

I How many inversions can be there in a list of n numbers? Ω(n2). We
cannot afford to compute each inversion explicitly.

I Sorting removes all inversions in O(n log n) time. Can we modify the
Mergesort algorithm to count inversions?

I Candidate algorithm:
1. Partition L into two lists A and B of size n/2 each.
2. Recursively count the number of inversions in A.
3. Recursively count the number of inversions in B.
4. Count the number of inversions involving one element in A and one

element in B.

4 1 2 6 8 5 3 9 7 11 12 10

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Algorithm

I How many inversions can be there in a list of n numbers? Ω(n2). We
cannot afford to compute each inversion explicitly.

I Sorting removes all inversions in O(n log n) time. Can we modify the
Mergesort algorithm to count inversions?

I Candidate algorithm:
1. Partition L into two lists A and B of size n/2 each.
2. Recursively count the number of inversions in A.
3. Recursively count the number of inversions in B.
4. Count the number of inversions involving one element in A and one

element in B.

4 1 2 6 8 5 3 9 7 11 12 10

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Algorithm

I How many inversions can be there in a list of n numbers? Ω(n2). We
cannot afford to compute each inversion explicitly.

I Sorting removes all inversions in O(n log n) time. Can we modify the
Mergesort algorithm to count inversions?

I Candidate algorithm:
1. Partition L into two lists A and B of size n/2 each.
2. Recursively count the number of inversions in A.
3. Recursively count the number of inversions in B.
4. Count the number of inversions involving one element in A and one

element in B.

4 1 2 6 8 5 3 9 7 11 12 10

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Algorithm

I How many inversions can be there in a list of n numbers? Ω(n2). We
cannot afford to compute each inversion explicitly.

I Sorting removes all inversions in O(n log n) time. Can we modify the
Mergesort algorithm to count inversions?

I Candidate algorithm:
1. Partition L into two lists A and B of size n/2 each.
2. Recursively count the number of inversions in A.
3. Recursively count the number of inversions in B.
4. Count the number of inversions involving one element in A and one

element in B.

4 1 2 6 8 5 3 9 7 11 12 10

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Algorithm

I How many inversions can be there in a list of n numbers? Ω(n2). We
cannot afford to compute each inversion explicitly.

I Sorting removes all inversions in O(n log n) time. Can we modify the
Mergesort algorithm to count inversions?

I Candidate algorithm:
1. Partition L into two lists A and B of size n/2 each.
2. Recursively count the number of inversions in A.
3. Recursively count the number of inversions in B.
4. Count the number of inversions involving one element in A and one

element in B.

4 1 2 6 8 5 3 9 7 11 12 10

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Conquer Step

4 1 2 6 8 5 3 9 7 11 12 10

I Given lists A = a1, a2, . . . , am and B = b1, b2, . . . bm, compute the
number of pairs ai and bj such ai > bj .

I Key idea: problem is much easier if A and B are sorted!
I Merge

-and-Count

procedure:
1. Maintain a current pointer for each list.

2. Maintain a variable count initialised to 0.

3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:

4.1 Let ai and bj be the elements pointed to by the current pointers.
4.2 Append the smaller of the two to the output list.

4.3 If bj < ai , increment count by the number of elements remaining in A.

4.4 Advance current in the list containing the smaller element.

5. Append the rest of the non-empty list to the output.
6. Return

count and

the merged list.

I Running time of this algorithm is O(m).

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Conquer Step

41 2 6 85 3 97 11 1210

I Given lists A = a1, a2, . . . , am and B = b1, b2, . . . bm, compute the
number of pairs ai and bj such ai > bj .

I Key idea: problem is much easier if A and B are sorted!

I Merge

-and-Count

procedure:
1. Maintain a current pointer for each list.

2. Maintain a variable count initialised to 0.

3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:

4.1 Let ai and bj be the elements pointed to by the current pointers.
4.2 Append the smaller of the two to the output list.

4.3 If bj < ai , increment count by the number of elements remaining in A.

4.4 Advance current in the list containing the smaller element.

5. Append the rest of the non-empty list to the output.
6. Return

count and

the merged list.

I Running time of this algorithm is O(m).

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Conquer Step

41 2 6 85 3 97 11 1210

I Given lists A = a1, a2, . . . , am and B = b1, b2, . . . bm, compute the
number of pairs ai and bj such ai > bj .

I Key idea: problem is much easier if A and B are sorted!
I Merge

-and-Count

procedure:
1. Maintain a current pointer for each list.

2. Maintain a variable count initialised to 0.

3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:

4.1 Let ai and bj be the elements pointed to by the current pointers.
4.2 Append the smaller of the two to the output list.

4.3 If bj < ai , increment count by the number of elements remaining in A.

4.4 Advance current in the list containing the smaller element.

5. Append the rest of the non-empty list to the output.
6. Return

count and

the merged list.

I Running time of this algorithm is O(m).

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Conquer Step

41 2 6 85 3 97 11 1210

I Given lists A = a1, a2, . . . , am and B = b1, b2, . . . bm, compute the
number of pairs ai and bj such ai > bj .

I Key idea: problem is much easier if A and B are sorted!
I Merge-and-Count procedure:

1. Maintain a current pointer for each list.
2. Maintain a variable count initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:

4.1 Let ai and bj be the elements pointed to by the current pointers.
4.2 Append the smaller of the two to the output list.
4.3 If bj < ai , increment count by the number of elements remaining in A.
4.4 Advance current in the list containing the smaller element.

5. Append the rest of the non-empty list to the output.
6. Return count and the merged list.

I Running time of this algorithm is O(m).

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Conquer Step

41 2 6 85 3 97 11 1210

I Given lists A = a1, a2, . . . , am and B = b1, b2, . . . bm, compute the
number of pairs ai and bj such ai > bj .

I Key idea: problem is much easier if A and B are sorted!
I Merge-and-Count procedure:

1. Maintain a current pointer for each list.
2. Maintain a variable count initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:

4.1 Let ai and bj be the elements pointed to by the current pointers.
4.2 Append the smaller of the two to the output list.
4.3 If bj < ai , increment count by the number of elements remaining in A.
4.4 Advance current in the list containing the smaller element.

5. Append the rest of the non-empty list to the output.
6. Return count and the merged list.

I Running time of this algorithm is O(m).
T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Conquer Step

count = 0

41 2 6 85 3 97 11 1210

I Given lists A = a1, a2, . . . , am and B = b1, b2, . . . bm, compute the
number of pairs ai and bj such ai > bj .

I Key idea: problem is much easier if A and B are sorted!
I Merge-and-Count procedure:

1. Maintain a current pointer for each list.
2. Maintain a variable count initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:

4.1 Let ai and bj be the elements pointed to by the current pointers.
4.2 Append the smaller of the two to the output list.
4.3 If bj < ai , increment count by the number of elements remaining in A.
4.4 Advance current in the list containing the smaller element.

5. Append the rest of the non-empty list to the output.
6. Return count and the merged list.

I Running time of this algorithm is O(m).
T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Conquer Step

count = 0

41 2 6 85 3 97 11 1210

I Given lists A = a1, a2, . . . , am and B = b1, b2, . . . bm, compute the
number of pairs ai and bj such ai > bj .

I Key idea: problem is much easier if A and B are sorted!
I Merge-and-Count procedure:

1. Maintain a current pointer for each list.
2. Maintain a variable count initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:

4.1 Let ai and bj be the elements pointed to by the current pointers.
4.2 Append the smaller of the two to the output list.
4.3 If bj < ai , increment count by the number of elements remaining in A.
4.4 Advance current in the list containing the smaller element.

5. Append the rest of the non-empty list to the output.
6. Return count and the merged list.

I Running time of this algorithm is O(m).
T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Conquer Step

count = 0

41 2 6 85 3 97 11 1210

I Given lists A = a1, a2, . . . , am and B = b1, b2, . . . bm, compute the
number of pairs ai and bj such ai > bj .

I Key idea: problem is much easier if A and B are sorted!
I Merge-and-Count procedure:

1. Maintain a current pointer for each list.
2. Maintain a variable count initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:

4.1 Let ai and bj be the elements pointed to by the current pointers.
4.2 Append the smaller of the two to the output list.
4.3 If bj < ai , increment count by the number of elements remaining in A.
4.4 Advance current in the list containing the smaller element.

5. Append the rest of the non-empty list to the output.
6. Return count and the merged list.

I Running time of this algorithm is O(m).
T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Conquer Step

count = 4

41 2 6 85 3 97 11 1210

I Given lists A = a1, a2, . . . , am and B = b1, b2, . . . bm, compute the
number of pairs ai and bj such ai > bj .

I Key idea: problem is much easier if A and B are sorted!
I Merge-and-Count procedure:

1. Maintain a current pointer for each list.
2. Maintain a variable count initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:

4.1 Let ai and bj be the elements pointed to by the current pointers.
4.2 Append the smaller of the two to the output list.
4.3 If bj < ai , increment count by the number of elements remaining in A.
4.4 Advance current in the list containing the smaller element.

5. Append the rest of the non-empty list to the output.
6. Return count and the merged list.

I Running time of this algorithm is O(m).
T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Conquer Step

count = 4

41 2 6 85 3 97 11 1210

I Given lists A = a1, a2, . . . , am and B = b1, b2, . . . bm, compute the
number of pairs ai and bj such ai > bj .

I Key idea: problem is much easier if A and B are sorted!
I Merge-and-Count procedure:

1. Maintain a current pointer for each list.
2. Maintain a variable count initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:

4.1 Let ai and bj be the elements pointed to by the current pointers.
4.2 Append the smaller of the two to the output list.
4.3 If bj < ai , increment count by the number of elements remaining in A.
4.4 Advance current in the list containing the smaller element.

5. Append the rest of the non-empty list to the output.
6. Return count and the merged list.

I Running time of this algorithm is O(m).
T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Conquer Step

count = 4

41 2 6 85 3 97 11 1210

I Given lists A = a1, a2, . . . , am and B = b1, b2, . . . bm, compute the
number of pairs ai and bj such ai > bj .

I Key idea: problem is much easier if A and B are sorted!
I Merge-and-Count procedure:

1. Maintain a current pointer for each list.
2. Maintain a variable count initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:

4.1 Let ai and bj be the elements pointed to by the current pointers.
4.2 Append the smaller of the two to the output list.
4.3 If bj < ai , increment count by the number of elements remaining in A.
4.4 Advance current in the list containing the smaller element.

5. Append the rest of the non-empty list to the output.
6. Return count and the merged list.

I Running time of this algorithm is O(m).
T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Conquer Step

count = 4

41 2 6 85 3 97 11 1210

I Given lists A = a1, a2, . . . , am and B = b1, b2, . . . bm, compute the
number of pairs ai and bj such ai > bj .

I Key idea: problem is much easier if A and B are sorted!
I Merge-and-Count procedure:

1. Maintain a current pointer for each list.
2. Maintain a variable count initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:

4.1 Let ai and bj be the elements pointed to by the current pointers.
4.2 Append the smaller of the two to the output list.
4.3 If bj < ai , increment count by the number of elements remaining in A.
4.4 Advance current in the list containing the smaller element.

5. Append the rest of the non-empty list to the output.
6. Return count and the merged list.

I Running time of this algorithm is O(m).
T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Conquer Step

count = 5

41 2 6 85 3 97 11 1210

I Given lists A = a1, a2, . . . , am and B = b1, b2, . . . bm, compute the
number of pairs ai and bj such ai > bj .

I Key idea: problem is much easier if A and B are sorted!
I Merge-and-Count procedure:

1. Maintain a current pointer for each list.
2. Maintain a variable count initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:

4.1 Let ai and bj be the elements pointed to by the current pointers.
4.2 Append the smaller of the two to the output list.
4.3 If bj < ai , increment count by the number of elements remaining in A.
4.4 Advance current in the list containing the smaller element.

5. Append the rest of the non-empty list to the output.
6. Return count and the merged list.

I Running time of this algorithm is O(m).
T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Conquer Step

count = 5

41 2 6 85 3 97 11 1210

I Given lists A = a1, a2, . . . , am and B = b1, b2, . . . bm, compute the
number of pairs ai and bj such ai > bj .

I Key idea: problem is much easier if A and B are sorted!
I Merge-and-Count procedure:

1. Maintain a current pointer for each list.
2. Maintain a variable count initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:

4.1 Let ai and bj be the elements pointed to by the current pointers.
4.2 Append the smaller of the two to the output list.
4.3 If bj < ai , increment count by the number of elements remaining in A.
4.4 Advance current in the list containing the smaller element.

5. Append the rest of the non-empty list to the output.
6. Return count and the merged list.

I Running time of this algorithm is O(m).
T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Conquer Step

count = 5

41 2 6 85 3 97 11 1210

I Given lists A = a1, a2, . . . , am and B = b1, b2, . . . bm, compute the
number of pairs ai and bj such ai > bj .

I Key idea: problem is much easier if A and B are sorted!
I Merge-and-Count procedure:

1. Maintain a current pointer for each list.
2. Maintain a variable count initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:

4.1 Let ai and bj be the elements pointed to by the current pointers.
4.2 Append the smaller of the two to the output list.
4.3 If bj < ai , increment count by the number of elements remaining in A.
4.4 Advance current in the list containing the smaller element.

5. Append the rest of the non-empty list to the output.
6. Return count and the merged list.

I Running time of this algorithm is O(m).
T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Conquer Step

count = 5

41 2 6 85 3 97 11 1210

I Given lists A = a1, a2, . . . , am and B = b1, b2, . . . bm, compute the
number of pairs ai and bj such ai > bj .

I Key idea: problem is much easier if A and B are sorted!
I Merge-and-Count procedure:

1. Maintain a current pointer for each list.
2. Maintain a variable count initialised to 0.
3. Initialise each pointer to the front of the list.
4. While both lists are nonempty:

4.1 Let ai and bj be the elements pointed to by the current pointers.
4.2 Append the smaller of the two to the output list.
4.3 If bj < ai , increment count by the number of elements remaining in A.
4.4 Advance current in the list containing the smaller element.

5. Append the rest of the non-empty list to the output.
6. Return count and the merged list.

I Running time of this algorithm is O(m).
T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Final Algorithm

I Running time T (n) of the algorithm is O(n log n) because
T (n) ≤ 2T (n/2) + O(n).

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Final Algorithm

I Running time T (n) of the algorithm is O(n log n) because
T (n) ≤ 2T (n/2) + O(n).

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Correctness of Sort-and-Count
I Prove by induction. Strategy: every inversion in the data is counted

exactly once.

I Base case: n = 1.

I Inductive hypothesis: Algorithm counts number of inversions correctly
for all sets of n − 1 or fewer numbers.

I Inductive step: Pick an arbitrary k and l such that k < l but xk > xl .
When is this inversion counted by the algorithm?

I k, l ≤ bn/2c:

xk , xl ∈ A, counted in rA.

I k, l ≥ dn/2e:

xk , xl ∈ B, counted in rB .

I k ≤ bn/2c, l ≥ dn/2e:

xk ∈ A, xl ∈ B. Is this inversion counted by
Merge-and-Count? Yes, when xl is output.

I Why is no non-inversion counted, i.e., Why does every pair counted
correspond to an inversion?

When xl is output, it is smaller than all
remaining elements in A, since A is sorted.

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Correctness of Sort-and-Count
I Prove by induction. Strategy: every inversion in the data is counted

exactly once.

I Base case: n = 1.

I Inductive hypothesis: Algorithm counts number of inversions correctly
for all sets of n − 1 or fewer numbers.

I Inductive step: Pick an arbitrary k and l such that k < l but xk > xl .
When is this inversion counted by the algorithm?

I k, l ≤ bn/2c:

xk , xl ∈ A, counted in rA.

I k, l ≥ dn/2e:

xk , xl ∈ B, counted in rB .

I k ≤ bn/2c, l ≥ dn/2e:

xk ∈ A, xl ∈ B. Is this inversion counted by
Merge-and-Count? Yes, when xl is output.

I Why is no non-inversion counted, i.e., Why does every pair counted
correspond to an inversion?

When xl is output, it is smaller than all
remaining elements in A, since A is sorted.

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Correctness of Sort-and-Count
I Prove by induction. Strategy: every inversion in the data is counted

exactly once.
I Base case: n = 1.
I Inductive hypothesis: Algorithm counts number of inversions correctly

for all sets of n − 1 or fewer numbers.
I Inductive step: Pick an arbitrary k and l such that k < l but xk > xl .

When is this inversion counted by the algorithm?
I k, l ≤ bn/2c: xk , xl ∈ A, counted in rA.
I k, l ≥ dn/2e: xk , xl ∈ B, counted in rB .
I k ≤ bn/2c, l ≥ dn/2e:

xk ∈ A, xl ∈ B. Is this inversion counted by
Merge-and-Count? Yes, when xl is output.

I Why is no non-inversion counted, i.e., Why does every pair counted
correspond to an inversion?

When xl is output, it is smaller than all
remaining elements in A, since A is sorted.

4 1 2 6 8 5 3 9 7 11 12 10

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Correctness of Sort-and-Count
I Prove by induction. Strategy: every inversion in the data is counted

exactly once.
I Base case: n = 1.
I Inductive hypothesis: Algorithm counts number of inversions correctly

for all sets of n − 1 or fewer numbers.
I Inductive step: Pick an arbitrary k and l such that k < l but xk > xl .

When is this inversion counted by the algorithm?
I k, l ≤ bn/2c: xk , xl ∈ A, counted in rA.
I k, l ≥ dn/2e: xk , xl ∈ B, counted in rB .
I k ≤ bn/2c, l ≥ dn/2e: xk ∈ A, xl ∈ B. Is this inversion counted by

Merge-and-Count?

Yes, when xl is output.
I Why is no non-inversion counted, i.e., Why does every pair counted

correspond to an inversion?

When xl is output, it is smaller than all
remaining elements in A, since A is sorted.

count = 5

41 2 6 85 3 97 11 1210

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Correctness of Sort-and-Count
I Prove by induction. Strategy: every inversion in the data is counted

exactly once.
I Base case: n = 1.
I Inductive hypothesis: Algorithm counts number of inversions correctly

for all sets of n − 1 or fewer numbers.
I Inductive step: Pick an arbitrary k and l such that k < l but xk > xl .

When is this inversion counted by the algorithm?
I k, l ≤ bn/2c: xk , xl ∈ A, counted in rA.
I k, l ≥ dn/2e: xk , xl ∈ B, counted in rB .
I k ≤ bn/2c, l ≥ dn/2e: xk ∈ A, xl ∈ B. Is this inversion counted by

Merge-and-Count? Yes, when xl is output.

I Why is no non-inversion counted, i.e., Why does every pair counted
correspond to an inversion?

When xl is output, it is smaller than all
remaining elements in A, since A is sorted.

count = 5

41 2 6 85 3 97 11 1210

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Correctness of Sort-and-Count
I Prove by induction. Strategy: every inversion in the data is counted

exactly once.
I Base case: n = 1.
I Inductive hypothesis: Algorithm counts number of inversions correctly

for all sets of n − 1 or fewer numbers.
I Inductive step: Pick an arbitrary k and l such that k < l but xk > xl .

When is this inversion counted by the algorithm?
I k, l ≤ bn/2c: xk , xl ∈ A, counted in rA.
I k, l ≥ dn/2e: xk , xl ∈ B, counted in rB .
I k ≤ bn/2c, l ≥ dn/2e: xk ∈ A, xl ∈ B. Is this inversion counted by

Merge-and-Count? Yes, when xl is output.
I Why is no non-inversion counted, i.e., Why does every pair counted

correspond to an inversion?

When xl is output, it is smaller than all
remaining elements in A, since A is sorted.

count = 5

41 2 6 85 3 97 11 1210

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Correctness of Sort-and-Count
I Prove by induction. Strategy: every inversion in the data is counted

exactly once.
I Base case: n = 1.
I Inductive hypothesis: Algorithm counts number of inversions correctly

for all sets of n − 1 or fewer numbers.
I Inductive step: Pick an arbitrary k and l such that k < l but xk > xl .

When is this inversion counted by the algorithm?
I k, l ≤ bn/2c: xk , xl ∈ A, counted in rA.
I k, l ≥ dn/2e: xk , xl ∈ B, counted in rB .
I k ≤ bn/2c, l ≥ dn/2e: xk ∈ A, xl ∈ B. Is this inversion counted by

Merge-and-Count? Yes, when xl is output.
I Why is no non-inversion counted, i.e., Why does every pair counted

correspond to an inversion? When xl is output, it is smaller than all
remaining elements in A, since A is sorted.

count = 5

41 2 6 85 3 97 11 1210

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Integer Multiplication

Multiply Integers
INSTANCE: Two n-digit binary integers x and y
SOLUTION: The product xy

I Multiply two n-digit integers.
I Result has at most 2n digits.
I Algorithm we learnt in school takes

O(n2) operations. Size of the
input is not 2 but 2n,

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Integer Multiplication

Multiply Integers
INSTANCE: Two n-digit binary integers x and y
SOLUTION: The product xy

I Multiply two n-digit integers.

I Result has at most 2n digits.
I Algorithm we learnt in school takes

O(n2) operations. Size of the
input is not 2 but 2n,

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Integer Multiplication

Multiply Integers
INSTANCE: Two n-digit binary integers x and y
SOLUTION: The product xy

I Multiply two n-digit integers.
I Result has at most 2n digits.

I Algorithm we learnt in school takes

O(n2) operations. Size of the
input is not 2 but 2n,

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Integer Multiplication

Multiply Integers
INSTANCE: Two n-digit binary integers x and y
SOLUTION: The product xy

I Multiply two n-digit integers.
I Result has at most 2n digits.
I Algorithm we learnt in school takes

O(n2) operations. Size of the
input is not 2 but 2n,

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Integer Multiplication

Multiply Integers
INSTANCE: Two n-digit binary integers x and y
SOLUTION: The product xy

I Multiply two n-digit integers.
I Result has at most 2n digits.
I Algorithm we learnt in school takes O(n2) operations. Size of the

input is not 2 but 2n,

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Divide-and-Conquer Algorithm

I Assume integers are binary.
I Let us use divide and conquer

by splitting each number into first n/2
bits and last n/2 bits.

I Let x be split into x0 (lower-order bits) and x1 (higher-order bits) and
y into y0 (lower-order bits) and y1 (higher-order bits).

xy = (x12n/2 + x0)(y12n/2 + y0)

= x1y12n + (x1y0 + x0y1)2n/2 + x0y0.

I Algorithm: each of x1, x0, y1, y0 has n/2 bits, so we can compute x1y1,
x1y0, x0y1, and x0y0 recursively, and merge the answers in O(n) time.

I What is the running time T (n)?

T (n) ≤ 4T (n/2) + cn ≤ O(n2)

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Divide-and-Conquer Algorithm

I Assume integers are binary.
I Let us use divide and conquer by splitting each number into first n/2

bits and last n/2 bits.
I Let x be split into x0 (lower-order bits) and x1 (higher-order bits) and

y into y0 (lower-order bits) and y1 (higher-order bits).

xy =

(x12n/2 + x0)(y12n/2 + y0)

= x1y12n + (x1y0 + x0y1)2n/2 + x0y0.

I Algorithm: each of x1, x0, y1, y0 has n/2 bits, so we can compute x1y1,
x1y0, x0y1, and x0y0 recursively, and merge the answers in O(n) time.

I What is the running time T (n)?

T (n) ≤ 4T (n/2) + cn ≤ O(n2)

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Divide-and-Conquer Algorithm

I Assume integers are binary.
I Let us use divide and conquer by splitting each number into first n/2

bits and last n/2 bits.
I Let x be split into x0 (lower-order bits) and x1 (higher-order bits) and

y into y0 (lower-order bits) and y1 (higher-order bits).

xy = (x12n/2 + x0)(y12n/2 + y0)

= x1y12n + (x1y0 + x0y1)2n/2 + x0y0.

I Algorithm: each of x1, x0, y1, y0 has n/2 bits, so we can compute x1y1,
x1y0, x0y1, and x0y0 recursively, and merge the answers in O(n) time.

I What is the running time T (n)?

T (n) ≤ 4T (n/2) + cn ≤ O(n2)

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Divide-and-Conquer Algorithm

I Assume integers are binary.
I Let us use divide and conquer by splitting each number into first n/2

bits and last n/2 bits.
I Let x be split into x0 (lower-order bits) and x1 (higher-order bits) and

y into y0 (lower-order bits) and y1 (higher-order bits).

xy = (x12n/2 + x0)(y12n/2 + y0)

= x1y12n + (x1y0 + x0y1)2n/2 + x0y0.

I Algorithm: each of x1, x0, y1, y0 has n/2 bits, so we can compute x1y1,
x1y0, x0y1, and x0y0 recursively, and merge the answers in O(n) time.

I What is the running time T (n)?

T (n) ≤ 4T (n/2) + cn ≤ O(n2)

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Divide-and-Conquer Algorithm

I Assume integers are binary.
I Let us use divide and conquer by splitting each number into first n/2

bits and last n/2 bits.
I Let x be split into x0 (lower-order bits) and x1 (higher-order bits) and

y into y0 (lower-order bits) and y1 (higher-order bits).

xy = (x12n/2 + x0)(y12n/2 + y0)

= x1y12n + (x1y0 + x0y1)2n/2 + x0y0.

I Algorithm: each of x1, x0, y1, y0 has n/2 bits, so we can compute x1y1,
x1y0, x0y1, and x0y0 recursively, and merge the answers in O(n) time.

I What is the running time T (n)?

T (n) ≤ 4T (n/2) + cn ≤ O(n2)

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Divide-and-Conquer Algorithm

I Assume integers are binary.
I Let us use divide and conquer by splitting each number into first n/2

bits and last n/2 bits.
I Let x be split into x0 (lower-order bits) and x1 (higher-order bits) and

y into y0 (lower-order bits) and y1 (higher-order bits).

xy = (x12n/2 + x0)(y12n/2 + y0)

= x1y12n + (x1y0 + x0y1)2n/2 + x0y0.

I Algorithm: each of x1, x0, y1, y0 has n/2 bits, so we can compute x1y1,
x1y0, x0y1, and x0y0 recursively, and merge the answers in O(n) time.

I What is the running time T (n)?

T (n) ≤ 4T (n/2) + cn

≤ O(n2)

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Divide-and-Conquer Algorithm

I Assume integers are binary.
I Let us use divide and conquer by splitting each number into first n/2

bits and last n/2 bits.
I Let x be split into x0 (lower-order bits) and x1 (higher-order bits) and

y into y0 (lower-order bits) and y1 (higher-order bits).

xy = (x12n/2 + x0)(y12n/2 + y0)

= x1y12n + (x1y0 + x0y1)2n/2 + x0y0.

I Algorithm: each of x1, x0, y1, y0 has n/2 bits, so we can compute x1y1,
x1y0, x0y1, and x0y0 recursively, and merge the answers in O(n) time.

I What is the running time T (n)?

T (n) ≤ 4T (n/2) + cn ≤ O(n2)

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Improving the Algorithm

I Four sub-problems lead to an O(n2) algorithm.
I How can we reduce the number of sub-problems?

I We do not need to compute x1y0 and x0y1 independently; we just need
their sum.

I x1y1 + (x1y0 + x0y1) + x0y0 = (x0 + x1)(y0 + y1)
I Compute x1y1, x0y0 and (x0 + x1)(y0 + y1) recursively and then

compute (x1y0 + x0y1) by subtraction.
I We have three sub-problems of size n/2.
I Strategy: simple arithmetic manipulations.

I What is the running time T (n)?

T (n) ≤ 3T (n/2) + cn

≤ O(nlog2 3) = O(n1.59)

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Improving the Algorithm

I Four sub-problems lead to an O(n2) algorithm.
I How can we reduce the number of sub-problems?

I We do not need to compute x1y0 and x0y1 independently; we just need
their sum.

I x1y1 + (x1y0 + x0y1) + x0y0 = (x0 + x1)(y0 + y1)
I Compute x1y1, x0y0 and (x0 + x1)(y0 + y1) recursively and then

compute (x1y0 + x0y1) by subtraction.
I We have three sub-problems of size n/2.
I Strategy: simple arithmetic manipulations.

I What is the running time T (n)?

T (n) ≤ 3T (n/2) + cn

≤ O(nlog2 3) = O(n1.59)

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Improving the Algorithm

I Four sub-problems lead to an O(n2) algorithm.
I How can we reduce the number of sub-problems?

I We do not need to compute x1y0 and x0y1 independently; we just need
their sum.

I x1y1 + (x1y0 + x0y1) + x0y0 = (x0 + x1)(y0 + y1)
I Compute x1y1, x0y0 and (x0 + x1)(y0 + y1) recursively and then

compute (x1y0 + x0y1) by subtraction.
I We have three sub-problems of size n/2.
I Strategy: simple arithmetic manipulations.

I What is the running time T (n)?

T (n) ≤ 3T (n/2) + cn

≤ O(nlog2 3) = O(n1.59)

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Improving the Algorithm

I Four sub-problems lead to an O(n2) algorithm.
I How can we reduce the number of sub-problems?

I We do not need to compute x1y0 and x0y1 independently; we just need
their sum.

I x1y1 + (x1y0 + x0y1) + x0y0 = (x0 + x1)(y0 + y1)
I Compute x1y1, x0y0 and (x0 + x1)(y0 + y1) recursively and then

compute (x1y0 + x0y1) by subtraction.
I We have three sub-problems of size n/2.
I Strategy: simple arithmetic manipulations.

I What is the running time T (n)?

T (n) ≤ 3T (n/2) + cn

≤ O(nlog2 3) = O(n1.59)

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Improving the Algorithm

I Four sub-problems lead to an O(n2) algorithm.
I How can we reduce the number of sub-problems?

I We do not need to compute x1y0 and x0y1 independently; we just need
their sum.

I x1y1 + (x1y0 + x0y1) + x0y0 = (x0 + x1)(y0 + y1)
I Compute x1y1, x0y0 and (x0 + x1)(y0 + y1) recursively and then

compute (x1y0 + x0y1) by subtraction.
I We have three sub-problems of size n/2.
I Strategy: simple arithmetic manipulations.

I What is the running time T (n)?

T (n) ≤ 3T (n/2) + cn

≤ O(nlog2 3) = O(n1.59)

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Final Algorithm

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Computational Geometry

I Algorithms for geometric objects: points, lines, segments, triangles,
spheres, polyhedra, ldots.

I Started in 1975 by Shamos and Hoey.
I Problems studied have applications in a vast number of fields:

ecology, molecular biology, statistics, computational finance,
computer graphics, computer vision, . . .

Closest Pair of Points

INSTANCE: A set P of n points in the plane

SOLUTION: The pair of points in P that are the closest to each
other.

I At first glance, it seems any algorithm must take Ω(n2) time.
I Shamos and Hoey figured out an ingenious O(n log n) divide and

conquer algorithm.

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Computational Geometry

I Algorithms for geometric objects: points, lines, segments, triangles,
spheres, polyhedra, ldots.

I Started in 1975 by Shamos and Hoey.
I Problems studied have applications in a vast number of fields:

ecology, molecular biology, statistics, computational finance,
computer graphics, computer vision, . . .

Closest Pair of Points

INSTANCE: A set P of n points in the plane

SOLUTION: The pair of points in P that are the closest to each
other.

I At first glance, it seems any algorithm must take Ω(n2) time.
I Shamos and Hoey figured out an ingenious O(n log n) divide and

conquer algorithm.

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Computational Geometry

I Algorithms for geometric objects: points, lines, segments, triangles,
spheres, polyhedra, ldots.

I Started in 1975 by Shamos and Hoey.
I Problems studied have applications in a vast number of fields:

ecology, molecular biology, statistics, computational finance,
computer graphics, computer vision, . . .

Closest Pair of Points

INSTANCE: A set P of n points in the plane

SOLUTION: The pair of points in P that are the closest to each
other.

I At first glance, it seems any algorithm must take Ω(n2) time.
I Shamos and Hoey figured out an ingenious O(n log n) divide and

conquer algorithm.

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair: Set-up

I Let P = {p1, p2, . . . , pn} with pi = (xi , yi ).

I Use d(pi , pj) to denote the Euclidean distance between pi and pj . For
a specific pair of points, can compute d(pi , pj) in O(1) time.

I Goal: find the pair of points pi and pj that minimise d(pi , pj).

I How do we solve the problem in 1D?

I Sort: closest pair must be adjacent in the sorted order.
I Divide and conquer after sorting:

closest pair must be closest of

1. closest pair in left half: distance δl .
2. closest pair in right half: distance δr .
3. closest among pairs that span the left and right halves and are at most

min(δl , δr ) apart. How many such pairs do we need to consider?

Just
one!

I Generalize the second idea to 2D.

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair: Set-up

I Let P = {p1, p2, . . . , pn} with pi = (xi , yi ).
I Use d(pi , pj) to denote the Euclidean distance between pi and pj . For

a specific pair of points, can compute d(pi , pj) in O(1) time.
I Goal: find the pair of points pi and pj that minimise d(pi , pj).
I How do we solve the problem in 1D?

I Sort: closest pair must be adjacent in the sorted order.
I Divide and conquer after sorting: closest pair must be closest of

1. closest pair in left half: distance δl .
2. closest pair in right half: distance δr .
3. closest among pairs that span the left and right halves and are at most

min(δl , δr ) apart. How many such pairs do we need to consider?

Just
one!

I Generalize the second idea to 2D.

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair: Set-up

I Let P = {p1, p2, . . . , pn} with pi = (xi , yi ).
I Use d(pi , pj) to denote the Euclidean distance between pi and pj . For

a specific pair of points, can compute d(pi , pj) in O(1) time.
I Goal: find the pair of points pi and pj that minimise d(pi , pj).
I How do we solve the problem in 1D?

I Sort: closest pair must be adjacent in the sorted order.

I Divide and conquer after sorting: closest pair must be closest of
1. closest pair in left half: distance δl .
2. closest pair in right half: distance δr .
3. closest among pairs that span the left and right halves and are at most

min(δl , δr ) apart. How many such pairs do we need to consider?

Just
one!

I Generalize the second idea to 2D.

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair: Set-up

I Let P = {p1, p2, . . . , pn} with pi = (xi , yi ).
I Use d(pi , pj) to denote the Euclidean distance between pi and pj . For

a specific pair of points, can compute d(pi , pj) in O(1) time.
I Goal: find the pair of points pi and pj that minimise d(pi , pj).
I How do we solve the problem in 1D?

I Sort: closest pair must be adjacent in the sorted order.
I Divide and conquer after sorting: closest pair must be closest of

1. closest pair in left half: distance δl .
2. closest pair in right half: distance δr .
3. closest among pairs that span the left and right halves and are at most

min(δl , δr ) apart. How many such pairs do we need to consider?

Just
one!

I Generalize the second idea to 2D.

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair: Set-up

I Let P = {p1, p2, . . . , pn} with pi = (xi , yi ).
I Use d(pi , pj) to denote the Euclidean distance between pi and pj . For

a specific pair of points, can compute d(pi , pj) in O(1) time.
I Goal: find the pair of points pi and pj that minimise d(pi , pj).
I How do we solve the problem in 1D?

I Sort: closest pair must be adjacent in the sorted order.
I Divide and conquer after sorting: closest pair must be closest of

1. closest pair in left half: distance δl .
2. closest pair in right half: distance δr .
3. closest among pairs that span the left and right halves and are at most

min(δl , δr ) apart. How many such pairs do we need to consider? Just
one!

I Generalize the second idea to 2D.

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair: Set-up

I Let P = {p1, p2, . . . , pn} with pi = (xi , yi ).
I Use d(pi , pj) to denote the Euclidean distance between pi and pj . For

a specific pair of points, can compute d(pi , pj) in O(1) time.
I Goal: find the pair of points pi and pj that minimise d(pi , pj).
I How do we solve the problem in 1D?

I Sort: closest pair must be adjacent in the sorted order.
I Divide and conquer after sorting: closest pair must be closest of

1. closest pair in left half: distance δl .
2. closest pair in right half: distance δr .
3. closest among pairs that span the left and right halves and are at most

min(δl , δr ) apart. How many such pairs do we need to consider? Just
one!

I Generalize the second idea to 2D.

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair: Algorithm Skeleton
1. Divide P into two sets Q and R of n/2 points such that each point in

Q has x-coordinate less than any point in R.
2. Recursively compute closest pair in Q and in R, respectively.

3. Let δQ be the distance computed for Q, δR be the distance computed
for R, and δ = min(δQ , δR).

4. Compute pair (q, r) of points such that q ∈ Q, r ∈ R, d(q, r) < δ
and d(q, r) is the smallest possible.

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair: Algorithm Skeleton
1. Divide P into two sets Q and R of n/2 points such that each point in

Q has x-coordinate less than any point in R.
2. Recursively compute closest pair in Q and in R, respectively.
3. Let δQ be the distance computed for Q, δR be the distance computed

for R, and δ = min(δQ , δR).

4. Compute pair (q, r) of points such that q ∈ Q, r ∈ R, d(q, r) < δ
and d(q, r) is the smallest possible.

L

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair: Algorithm Skeleton
1. Divide P into two sets Q and R of n/2 points such that each point in

Q has x-coordinate less than any point in R.
2. Recursively compute closest pair in Q and in R, respectively.
3. Let δQ be the distance computed for Q, δR be the distance computed

for R, and δ = min(δQ , δR).
4. Compute pair (q, r) of points such that q ∈ Q, r ∈ R, d(q, r) < δ

and d(q, r) is the smallest possible.

L

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair: Proof Sketch

I Prove by induction: Let (s, t) be the closest pair.
(i) both are in Q: computed correctly by recursive call.
(ii) both are in R: computed correctly by recursive call.
(iii) one is in Q and the other is in R: computed correctly in O(n) time by

the procedure we will discuss.
I Strategy: Pairs of points for which we do not compute the distance

between cannot be the closest pair.
I Overall running time is O(n log n).

L

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair: Conquer Step
I Line L passes through right-most point in Q.
I Let S be the set of points within distance δ of L. (In image, δ = δR .)

I Claim: There exist q ∈ Q, r ∈ R such that d(q, r) < δ if and only if
q, r ∈ S .

I Corollary: If t ∈ Q − S or u ∈ R − S , then (t, u) cannot be the
closest pair.

L

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair: Conquer Step
I Line L passes through right-most point in Q.
I Let S be the set of points within distance δ of L. (In image, δ = δR .)
I Claim: There exist q ∈ Q, r ∈ R such that d(q, r) < δ if and only if

q, r ∈ S .

I Corollary: If t ∈ Q − S or u ∈ R − S , then (t, u) cannot be the
closest pair.

L

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair: Conquer Step
I Line L passes through right-most point in Q.
I Let S be the set of points within distance δ of L. (In image, δ = δR .)
I Claim: There exist q ∈ Q, r ∈ R such that d(q, r) < δ if and only if

q, r ∈ S .
I Corollary: If t ∈ Q − S or u ∈ R − S , then (t, u) cannot be the

closest pair.

L

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair: Packing Argument
I Intuition: “too many” points in S that are closer than δ to each other
⇒ there must be a pair in Q or in R that are less than δ apart.

I Let Sy denote the set of points in S sorted by increasing y -coordinate
and let sy denote the y -coordinate of a point s ∈ S .

I Claim: If there exist s, s ′ ∈ S such that
d(s, s ′) < δ then s and s ′ are at most
15 indices apart in Sy .

I Converse of the claim: If there exist
s, s ′ ∈ S such that s ′ appears 16 or
more indices after s in Sy , then
s ′y − sy ≥ δ.

I Use the claim in the algorithm: For
every point s ∈ Sy , compute distances
only to the next 15 points in Sy .

I Other pairs of points cannot be
candidates for the closest pair.

L

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair: Packing Argument
I Intuition: “too many” points in S that are closer than δ to each other
⇒ there must be a pair in Q or in R that are less than δ apart.

I Let Sy denote the set of points in S sorted by increasing y -coordinate
and let sy denote the y -coordinate of a point s ∈ S .

I Claim: If there exist s, s ′ ∈ S such that
d(s, s ′) < δ then s and s ′ are at most
15 indices apart in Sy .

I Converse of the claim: If there exist
s, s ′ ∈ S such that s ′ appears 16 or
more indices after s in Sy , then
s ′y − sy ≥ δ.

I Use the claim in the algorithm: For
every point s ∈ Sy , compute distances
only to the next 15 points in Sy .

I Other pairs of points cannot be
candidates for the closest pair.

L

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair: Packing Argument
I Intuition: “too many” points in S that are closer than δ to each other
⇒ there must be a pair in Q or in R that are less than δ apart.

I Let Sy denote the set of points in S sorted by increasing y -coordinate
and let sy denote the y -coordinate of a point s ∈ S .

I Claim: If there exist s, s ′ ∈ S such that
d(s, s ′) < δ then s and s ′ are at most
15 indices apart in Sy .

I Converse of the claim: If there exist
s, s ′ ∈ S such that s ′ appears 16 or
more indices after s in Sy , then
s ′y − sy ≥ δ.

I Use the claim in the algorithm: For
every point s ∈ Sy , compute distances
only to the next 15 points in Sy .

I Other pairs of points cannot be
candidates for the closest pair.

L

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair: Packing Argument
I Intuition: “too many” points in S that are closer than δ to each other
⇒ there must be a pair in Q or in R that are less than δ apart.

I Let Sy denote the set of points in S sorted by increasing y -coordinate
and let sy denote the y -coordinate of a point s ∈ S .

I Claim: If there exist s, s ′ ∈ S such that
d(s, s ′) < δ then s and s ′ are at most
15 indices apart in Sy .

I Converse of the claim: If there exist
s, s ′ ∈ S such that s ′ appears 16 or
more indices after s in Sy , then
s ′y − sy ≥ δ.

I Use the claim in the algorithm: For
every point s ∈ Sy , compute distances
only to the next 15 points in Sy .

I Other pairs of points cannot be
candidates for the closest pair.

L

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair: Packing Argument
I Intuition: “too many” points in S that are closer than δ to each other
⇒ there must be a pair in Q or in R that are less than δ apart.

I Let Sy denote the set of points in S sorted by increasing y -coordinate
and let sy denote the y -coordinate of a point s ∈ S .

I Claim: If there exist s, s ′ ∈ S such that
d(s, s ′) < δ then s and s ′ are at most
15 indices apart in Sy .

I Converse of the claim: If there exist
s, s ′ ∈ S such that s ′ appears 16 or
more indices after s in Sy , then
s ′y − sy ≥ δ.

I Use the claim in the algorithm: For
every point s ∈ Sy , compute distances
only to the next 15 points in Sy .

I Other pairs of points cannot be
candidates for the closest pair.

L

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair: Proof of Packing Argument

I Claim: If there exist s, s ′ ∈ S such that
s ′ appears 16 or more indices after s in
Sy , then s ′y − sy ≥ δ.

I Pack the plane with squares of side δ/2.

I Each square contains at most one point.

I Let s lie in one of the squares.

I Any point in the third row of the
packing below s has a y -coordinate at
least δ more than sy .

I We get a count of 12 or more indices
(textbook says 16).

L

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair: Proof of Packing Argument

I Claim: If there exist s, s ′ ∈ S such that
s ′ appears 16 or more indices after s in
Sy , then s ′y − sy ≥ δ.

I Pack the plane with squares of side δ/2.

I Each square contains at most one point.

I Let s lie in one of the squares.

I Any point in the third row of the
packing below s has a y -coordinate at
least δ more than sy .

I We get a count of 12 or more indices
(textbook says 16).

L

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair: Proof of Packing Argument

I Claim: If there exist s, s ′ ∈ S such that
s ′ appears 16 or more indices after s in
Sy , then s ′y − sy ≥ δ.

I Pack the plane with squares of side δ/2.

I Each square contains at most one point.

I Let s lie in one of the squares.

I Any point in the third row of the
packing below s has a y -coordinate at
least δ more than sy .

I We get a count of 12 or more indices
(textbook says 16).

L

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair: Proof of Packing Argument

I Claim: If there exist s, s ′ ∈ S such that
s ′ appears 16 or more indices after s in
Sy , then s ′y − sy ≥ δ.

I Pack the plane with squares of side δ/2.

I Each square contains at most one point.

I Let s lie in one of the squares.

I Any point in the third row of the
packing below s has a y -coordinate at
least δ more than sy .

I We get a count of 12 or more indices
(textbook says 16).

L

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair: Proof of Packing Argument

I Claim: If there exist s, s ′ ∈ S such that
s ′ appears 16 or more indices after s in
Sy , then s ′y − sy ≥ δ.

I Pack the plane with squares of side δ/2.

I Each square contains at most one point.

I Let s lie in one of the squares.

I Any point in the third row of the
packing below s has a y -coordinate at
least δ more than sy .

I We get a count of 12 or more indices
(textbook says 16).

L

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair: Proof of Packing Argument

I Claim: If there exist s, s ′ ∈ S such that
s ′ appears 16 or more indices after s in
Sy , then s ′y − sy ≥ δ.

I Pack the plane with squares of side δ/2.

I Each square contains at most one point.

I Let s lie in one of the squares.

I Any point in the third row of the
packing below s has a y -coordinate at
least δ more than sy .

I We get a count of 12 or more indices
(textbook says 16).

L

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair: Final Algorithm

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair: Final Algorithm

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair: Final Algorithm

T. M. Murali March 19 and 24, 2013 CS 4104: Divide and Conquer Algorithms


	Counting Inversions
	Integer Multiplication
	Closest Pair of Points

