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Graphs
I Model pairwise relationships (edges) between objects (nodes).

I Useful in a large number of applications: computer networks, the World Wide
Web, ecology (food webs), social networks, software systems, job scheduling,
VLSI circuits, cellular networks, . . .

I Other examples: gene and protein networks, our bodies (nervous and
circulatory systems, brains), buildings, transportation networks, . . .

I Problems involving graphs have a rich history dating back to Euler.
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De�nition of a Graph

I Undirected graph G = (V ,E ): set V of nodes and set E of edges, where
E ⊆ V × V . Elements of E are unordered pairs.

I Abuse of notation: write an edge e between nodes u and v as e = (u, v) and
not as e = {u, v}.

I Say that edge e is incident on u and on v .
I Exactly one edge between any pair of nodes.
I G contains no self loops.

I Directed graph G = (V ,E ): set V of nodes and set E of edges, where
E ⊆ V × V . Elements of E are ordered pairs.

I e = (u, v): u is the tail of the edge e, v is its head; e leaves node u and enters

node v .
I A pair of nodes {u, v} may be connected by two directed edges: (u, v) and

(v , u).
I G contains no self loops.

I By default, �graph� will mean an �undirected graph�.
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Paths and Connectivity
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I A path in an undirected graph G = (V ,E ) is a sequence P of nodes
v1, v2, . . . , vk−1, vk ∈ V such that every consecutive pair of nodes
vi , vi+1, 1 ≤ i < k is connected by an edge in E .

I P is called a path from v1 to vK or a v1-vk path.
I A path is simple if all its nodes are distinct.
I A cycle is a path where k > 2, the �rst i − 1 nodes are distinct, and v1 = vk .

I All de�nitions carry over to directed graphs as well.
I An undirected graph G is connected if for every pair of nodes u, v ∈ V , there

is a path from u to v in G .
I Directed graphs have the notion of �strong connectivity.�

I Distance between two nodes u and v is the minimum number of edges in any
u-v path.
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Trees

I An undirected graph is a tree if it is connected and does not contain a cycle.

For any pair of nodes in a tree, there is a unique path connecting them.
I Rooting a tree T : pick some node r in the tree and orient each edge of T

�away� from r , i.e., for each node v 6= r , de�ne parent of v to be the node u
that directly precedes v on the path from r to v .

I Node w is a child of node v if v is a parent of w .
I Node w is a descendant of node v (or v is an ancestor of w) if v lies on the

r -w path.
I Node x is a leaf if it has no descendants.

I Examples of (rooted) trees: organisational hierarchy, class hierarchies in
object-oriented languages.
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Number of Edges in a Tree

I Claim: every n-node tree has

exactly n − 1

edges.

I Proof 1: Root the tree. Each node, except the root, has a unique parent.
Each edge connects one parent to one child. Therefore, the tree has n − 1
edges.

I Proof 2: (by induction) Two key pieces.
I Every tree contains at least one leaf, i.e., node of degree 1. Why?
I Inductive hypothesis: every tree with n − 1 nodes contains n − 2 edges.

I Stronger claim: Let G be an undirected graph on n nodes. Any two of the
following statements implies the third:

1. G is connected.
2. G does not contain a cycle.
3. G contains n − 1 edges.

I Note that none of these statements uses the word �tree�.
I 1 and 2 ⇒ 3: just proved.
I 2 and 3 ⇒ 1: prove by contradiction.
I 3 and 1 ⇒ 2: prove yourself.
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s-t Connectivity
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s-t Connectivity

INSTANCE: An undirected graph G = (V ,E ) and two nodes s, t ∈ V .

QUESTION: Is there an s-t path in G?

I The connected component of G containing s is the set of all nodes u such
that there is an s-u path in G .

I Algorithm for the s-t Connectivity problem: compute the connected
component of G that contains s and check if t is in that component.
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Computing Connected Components
I �Explore� G starting from s and maintain set R of visited nodes.
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Issues in Computing Connected Components
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I How do we implement the while loop?

Examine each edge in E .

I Other issues to consider:
I Why does the algorithm terminate?
I Does the algorithm truly compute connected component of G containing s?
I What is the running time of the algorithm?
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Termination of the Algorithm
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I How many nodes does each iteration of the while loop add to R?

Exactly 1.

I How many times is the while loop executed?

At most n times.

I What is true of R at termination?

I either R = V at the end or
I in the last iteration, every edge either has both nodes in R or both nodes not

in R.
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Correctness of the Algorithm

R

s

u v

w

I Claim: at the end of the algorithm, the set R is exactly the connected
component of G containing s.

I Proof: Suppose w 6∈ R but there is an s-w path P in G .
I Consider �rst node v in P not in R (v 6= s).
I Let u be the predecessor of v in P: u is in R.
I (u, v) is an edge with u ∈ R but v 6∈ R, contradicting the stopping rule.
I Note: wrong to assume that predecessor of w in P is not in R.
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Recovering Paths

1

2 3

4 5 6

7

8

9

10

11

12

13

I Given a node t ∈ R, how do we recover the s-t path?

I When adding node v to R, record the edge (u, v).

I What type of graph is formed by these edges? It is a tree! Why?

I To recover the s-t path, trace these edges backwards from t until we reach s.
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Running Time of the Algorithm

I Analyse algorithm in terms of two parameters: the number of nodes n and
the number of edges m.

I Implement the while loop by examining each edge in E . Running time of
each loop is O(m).

I How many while loops does the algorithm execute? At most n.

I The running time is O(mn).

I Can we improve the running time by processing edges more carefully?

September 16, 2014 CS4104: Graphs



Running Time of the Algorithm

I Analyse algorithm in terms of two parameters: the number of nodes n and
the number of edges m.

I Implement the while loop by examining each edge in E . Running time of
each loop is

O(m).

I How many while loops does the algorithm execute? At most n.

I The running time is O(mn).

I Can we improve the running time by processing edges more carefully?

September 16, 2014 CS4104: Graphs



Running Time of the Algorithm

I Analyse algorithm in terms of two parameters: the number of nodes n and
the number of edges m.

I Implement the while loop by examining each edge in E . Running time of
each loop is O(m).

I How many while loops does the algorithm execute?

At most n.

I The running time is O(mn).

I Can we improve the running time by processing edges more carefully?

September 16, 2014 CS4104: Graphs



Running Time of the Algorithm

I Analyse algorithm in terms of two parameters: the number of nodes n and
the number of edges m.

I Implement the while loop by examining each edge in E . Running time of
each loop is O(m).

I How many while loops does the algorithm execute? At most n.

I The running time is

O(mn).

I Can we improve the running time by processing edges more carefully?

September 16, 2014 CS4104: Graphs



Running Time of the Algorithm

I Analyse algorithm in terms of two parameters: the number of nodes n and
the number of edges m.

I Implement the while loop by examining each edge in E . Running time of
each loop is O(m).

I How many while loops does the algorithm execute? At most n.

I The running time is O(mn).

I Can we improve the running time by processing edges more carefully?

September 16, 2014 CS4104: Graphs



Running Time of the Algorithm

I Analyse algorithm in terms of two parameters: the number of nodes n and
the number of edges m.

I Implement the while loop by examining each edge in E . Running time of
each loop is O(m).

I How many while loops does the algorithm execute? At most n.

I The running time is O(mn).

I Can we improve the running time by processing edges more carefully?

September 16, 2014 CS4104: Graphs



Breadth-First Search (BFS)
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I Idea: explore G starting at s and going �outward� in all directions, adding
nodes one layer at a time.

I Layer L0 contains only s.

I Layer L1 contains all neighbours of s.

I Given layers L0, L1, . . . , Lj , layer Lj+1 contains all nodes that

1. do not belong to an earlier layer and
2. are connected by an edge to a node in layer Lj .
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Properties of BFS
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I We have not yet described how to compute these layers.
I Claim: For each j ≥ 1, layer Lj consists of all nodes

exactly at distance j
from S . Proof by induction on j .

I Claim: There is a path from s to t if and only if t is a member of some layer.
I Let v be a node in layer Lj+1 and u be the ��rst� node in Lj such that (u, v)

is an edge in G . Consider the graph T formed by all such edges, directed
from u to v .

I Why is T a tree? It is connected. The number of edges in T is the number of
nodes in all the layers minus 1.

I T is called the breadth-�rst search tree.
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BFS Trees
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I Non-tree edge: an edge of G that does not belong to the BFS tree T .

I Claim: Let T be a BFS tree, let x and y be nodes in T belonging to layers Li
and Lj , respectively, and let (x , y) be an edge of G . Then |i − j | ≤ 1.

I Proof by contradiction: Suppose i < j − 1. Node x ∈ Li ⇒ all nodes adjacent
to x are in layers L1, L2, . . . Li+1. Hence y must be in layer Li+1 or earlier.

I Still unresolved: an e�cient implementation of BFS.
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Depth-First Search (DFS)

I Explore G as if it were a maze: start from s, traverse �rst edge out (to node
v), traverse �rst edge out of v , . . . , reach a dead-end, backtrack, . . . ...

1. Mark all nodes as �Unexplored�.

2. Invoke DFS(s).

I Depth-�rst search tree is a tree T : when DFS(v) is invoked directly during
the call to DFS(v), add edge (u, v) to T .
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BFS vs. DFS
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I Both visit the same set of nodes but in a di�erent order.
I Both traverse all the edges in the connected component but in a di�erent

order.
I BFS trees have root-to-leaf paths that look as short as possible while paths in

DFS trees tend to be long and deep.
I Non-tree edges

BFS within the same level or between adjacent levels.

DFS connect ancestors to descendants.
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Properties of DFS Trees
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I Observation: All nodes marked as �Explored� between the start of DFS(u)
and its end are descendants of u in the DFS tree T .

I Claim: Let x and y be nodes in a DFS tree T such that (x , y) is an edge of
G but not of T . Then one of x or y is an ancestor of the other in T .

I Proof: Assume, without loss of generality, that DFS(u) reached x �rst.
I Since (x , y) is an edge in G , it is examined during DFS(x).
I Since (x , y) 6∈ T , y must be marked as �Explored� during DFS(x) but before

(x , y) is examined.
I Since y was not marked as �Explored� before DFS(x) was invoked, it must be

marked as �Explored� between the end of DFS(x).
I Therefore, y must be a descendant of x in T .
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All Connected Components

I We have discussed the component containing a particular node s.

I Each node belongs to a component.

I What is the relationship between all these components?

I If v is in u's component, is u in v 's component?
I If v is not in u's component, can u be in v 's component?

I Claim: For any two nodes s and t in a graph, their connected components
are either equal or disjoint.

I Proof in two parts (sketch):

1. If G has an s-t path, then the connected components of s and t are the same.
2. If G has no s-t path, then there cannot be a node v that is in both connected

components.
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Computing All Connected Components

1. Pick an arbitrary node s in G .

2. Compute its connected component using BFS (or DFS).

3. Find a node (say v , not already visited) and repeat the BFS from v .

4. Repeat this process until all nodes are visited.
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Representing Graphs

I Graph G = (V ,E ) has two input parameters: |V | = n, |E | = m.
I Size of the graph is de�ned to be m + n.
I Strive for algorithms whose running time is linear in graph size, i.e., O(m + n).

I Assume V = {1, 2, . . . , n − 1, n}.
I Adjacency matrix representation: n × n Boolean matrix, where the entry in

row i and column j is 1 i� the graph contains the edge (i , j).
I Space used is Θ(n2), which is optimal in the worst case.
I Check if there is an edge between node i and node j in O(1) time.
I Iterate over all the edges incident on node i in Θ(n) time.

I Adjacency list representation: array Adj, where Adj[v ] stores the list of all
nodes adjacent to v .

I An edge e = (u, v) appears twice: in Adj[u] and Adj[v ].
I nv = the number of neighbours of node v .
I Space used is O(n +

∑
v∈G nv ) = O(n + m), which is optimal for every graph.

I Check if there is an edge between node u and node v in O(nu) time.
I Iterate over all the edges incident on node u in Θ(nu) time.
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Data Structures for Implementation

I �Implementation� of BFS and DFS: fully specify the algorithms and data
structures so that we can obtain provably e�cient times.

I Inner loop of both BFS and DFS: process the set of edges incident on a given
node and the set of visited nodes.

I How do we store the set of visited nodes? Order in which we process the
nodes is crucial.

I BFS: store visited nodes in a queue (�rst-in, �rst-out).
I DFS: store visited nodes in a stack (last-in, �rst-out)
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Implementing BFS
I Maintain an array Discovered and set

Discovered[v ] = true as soon as the algorithm sees v .
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Using a Queue in BFS
I Instead of storing each layer in a di�erent list, maintain all the layers in a

single queue L.
BFS(s):

Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

1
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1

I Simple to modify this procedure to keep track of layer numbers as well.

Store
the pair (u, lu), where lu is the index of the layer containing u.

I Claim: Nodes in layer i + 1 will appear in L immediately after nodes in layer
i .

More formally: If BFS(s) pops (v , lv ) from L immediately after it pops
(u, lu), then either lv = lu or lv = lu + 1.
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I Simple to modify this procedure to keep track of layer numbers as well.

Store
the pair (u, lu), where lu is the index of the layer containing u.
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I Simple to modify this procedure to keep track of layer numbers as well.

Store
the pair (u, lu), where lu is the index of the layer containing u.

I Claim: Nodes in layer i + 1 will appear in L immediately after nodes in layer
i .

More formally: If BFS(s) pops (v , lv ) from L immediately after it pops
(u, lu), then either lv = lu or lv = lu + 1.
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I Simple to modify this procedure to keep track of layer numbers as well.

Store
the pair (u, lu), where lu is the index of the layer containing u.

I Claim: Nodes in layer i + 1 will appear in L immediately after nodes in layer
i .

More formally: If BFS(s) pops (v , lv ) from L immediately after it pops
(u, lu), then either lv = lu or lv = lu + 1.

September 16, 2014 CS4104: Graphs



Using a Queue in BFS
I Instead of storing each layer in a di�erent list, maintain all the layers in a

single queue L.
BFS(s):

Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

1

2 3

4 5 6

7

8

87 4 6

I Simple to modify this procedure to keep track of layer numbers as well.

Store
the pair (u, lu), where lu is the index of the layer containing u.

I Claim: Nodes in layer i + 1 will appear in L immediately after nodes in layer
i .

More formally: If BFS(s) pops (v , lv ) from L immediately after it pops
(u, lu), then either lv = lu or lv = lu + 1.
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I Simple to modify this procedure to keep track of layer numbers as well.

Store
the pair (u, lu), where lu is the index of the layer containing u.
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I Simple to modify this procedure to keep track of layer numbers as well.

Store
the pair (u, lu), where lu is the index of the layer containing u.
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Analysis of BFS Implementation
BFS(s):

Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

I Naive bound on running time is

O(n2): For each node, we spend O(n) time.
I Improved bound:

I How many times is a node popped from L? Exactly once.
I Time used by for loop for a node u: O(nu) time.
I Total time for all for loops:

∑
u∈G O(nu) = O(m) time.

I Maintaining layer information: O(1) time per node.
I Total time is O(n + m).
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Recursive DFS

I Procedure has �tail recursion�: recursive call is the last step.

I Can replace the recursion by an iteration: use a stack to explicitly implement
the recursion.
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Implementing DFS

I Maintain a stack S to store nodes to be explored.

I Maintain an array Explored and set Explored[v ] = true when the algorithm
pops v from the stack.

I Read textbook on how to construct the DFS tree.
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Comparing Recursion and Iteration
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Analysing DFS

I How many times is a node's adjacency list scanned?

Exactly once.

I The total amount of time to process edges incident on node u's is O(nu).

I The total running time of the algorithm is O(n +m).
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