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Computing All Connected Components

1. Pick an arbitrary node s in G .

2. Compute its connected component using BFS (or DFS).

3. Find a node (say v , not already visited) and repeat the BFS from v .

4. Repeat this process until all nodes are visited.

I Time spent to compute each component is

linear in the size of the
component.

I Running time of the algorithm is linear in the total sizes of the components,
i.e., O(m + n).
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Bipartite Graphs

I A graph G = (V ,E ) is bipartite if V can be partitioned into two subsets X
and Y such that every edge in E has one endpoint in X and one endpoint in
Y .

I (X × X ) ∩ E = ∅ and (Y × Y ) ∩ E = ∅.
I Colour the nodes in X red and the nodes in Y blue. Then no edge in E

connects nodes of the same colour.

I Examples of bipartite graphs:

medical residents and hospitals, jobs and
processors they can be scheduled on, professors and courses they can teach.

TestBipartiteness

INSTANCE: An undirected graph G = (V ,E )

QUESTION: Is G bipartite?

I Is a triangle bipartite? No.

I Generalisation: No cycle of odd length is bipartite.

I Claim: If a graph is bipartite, then it cannot contain a cycle of odd length.
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Algorithm for Testing Bipartiteness

I Assume G is connected. Otherwise, apply the algorithm to each connected
component separately.

I Idea: Pick an arbitrary node s and colour it red.

Colour all its neighbours
blue. Colour the uncoloured neighours of these nodes red, and so on till all
nodes are coloured. Check if very edge has endpoints of di�erent colours.
Algorithm is just like BFS!

I Algorithm:

1. Run BFS on G . Maintain an additional array Colour.
2. When we add a node v to a layer i , set Colour[v ] to red if i is even, otherwise

to blue.
3. At the end of BFS, scan all the edges to check if there is any edge both of

whose endpoints received the same colour.

I Running time of this algorithm is O(n +m), since we do a constant amount
of work per node in addition to the time spent by BFS.
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Correctness of the Algorithm

1. If G is bipartite, the algorithm correctly says so.

2. If G is not bipartite, what is the proof? The algorithm can �nd a cycle of
odd length in G .

I Let G be a graph and let
L0, L1, L2, . . . Lk be the layers
produced by BFS, starting at node
s. Then exactly one of the following
statements is true:

1. No edge of G joins two nodes in
the same layer: then G is
bipartite and nodes in even layers
can be coloured red and nodes in
odd layers can be coloured blue.

2. There is an edge of G that joins
two nodes in the same layer: then
G contains a cycle of odd length
and cannot be bipartite.
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Shortest Path Problem

I G (V ,E ) is a connected directed graph. Each edge e has a length le ≥ 0.

I V has n nodes and E has m edges.

I Length of a path P is the sum of the lengths of the edges in P.

I Goal is to determine the shortest path from a speci�ed start node s to each
node in V .

I Aside: If G is undirected, convert to a directed graph by replacing each edge
in G by two directed edges.

Shortest Paths

INSTANCE: A directed graph G (V ,E ), a function l : E → R+, and a
node s ∈ V

SOLUTION: A set {Pu, u ∈ V }, where Pu is the shortest path in G
from s to u.
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Example of Dijkstra's Algorithm
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Dijkstra's Algorithm

I Maintain a set S of explored nodes.
I For each node u ∈ S , we store a distance d(u), which (we will prove) is the

length of the shortest path from s to u.

I For each node v 6∈ S , we store a value d ′(v), which is the length of the
shortest path from s to v using only nodes in S (and v , of course).

I �Greedily� add a node v to S that is closest to s.

Dijkstra's Algorithm(G , l):
Initialize S = {s} and d(s) = 0
While S 6= V

For each node x 6∈ S compute d ′(x) = mine=(u,x):u∈S(d(u) + le)
Select a node v 6∈ S such that v = argminx 6∈S d

′(x)
Add v to S and set d(v) = d ′(v)

Endwhile

I v = argminx 6∈S d
′(x) means v is the node that minimises the distance d ′()

over all nodes x 6∈ S .
I To compute the shortest paths: when we add v to S , store the predecessor u

that minimises d ′(v).
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Proof of Correctness
I Let Pu be the shortest path computed for a node u.
I Claim: Pu is the shortest path from s to u.
I Prove by induction on the size of S .

I Base case: |S | = 1. The only node in S is s.
I Inductive hypothesis: d(u) is correct for all nodes u ∈ S .
I Inductive step: we add the node v to S . Let u be the v 's predecessor on the

path Pv . Could there be a shorter path P from s to v?
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Comments about Dijkstra's Algorithm

I Algorithm cannot handle negative edge lengths. We will discuss the
Bellman-Ford algorithm in a few weeks.

I Union of shortest paths output by Dijkstra's algorithm forms a tree. Why?

I Union of shortest paths from a �xed source s forms a tree; paths not
necessarily computed by Dijkstra's algorithm.

I Pv : shortest path from s to a node v , d(v): length of Pv .
I If u is the second-to-last node on Pv , then d(v) = d(u) + l(u,v).
I If u precedes w on Pv , then d(w) = d(u) + l(u,w), i.e., d(w)− d(u) = l(u,w).
I Suppose union of shortest paths from s contains a cycle involving nodes
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Implementing Dijkstra's Algorithm

Dijkstra's Algorithm(G , l):
Initialize S = {s} and d(s) = 0
While S 6= V

For each node x 6∈ S compute d ′(x) = mine=(u,x):u∈S(d(u) + le)
Select a node v 6∈ S such that v = argminx 6∈S d

′(x)
Add v to S and set d(v) = d ′(v)

Endwhile

I How many iterations are there of the while loop?

n − 1.

I In each iteration, for each node x 6∈ S , compute

d ′(x) = min
e=(u,x),u∈S

d(u) + le

I Running time per iteration is O(m), yielding an overall running time of
O(nm).

September 23, 2014 CS 4104: Testing Bipartiteness and Dijkstra's Algorithm



All Connected Components Testing Bipartiteness Shortest Paths

Implementing Dijkstra's Algorithm

Dijkstra's Algorithm(G , l):
Initialize S = {s} and d(s) = 0
While S 6= V

For each node x 6∈ S compute d ′(x) = mine=(u,x):u∈S(d(u) + le)
Select a node v 6∈ S such that v = argminx 6∈S d

′(x)
Add v to S and set d(v) = d ′(v)

Endwhile

I How many iterations are there of the while loop? n − 1.

I In each iteration, for each node x 6∈ S , compute

d ′(x) = min
e=(u,x),u∈S

d(u) + le

I Running time per iteration is O(m), yielding an overall running time of
O(nm).

September 23, 2014 CS 4104: Testing Bipartiteness and Dijkstra's Algorithm



All Connected Components Testing Bipartiteness Shortest Paths

Implementing Dijkstra's Algorithm

Dijkstra's Algorithm(G , l):
Initialize S = {s} and d(s) = 0
While S 6= V

For each node x 6∈ S compute d ′(x) = mine=(u,x):u∈S(d(u) + le)
Select a node v 6∈ S such that v = argminx 6∈S d

′(x)
Add v to S and set d(v) = d ′(v)

Endwhile

I How many iterations are there of the while loop? n − 1.

I In each iteration, for each node x 6∈ S , compute

d ′(x) = min
e=(u,x),u∈S

d(u) + le

I Running time per iteration is O(m), yielding an overall running time of
O(nm).

September 23, 2014 CS 4104: Testing Bipartiteness and Dijkstra's Algorithm



All Connected Components Testing Bipartiteness Shortest Paths

Implementing Dijkstra's Algorithm

Dijkstra's Algorithm(G , l):
Initialize S = {s} and d(s) = 0
While S 6= V

For each node x 6∈ S compute d ′(x) = mine=(u,x):u∈S(d(u) + le)
Select a node v 6∈ S such that v = argminx 6∈S d

′(x)
Add v to S and set d(v) = d ′(v)

Endwhile

I How many iterations are there of the while loop? n − 1.

I In each iteration, for each node x 6∈ S , compute

d ′(x) = min
e=(u,x),u∈S

d(u) + le

I Running time per iteration is

O(m), yielding an overall running time of
O(nm).

September 23, 2014 CS 4104: Testing Bipartiteness and Dijkstra's Algorithm



All Connected Components Testing Bipartiteness Shortest Paths

Implementing Dijkstra's Algorithm

Dijkstra's Algorithm(G , l):
Initialize S = {s} and d(s) = 0
While S 6= V

For each node x 6∈ S compute d ′(x) = mine=(u,x):u∈S(d(u) + le)
Select a node v 6∈ S such that v = argminx 6∈S d

′(x)
Add v to S and set d(v) = d ′(v)

Endwhile

I How many iterations are there of the while loop? n − 1.

I In each iteration, for each node x 6∈ S , compute

d ′(x) = min
e=(u,x),u∈S

d(u) + le

I Running time per iteration is O(m), yielding an overall running time of
O(nm).

September 23, 2014 CS 4104: Testing Bipartiteness and Dijkstra's Algorithm



All Connected Components Testing Bipartiteness Shortest Paths

A Faster implementation of Dijkstra's Algorithm

Dijkstra's Algorithm(G , l):
Initialize S = {s} and d(s) = 0
While S 6= V

For each node x 6∈ S compute d ′(x) = mine=(u,x):u∈S(d(u) + le)
Select a node v 6∈ S such that v = argminx 6∈S d

′(x)
Add v to S and set d(v) = d ′(v)

Endwhile

I Observation: If we add v to S , d ′(x) changes only if (v , x) is an edge in G .

I Store the pairs (x , d ′(x)) for each node x ∈ V − S in a priority queue, with
d ′(x) as the key.

I Determine the next node v to add to S using ExtractMin.
I After adding v to S , for each node w such that (v ,w) is an edge in G ,

compute d(v) + l(v ,w).
I If d(v) + l(v ,w) < d ′(w),

1. Set d ′(w) = d(v) + l(v,w).
2. Update w 's key to the new value of d ′(w) using ChangeKey.

I How many times are ExtractMin and ChangeKey invoked? n − 1 and m
times, respectively. Total running time is O(m log n).
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Faster Dijkstra's Algorithm

Dijkstra's Algorithm(G , l):
Initialize S = {s} and d(s) = 0
Insert (s, 0) into a priority queue Q.

While S 6= V
(v , k) = ExtractMin(Q)
Add v to S and set d(v) = k
For each node w such that e = (v ,w) is an edge in G

If d(v) + le < d ′(w),
Set d ′(w) = d(v) + le)
ChangeKey(Q,w , d ′(w)).

Endwhile
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