
Priority Queues and Heaps

September 9, 2014

September 9, 2014 Priority Queues and Heaps



Motivation: Sort a List of Numbers

Sort

INSTANCE: Nonempty list x1, x2, . . . , xn of integers.

SOLUTION: A permutation y1, y2, . . . , yn of x1, x2, . . . , xn such that
yi ≤ yi+1, for all 1 ≤ i < n.

I Possible algorithm:
I Store all the numbers in a data structure D.
I Repeatedly �nd the smallest number in D, output it, and remove it.

I To get O(n log n) running time, each ��nd minimum� step and each �remove�
step must take O(log n) time.

September 9, 2014 Priority Queues and Heaps



Motivation: Sort a List of Numbers

Sort

INSTANCE: Nonempty list x1, x2, . . . , xn of integers.

SOLUTION: A permutation y1, y2, . . . , yn of x1, x2, . . . , xn such that
yi ≤ yi+1, for all 1 ≤ i < n.

I Possible algorithm:
I Store all the numbers in a data structure D.
I Repeatedly �nd the smallest number in D, output it, and remove it.

I To get O(n log n) running time, each ��nd minimum� step and each �remove�
step must take O(log n) time.

September 9, 2014 Priority Queues and Heaps



Motivation: Sort a List of Numbers

Sort

INSTANCE: Nonempty list x1, x2, . . . , xn of integers.

SOLUTION: A permutation y1, y2, . . . , yn of x1, x2, . . . , xn such that
yi ≤ yi+1, for all 1 ≤ i < n.

I Possible algorithm:
I Store all the numbers in a data structure D.
I Repeatedly �nd the smallest number in D, output it, and remove it.

I To get O(n log n) running time, each ��nd minimum� step and each �remove�
step must take O(log n) time.

September 9, 2014 Priority Queues and Heaps



Candidate Data Structures for Sorting

I Possible algorithm:
I Store all the numbers in a data structure D.
I Repeatedly �nd the smallest number in D, output it, and remove it.

I Data structure must support insertion of a number, �nding minimum, and
deleting minimum.

List Insertion and deletion take O(1) time but �nding minimum requires
scanning the list and takes Ω(n) time.

Sorted array Finding minimum takes O(1) time but insertion and deletion can
take Ω(n) time in the worst case.

September 9, 2014 Priority Queues and Heaps



Candidate Data Structures for Sorting

I Possible algorithm:
I Store all the numbers in a data structure D.
I Repeatedly �nd the smallest number in D, output it, and remove it.

I Data structure must support insertion of a number, �nding minimum, and
deleting minimum.

List Insertion and deletion take O(1) time but �nding minimum requires
scanning the list and takes Ω(n) time.

Sorted array Finding minimum takes O(1) time but insertion and deletion can
take Ω(n) time in the worst case.

September 9, 2014 Priority Queues and Heaps



Candidate Data Structures for Sorting

I Possible algorithm:
I Store all the numbers in a data structure D.
I Repeatedly �nd the smallest number in D, output it, and remove it.

I Data structure must support insertion of a number, �nding minimum, and
deleting minimum.

List Insertion and deletion take O(1) time but �nding minimum requires
scanning the list and takes Ω(n) time.

Sorted array Finding minimum takes O(1) time but insertion and deletion can
take Ω(n) time in the worst case.

September 9, 2014 Priority Queues and Heaps



Candidate Data Structures for Sorting

I Possible algorithm:
I Store all the numbers in a data structure D.
I Repeatedly �nd the smallest number in D, output it, and remove it.

I Data structure must support insertion of a number, �nding minimum, and
deleting minimum.

List Insertion and deletion take O(1) time but �nding minimum requires
scanning the list and takes Ω(n) time.

Sorted array Finding minimum takes O(1) time but insertion and deletion can
take Ω(n) time in the worst case.

September 9, 2014 Priority Queues and Heaps



Priority Queue

I Store a set S of elements, where each element v has a priority value key(v).

I Smaller key values ≡ higher priorities.

I Operations supported:
I �nd the element with smallest key
I remove the smallest element
I insert an element
I delete an element
I update the key of an element

I Element deletion and key update require knowledge of the position of the
element in the priority queue.

September 9, 2014 Priority Queues and Heaps



Heaps

I Combine bene�ts of both lists and sorted arrays.

I Conceptually, a heap is a balanced binary tree.

I Heap order: For every element v at a node i , the element w at i 's parent
satis�es key(w) ≤ key(v).

I We can implement a heap in a pointer-based data structure.

I Alternatively, assume maximum number N of elements is known in advance.

I Store nodes of the heap in an array.
I Node at index i has children at indices 2i and 2i + 1 and parent at index bi/2c.
I Index 1 is the root.
I How do you know that a node at index i is a leaf? If 2i > n, where n is the

current number of elements in the heap.

September 9, 2014 Priority Queues and Heaps



Heaps

I Combine bene�ts of both lists and sorted arrays.

I Conceptually, a heap is a balanced binary tree.

I Heap order: For every element v at a node i , the element w at i 's parent
satis�es key(w) ≤ key(v).

I We can implement a heap in a pointer-based data structure.

I Alternatively, assume maximum number N of elements is known in advance.

I Store nodes of the heap in an array.
I Node at index i has children at indices 2i and 2i + 1 and parent at index bi/2c.
I Index 1 is the root.
I How do you know that a node at index i is a leaf? If 2i > n, where n is the

current number of elements in the heap.

September 9, 2014 Priority Queues and Heaps



Heaps

I Combine bene�ts of both lists and sorted arrays.

I Conceptually, a heap is a balanced binary tree.

I Heap order: For every element v at a node i , the element w at i 's parent
satis�es key(w) ≤ key(v).

I We can implement a heap in a pointer-based data structure.

I Alternatively, assume maximum number N of elements is known in advance.

I Store nodes of the heap in an array.
I Node at index i has children at indices 2i and 2i + 1 and parent at index bi/2c.
I Index 1 is the root.
I How do you know that a node at index i is a leaf?

If 2i > n, where n is the

current number of elements in the heap.

September 9, 2014 Priority Queues and Heaps



Heaps

I Combine bene�ts of both lists and sorted arrays.

I Conceptually, a heap is a balanced binary tree.

I Heap order: For every element v at a node i , the element w at i 's parent
satis�es key(w) ≤ key(v).

I We can implement a heap in a pointer-based data structure.

I Alternatively, assume maximum number N of elements is known in advance.

I Store nodes of the heap in an array.
I Node at index i has children at indices 2i and 2i + 1 and parent at index bi/2c.
I Index 1 is the root.
I How do you know that a node at index i is a leaf? If 2i > n, where n is the

current number of elements in the heap.

September 9, 2014 Priority Queues and Heaps



Example of a Heap

September 9, 2014 Priority Queues and Heaps



Inserting an Element: Heapify-up

1. Insert new element at index n + 1.

2. Fix heap order using Heapify-up(H, n + 1).

September 9, 2014 Priority Queues and Heaps



Example of Heapify-up

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Setup

To the root

Index

Key

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Strategy

I Heapify-up(H, n + 1) invokes Heapify-up(H, b(n + 1)/2c), which invokes
Heapify-up(H, b(n + 1)/4c), . . . which invokes Heapify-up(H, 1).

I It is possible that the heap property may be violated at any invocation and at
more than one invocation.

I Let us be precise and make a formal de�nition: a heap violation

occurs at index i of H if key(H[i ]) < key(H[bi/2c]).
I What is the precise statement we want to prove?

I After Heapify-up(H, n + 1) returns, H is a heap.
I For every 1 ≤ i ≤ n + 1, after Heapify-up(H, i) returns, H is a

heap.

I Both statements don't say anything about where heap violations

occur!
I A better statement to prove: for every 1 ≤ i ≤ n + 1, if the heap

violation occurs only at i , then after Heapify-up(H, i) returns, H
is a heap.

I Two elements to proof strategy:

1. Heap violation can occur at most one index.

2. For every i , execution of Heapify-up(H, i) pushes heap violation from index i
to index bi/2c.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Strategy

I Heapify-up(H, n + 1) invokes Heapify-up(H, b(n + 1)/2c), which invokes
Heapify-up(H, b(n + 1)/4c), . . . which invokes Heapify-up(H, 1).

I It is possible that the heap property may be violated at any invocation and at
more than one invocation.

I Let us be precise and make a formal de�nition: a heap violation

occurs at index i of H if key(H[i ]) < key(H[bi/2c]).

I What is the precise statement we want to prove?

I After Heapify-up(H, n + 1) returns, H is a heap.
I For every 1 ≤ i ≤ n + 1, after Heapify-up(H, i) returns, H is a

heap.

I Both statements don't say anything about where heap violations

occur!
I A better statement to prove: for every 1 ≤ i ≤ n + 1, if the heap

violation occurs only at i , then after Heapify-up(H, i) returns, H
is a heap.

To the root

I Two elements to proof strategy:

1. Heap violation can occur at most one index.

2. For every i , execution of Heapify-up(H, i) pushes heap violation from index i
to index bi/2c.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Strategy

I Heapify-up(H, n + 1) invokes Heapify-up(H, b(n + 1)/2c), which invokes
Heapify-up(H, b(n + 1)/4c), . . . which invokes Heapify-up(H, 1).

I It is possible that the heap property may be violated at any invocation and at
more than one invocation.

I Let us be precise and make a formal de�nition: a heap violation

occurs at index i of H if key(H[i ]) < key(H[bi/2c]).
I What is the precise statement we want to prove?

I After Heapify-up(H, n + 1) returns, H is a heap.
I For every 1 ≤ i ≤ n + 1, after Heapify-up(H, i) returns, H is a

heap.

I Both statements don't say anything about where heap violations

occur!
I A better statement to prove: for every 1 ≤ i ≤ n + 1, if the heap

violation occurs only at i , then after Heapify-up(H, i) returns, H
is a heap.

To the root

I Two elements to proof strategy:

1. Heap violation can occur at most one index.

2. For every i , execution of Heapify-up(H, i) pushes heap violation from index i
to index bi/2c.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Strategy

I Heapify-up(H, n + 1) invokes Heapify-up(H, b(n + 1)/2c), which invokes
Heapify-up(H, b(n + 1)/4c), . . . which invokes Heapify-up(H, 1).

I It is possible that the heap property may be violated at any invocation and at
more than one invocation.

I Let us be precise and make a formal de�nition: a heap violation

occurs at index i of H if key(H[i ]) < key(H[bi/2c]).
I What is the precise statement we want to prove?

I After Heapify-up(H, n + 1) returns, H is a heap.
I For every 1 ≤ i ≤ n + 1, after Heapify-up(H, i) returns, H is a

heap.
I Both statements don't say anything about where heap violations

occur!

I A better statement to prove: for every 1 ≤ i ≤ n + 1, if the heap

violation occurs only at i , then after Heapify-up(H, i) returns, H
is a heap.

To the root

I Two elements to proof strategy:

1. Heap violation can occur at most one index.

2. For every i , execution of Heapify-up(H, i) pushes heap violation from index i
to index bi/2c.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Strategy

I Heapify-up(H, n + 1) invokes Heapify-up(H, b(n + 1)/2c), which invokes
Heapify-up(H, b(n + 1)/4c), . . . which invokes Heapify-up(H, 1).

I It is possible that the heap property may be violated at any invocation and at
more than one invocation.

I Let us be precise and make a formal de�nition: a heap violation

occurs at index i of H if key(H[i ]) < key(H[bi/2c]).
I What is the precise statement we want to prove?

I After Heapify-up(H, n + 1) returns, H is a heap.
I For every 1 ≤ i ≤ n + 1, after Heapify-up(H, i) returns, H is a

heap.
I Both statements don't say anything about where heap violations

occur!
I A better statement to prove: for every 1 ≤ i ≤ n + 1, if the heap

violation occurs only at i , then after Heapify-up(H, i) returns, H
is a heap.

To the root

I Two elements to proof strategy:

1. Heap violation can occur at most one index.

2. For every i , execution of Heapify-up(H, i) pushes heap violation from index i
to index bi/2c.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Strategy

I Heapify-up(H, n + 1) invokes Heapify-up(H, b(n + 1)/2c), which invokes
Heapify-up(H, b(n + 1)/4c), . . . which invokes Heapify-up(H, 1).

I It is possible that the heap property may be violated at any invocation and at
more than one invocation.

I Let us be precise and make a formal de�nition: a heap violation

occurs at index i of H if key(H[i ]) < key(H[bi/2c]).
I What is the precise statement we want to prove?

I After Heapify-up(H, n + 1) returns, H is a heap.
I For every 1 ≤ i ≤ n + 1, after Heapify-up(H, i) returns, H is a

heap.
I Both statements don't say anything about where heap violations

occur!
I A better statement to prove: for every 1 ≤ i ≤ n + 1, if the heap

violation occurs only at i , then after Heapify-up(H, i) returns, H
is a heap.

To the root

I Two elements to proof strategy:

1. Heap violation can occur at most one index.

2. For every i , execution of Heapify-up(H, i) pushes heap violation from index i
to index bi/2c.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Strategy

I Heapify-up(H, n + 1) invokes Heapify-up(H, b(n + 1)/2c), which invokes
Heapify-up(H, b(n + 1)/4c), . . . which invokes Heapify-up(H, 1).

I It is possible that the heap property may be violated at any invocation and at
more than one invocation.

I Let us be precise and make a formal de�nition: a heap violation

occurs at index i of H if key(H[i ]) < key(H[bi/2c]).
I What is the precise statement we want to prove?

I After Heapify-up(H, n + 1) returns, H is a heap.
I For every 1 ≤ i ≤ n + 1, after Heapify-up(H, i) returns, H is a

heap.
I Both statements don't say anything about where heap violations

occur!
I A better statement to prove: for every 1 ≤ i ≤ n + 1, if the heap

violation occurs only at i , then after Heapify-up(H, i) returns, H
is a heap.

To the root

I Two elements to proof strategy:

1. Heap violation can occur at most one index.

2. For every i , execution of Heapify-up(H, i) pushes heap violation from index i
to index bi/2c.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Proof by Induction

To prove:

For every 1 ≤ i ≤ n + 1, if the heap violation occurs only at i , then after
Heapify-up(H, i) returns, H is a heap.

I Base case: i = 1. Statement is trivially true, since node with index 1 has no
parent; hence, no heap violation can occur at this index.

I Inductive hypothesis: (suggested by statement we need to prove) If the heap
violation occurs only at bi/2c, then after Heapify-up(H, bi/2c) returns, H
is a heap.

I Inductive step: What do we need to prove? If the heap violation occurs only
at i , then after the swap statement in Heapify-up(H, i), H is a heap or the
heap violation occurs only at bi/2c.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Proof by Induction

To prove:

For every 1 ≤ i ≤ n + 1, if the heap violation occurs only at i , then after
Heapify-up(H, i) returns, H is a heap.

I Base case: i = 1.

Statement is trivially true, since node with index 1 has no
parent; hence, no heap violation can occur at this index.

I Inductive hypothesis: (suggested by statement we need to prove) If the heap
violation occurs only at bi/2c, then after Heapify-up(H, bi/2c) returns, H
is a heap.

I Inductive step: What do we need to prove? If the heap violation occurs only
at i , then after the swap statement in Heapify-up(H, i), H is a heap or the
heap violation occurs only at bi/2c.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Proof by Induction

To prove:

For every 1 ≤ i ≤ n + 1, if the heap violation occurs only at i , then after
Heapify-up(H, i) returns, H is a heap.

I Base case: i = 1. Statement is trivially true, since node with index 1 has no
parent; hence, no heap violation can occur at this index.

I Inductive hypothesis: (suggested by statement we need to prove) If the heap
violation occurs only at bi/2c, then after Heapify-up(H, bi/2c) returns, H
is a heap.

I Inductive step: What do we need to prove? If the heap violation occurs only
at i , then after the swap statement in Heapify-up(H, i), H is a heap or the
heap violation occurs only at bi/2c.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Proof by Induction

To prove:

For every 1 ≤ i ≤ n + 1, if the heap violation occurs only at i , then after
Heapify-up(H, i) returns, H is a heap.

I Base case: i = 1. Statement is trivially true, since node with index 1 has no
parent; hence, no heap violation can occur at this index.

I Inductive hypothesis: (suggested by statement we need to prove)

If the heap
violation occurs only at bi/2c, then after Heapify-up(H, bi/2c) returns, H
is a heap.

I Inductive step: What do we need to prove? If the heap violation occurs only
at i , then after the swap statement in Heapify-up(H, i), H is a heap or the
heap violation occurs only at bi/2c.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Proof by Induction

To prove:

For every 1 ≤ i ≤ n + 1, if the heap violation occurs only at i , then after
Heapify-up(H, i) returns, H is a heap.

I Base case: i = 1. Statement is trivially true, since node with index 1 has no
parent; hence, no heap violation can occur at this index.

I Inductive hypothesis: (suggested by statement we need to prove) If the heap
violation occurs only at bi/2c, then after Heapify-up(H, bi/2c) returns, H
is a heap.

I Inductive step: What do we need to prove? If the heap violation occurs only
at i , then after the swap statement in Heapify-up(H, i), H is a heap or the
heap violation occurs only at bi/2c.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Proof by Induction

To prove:

For every 1 ≤ i ≤ n + 1, if the heap violation occurs only at i , then after
Heapify-up(H, i) returns, H is a heap.

I Base case: i = 1. Statement is trivially true, since node with index 1 has no
parent; hence, no heap violation can occur at this index.

I Inductive hypothesis: (suggested by statement we need to prove) If the heap
violation occurs only at bi/2c, then after Heapify-up(H, bi/2c) returns, H
is a heap.

I Inductive step: What do we need to prove?

If the heap violation occurs only
at i , then after the swap statement in Heapify-up(H, i), H is a heap or the
heap violation occurs only at bi/2c.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Proof by Induction

To prove:

For every 1 ≤ i ≤ n + 1, if the heap violation occurs only at i , then after
Heapify-up(H, i) returns, H is a heap.

I Base case: i = 1. Statement is trivially true, since node with index 1 has no
parent; hence, no heap violation can occur at this index.

I Inductive hypothesis: (suggested by statement we need to prove) If the heap
violation occurs only at bi/2c, then after Heapify-up(H, bi/2c) returns, H
is a heap.

I Inductive step: What do we need to prove? If the heap violation occurs only
at i , then after the swap statement in Heapify-up(H, i), H is a heap or the
heap violation occurs only at bi/2c.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Inductive Step
To the root

I Starting point: Heap violation occurs only at i .
I Goal: Before Heapify-up(H, bi/2c): H is a heap or the heap violation

occurs only at bi/2c.

I What is the situation after the swap statement in Heapify-up(H, i)?
I How do we show that x < u, v? Di�cult since we do not know anything

about relationship of x with respect to u and v from the proof so far.
I Let us try de�nition from the textbook (slightly modi�ed).

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Inductive Step
To the root

Satisfy heap
property?

I Starting point: Heap violation occurs only at i .
I Goal: Before Heapify-up(H, bi/2c): H is a heap or the heap violation

occurs only at bi/2c.
I What is the situation after the swap statement in Heapify-up(H, i)?

I How do we show that x < u, v? Di�cult since we do not know anything
about relationship of x with respect to u and v from the proof so far.

I Let us try de�nition from the textbook (slightly modi�ed).

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Inductive Step
To the root

Satisfy heap
property?

I Starting point: Heap violation occurs only at i .
I Goal: Before Heapify-up(H, bi/2c): H is a heap or the heap violation

occurs only at bi/2c.
I What is the situation after the swap statement in Heapify-up(H, i)?

I How do we show that x < u, v? Di�cult since we do not know anything
about relationship of x with respect to u and v from the proof so far.

I Let us try de�nition from the textbook (slightly modi�ed).

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Inductive Step
To the root

Satisfy heap
property?

I Starting point: Heap violation occurs only at i .
I Goal: Before Heapify-up(H, bi/2c): H is a heap or the heap violation

occurs only at bi/2c.
I What is the situation after the swap statement in Heapify-up(H, i)?
I How do we show that x < u, v? Di�cult since we do not know anything

about relationship of x with respect to u and v from the proof so far.

I Let us try de�nition from the textbook (slightly modi�ed).

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Inductive Step
To the root

Satisfy heap
property?

I Starting point: Heap violation occurs only at i .
I Goal: Before Heapify-up(H, bi/2c): H is a heap or the heap violation

occurs only at bi/2c.
I What is the situation after the swap statement in Heapify-up(H, i)?
I How do we show that x < u, v? Di�cult since we do not know anything

about relationship of x with respect to u and v from the proof so far.
I Let us try de�nition from the textbook (slightly modi�ed).

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Strategy

I Modi�ed de�nition from textbook: H is too small at index i
if

1. key(H[i ]) < key(H[bi/2c]) and

2. there is a value α such that increasing key(H[i ]) to α makes

H a heap.

I We want to prove for every 1 ≤ i ≤ n + 1, if H is too small
at i , then after Heapify-up(H, i) returns, H is a heap.

To the root

I Two elements to proof strategy:

1. Heap violation can occur at most one index and we know how to �x it.

2. For every i , execution of Heapify-up(H, i) pushes heap violation from index i
to index bi/2c.

To prove:

For every 1 ≤ i ≤ n+1, if H is too small at i , then after Heapify-up(H, i) returns,
H is a heap.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Strategy

I Modi�ed de�nition from textbook: H is too small at index i
if

1. key(H[i ]) < key(H[bi/2c]) and
2. there is a value α such that increasing key(H[i ]) to α makes

H a heap.

I We want to prove for every 1 ≤ i ≤ n + 1, if H is too small
at i , then after Heapify-up(H, i) returns, H is a heap.

To the root

I Two elements to proof strategy:

1. Heap violation can occur at most one index and we know how to �x it.

2. For every i , execution of Heapify-up(H, i) pushes heap violation from index i
to index bi/2c.

To prove:

For every 1 ≤ i ≤ n+1, if H is too small at i , then after Heapify-up(H, i) returns,
H is a heap.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Strategy

I Modi�ed de�nition from textbook: H is too small at index i
if

1. key(H[i ]) < key(H[bi/2c]) and
2. there is a value α such that increasing key(H[i ]) to α makes

H a heap.

I We want to prove for every 1 ≤ i ≤ n + 1, if H is too small
at i , then after Heapify-up(H, i) returns, H is a heap.

To the root

I Two elements to proof strategy:

1. Heap violation can occur at most one index and we know how to �x it.

2. For every i , execution of Heapify-up(H, i) pushes heap violation from index i
to index bi/2c.

To prove:

For every 1 ≤ i ≤ n+1, if H is too small at i , then after Heapify-up(H, i) returns,
H is a heap.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Strategy

I Modi�ed de�nition from textbook: H is too small at index i
if

1. key(H[i ]) < key(H[bi/2c]) and
2. there is a value α such that increasing key(H[i ]) to α makes

H a heap.

I We want to prove for every 1 ≤ i ≤ n + 1, if H is too small
at i , then after Heapify-up(H, i) returns, H is a heap.

To the root

I Two elements to proof strategy:

1. Heap violation can occur at most one index and we know how to �x it.

2. For every i , execution of Heapify-up(H, i) pushes heap violation from index i
to index bi/2c.

To prove:

For every 1 ≤ i ≤ n+1, if H is too small at i , then after Heapify-up(H, i) returns,
H is a heap.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Strategy

I Modi�ed de�nition from textbook: H is too small at index i
if

1. key(H[i ]) < key(H[bi/2c]) and
2. there is a value α such that increasing key(H[i ]) to α makes

H a heap.

I We want to prove for every 1 ≤ i ≤ n + 1, if H is too small
at i , then after Heapify-up(H, i) returns, H is a heap.

To the root

I Two elements to proof strategy:

1. Heap violation can occur at most one index and we know how to �x it.

2. For every i , execution of Heapify-up(H, i) pushes heap violation from index i
to index bi/2c.

To prove:

For every 1 ≤ i ≤ n+1, if H is too small at i , then after Heapify-up(H, i) returns,
H is a heap.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Base Case

Root

1

I Base case: i = 1.

I H is too small at 1.
I There is a value α ≥ key(H[1]) such that increasing key(H[1]) to α makes H

a heap.
I key(H[1]) ≤ α ≤ key(H[2]), key(H[3]) =⇒ H is a heap.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Base Case

Root

1

I Base case: i = 1.
I H is too small at 1.

I There is a value α ≥ key(H[1]) such that increasing key(H[1]) to α makes H
a heap.

I key(H[1]) ≤ α ≤ key(H[2]), key(H[3]) =⇒ H is a heap.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Base Case

Root

1

I Base case: i = 1.
I H is too small at 1.
I There is a value α ≥ key(H[1]) such that increasing key(H[1]) to α makes H

a heap.

I key(H[1]) ≤ α ≤ key(H[2]), key(H[3]) =⇒ H is a heap.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Base Case

Root

1

I Base case: i = 1.
I H is too small at 1.
I There is a value α ≥ key(H[1]) such that increasing key(H[1]) to α makes H

a heap.
I key(H[1]) ≤ α ≤ key(H[2]), key(H[3]) =⇒ H is a heap.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Inductive Hypothesis

To prove:

For every 1 ≤ i ≤ n+1, if H is too small at i , then after Heapify-up(H, i) returns,
H is a heap.

I Inductive hypothesis: (suggested by statement we need to prove) If H is too
small at bi/2c, then after Heapify-up(H, bi/2c) returns, H is a heap.

I Inductive step: What do we need to prove? If H is too small at i , then after
the swap statement in Heapify-up(H, i), H is a heap or H is too small at
bi/2c.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Inductive Hypothesis

To prove:

For every 1 ≤ i ≤ n+1, if H is too small at i , then after Heapify-up(H, i) returns,
H is a heap.

I Inductive hypothesis: (suggested by statement we need to prove)

If H is too
small at bi/2c, then after Heapify-up(H, bi/2c) returns, H is a heap.

I Inductive step: What do we need to prove? If H is too small at i , then after
the swap statement in Heapify-up(H, i), H is a heap or H is too small at
bi/2c.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Inductive Hypothesis

To prove:

For every 1 ≤ i ≤ n+1, if H is too small at i , then after Heapify-up(H, i) returns,
H is a heap.

I Inductive hypothesis: (suggested by statement we need to prove) If H is too
small at bi/2c, then after Heapify-up(H, bi/2c) returns, H is a heap.

I Inductive step: What do we need to prove? If H is too small at i , then after
the swap statement in Heapify-up(H, i), H is a heap or H is too small at
bi/2c.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Inductive Hypothesis

To prove:

For every 1 ≤ i ≤ n+1, if H is too small at i , then after Heapify-up(H, i) returns,
H is a heap.

I Inductive hypothesis: (suggested by statement we need to prove) If H is too
small at bi/2c, then after Heapify-up(H, bi/2c) returns, H is a heap.

I Inductive step: What do we need to prove?

If H is too small at i , then after
the swap statement in Heapify-up(H, i), H is a heap or H is too small at
bi/2c.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Inductive Hypothesis

To prove:

For every 1 ≤ i ≤ n+1, if H is too small at i , then after Heapify-up(H, i) returns,
H is a heap.

I Inductive hypothesis: (suggested by statement we need to prove) If H is too
small at bi/2c, then after Heapify-up(H, bi/2c) returns, H is a heap.

I Inductive step: What do we need to prove? If H is too small at i , then after
the swap statement in Heapify-up(H, i), H is a heap or H is too small at
bi/2c.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Inductive Step
To the root

I Starting point: H is too small at i .
I Goal: Before Heapify-up(H, bi/2c): H is a heap or H is too small at bi/2c.

I What is the situation after the swap statement in Heapify-up(H, i)?
I How do we show that x < u, v?

I Use the fact that H is too small at i : there is an α ≥ x such that increasing x
to α makes H a heap.

I Therefore, x ≤ α ≤ u, v .

I Now if H is not a heap, why is it too small at bi/2c?

Increasing y to x makes
H a heap!

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Inductive Step
To the root

Satisfy heap
property?

I Starting point: H is too small at i .
I Goal: Before Heapify-up(H, bi/2c): H is a heap or H is too small at bi/2c.
I What is the situation after the swap statement in Heapify-up(H, i)?

I How do we show that x < u, v?

I Use the fact that H is too small at i : there is an α ≥ x such that increasing x
to α makes H a heap.

I Therefore, x ≤ α ≤ u, v .

I Now if H is not a heap, why is it too small at bi/2c?

Increasing y to x makes
H a heap!

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Inductive Step
To the root

Satisfy heap
property?

I Starting point: H is too small at i .
I Goal: Before Heapify-up(H, bi/2c): H is a heap or H is too small at bi/2c.
I What is the situation after the swap statement in Heapify-up(H, i)?

I How do we show that x < u, v?

I Use the fact that H is too small at i : there is an α ≥ x such that increasing x
to α makes H a heap.

I Therefore, x ≤ α ≤ u, v .

I Now if H is not a heap, why is it too small at bi/2c?

Increasing y to x makes
H a heap!

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Inductive Step
To the root

Satisfy heap
property?

I Starting point: H is too small at i .
I Goal: Before Heapify-up(H, bi/2c): H is a heap or H is too small at bi/2c.
I What is the situation after the swap statement in Heapify-up(H, i)?
I How do we show that x < u, v?

I Use the fact that H is too small at i : there is an α ≥ x such that increasing x
to α makes H a heap.

I Therefore, x ≤ α ≤ u, v .
I Now if H is not a heap, why is it too small at bi/2c?

Increasing y to x makes
H a heap!

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Inductive Step
To the root

Satisfy heap
property?

I Starting point: H is too small at i .
I Goal: Before Heapify-up(H, bi/2c): H is a heap or H is too small at bi/2c.
I What is the situation after the swap statement in Heapify-up(H, i)?
I How do we show that x < u, v?

I Use the fact that H is too small at i : there is an α ≥ x such that increasing x
to α makes H a heap.

I Therefore, x ≤ α ≤ u, v .
I Now if H is not a heap, why is it too small at bi/2c?

Increasing y to x makes
H a heap!

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Inductive Step
To the root

Satisfy heap
property?

I Starting point: H is too small at i .
I Goal: Before Heapify-up(H, bi/2c): H is a heap or H is too small at bi/2c.
I What is the situation after the swap statement in Heapify-up(H, i)?
I How do we show that x < u, v?

I Use the fact that H is too small at i : there is an α ≥ x such that increasing x
to α makes H a heap.

I Therefore, x ≤ α ≤ u, v .

I Now if H is not a heap, why is it too small at bi/2c?

Increasing y to x makes
H a heap!

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Inductive Step
To the root

Satisfy heap
property?

I Starting point: H is too small at i .
I Goal: Before Heapify-up(H, bi/2c): H is a heap or H is too small at bi/2c.
I What is the situation after the swap statement in Heapify-up(H, i)?
I How do we show that x < u, v?

I Use the fact that H is too small at i : there is an α ≥ x such that increasing x
to α makes H a heap.

I Therefore, x ≤ α ≤ u, v .
I Now if H is not a heap, why is it too small at bi/2c?

Increasing y to x makes
H a heap!

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Inductive Step
To the root

Satisfy heap
property?

I Starting point: H is too small at i .
I Goal: Before Heapify-up(H, bi/2c): H is a heap or H is too small at bi/2c.
I What is the situation after the swap statement in Heapify-up(H, i)?
I How do we show that x < u, v?

I Use the fact that H is too small at i : there is an α ≥ x such that increasing x
to α makes H a heap.

I Therefore, x ≤ α ≤ u, v .
I Now if H is not a heap, why is it too small at bi/2c? Increasing y to x makes

H a heap!
September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Completing the Proof

I For every 1 ≤ i ≤ n + 1, we have shown if H is too small at i , then after
Heapify-up(H, i) returns, H is a heap.

I We know that before Heapify-up(H, n + 1), H is too small at n + 1. Why?

I Therefore, setting i = n + 1, we have that Heapify-up(H, n + 1) creates a
heap on all n + 1 elements.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Completing the Proof

I For every 1 ≤ i ≤ n + 1, we have shown if H is too small at i , then after
Heapify-up(H, i) returns, H is a heap.

I We know that before Heapify-up(H, n + 1), H is too small at n + 1. Why?

I Therefore, setting i = n + 1, we have that Heapify-up(H, n + 1) creates a
heap on all n + 1 elements.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Completing the Proof

I For every 1 ≤ i ≤ n + 1, we have shown if H is too small at i , then after
Heapify-up(H, i) returns, H is a heap.

I We know that before Heapify-up(H, n + 1), H is too small at n + 1. Why?

I Therefore, setting i = n + 1, we have that Heapify-up(H, n + 1) creates a
heap on all n + 1 elements.

September 9, 2014 Priority Queues and Heaps



Running time of Heapify-up

I Running time of Heapify-up(i)

is O(log i).

T (i) ≤

{
T (b i

2
c) + O(1) if i > 1

O(1) if i = 1

September 9, 2014 Priority Queues and Heaps



Running time of Heapify-up

I Running time of Heapify-up(i) is O(log i).

T (i) ≤

{
T (b i

2
c) + O(1) if i > 1

O(1) if i = 1

September 9, 2014 Priority Queues and Heaps



Deleting an Element: Heapify-down

I Suppose H has n + 1 elements.

1. Delete element at H[i ] by moving element at H[n + 1] to H[i ].
2. If element at H[i ] is too small, �x heap order using Heapify-up(H, i).
3. If element at H[i ] is too large, �x heap order using Heapify-down(H, i).

September 9, 2014 Priority Queues and Heaps



Example of Heapify-down

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-down

I H is too big at j if there is a value α ≤ key(H[j ]) such that decreasing
key(H[j ]) to α makes H a heap. (Note: at start, H is indeed too big at i .)

I Statement to prove: for every i ≤ j ≤ n, if H is too big at j then
Heapify-down(H, j) creates a heap.

I Proof by reverse induction on j from n down to i .

I Base case: 2j > n. If decreasing key(H[j ]) to α makes H a heap, then
key(H[j ]) ≤ key(H[bj/2c]).

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-down

I H is too big at j if there is a value α ≤ key(H[j ]) such that decreasing
key(H[j ]) to α makes H a heap. (Note: at start, H is indeed too big at i .)

I Statement to prove: for every i ≤ j ≤ n, if H is too big at j then
Heapify-down(H, j) creates a heap.

I Proof by reverse induction on j from n down to i .

I Base case: 2j > n. If decreasing key(H[j ]) to α makes H a heap, then
key(H[j ]) ≤ key(H[bj/2c]).

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-down

I H is too big at j if there is a value α ≤ key(H[j ]) such that decreasing
key(H[j ]) to α makes H a heap. (Note: at start, H is indeed too big at i .)

I Statement to prove: for every i ≤ j ≤ n, if H is too big at j then
Heapify-down(H, j) creates a heap.

I Proof by reverse induction on j from n down to i .

I Base case: 2j > n. If decreasing key(H[j ]) to α makes H a heap, then
key(H[j ]) ≤ key(H[bj/2c]).

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-down

I H is too big at j if there is a value α ≤ key(H[j ]) such that decreasing
key(H[j ]) to α makes H a heap. (Note: at start, H is indeed too big at i .)

I Statement to prove: for every i ≤ j ≤ n, if H is too big at j then
Heapify-down(H, j) creates a heap.

I Proof by reverse induction on j from n down to i .

I Base case:

2j > n. If decreasing key(H[j ]) to α makes H a heap, then
key(H[j ]) ≤ key(H[bj/2c]).

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-down

I H is too big at j if there is a value α ≤ key(H[j ]) such that decreasing
key(H[j ]) to α makes H a heap. (Note: at start, H is indeed too big at i .)

I Statement to prove: for every i ≤ j ≤ n, if H is too big at j then
Heapify-down(H, j) creates a heap.

I Proof by reverse induction on j from n down to i .

I Base case: 2j > n. If decreasing key(H[j ]) to α makes H a heap, then
key(H[j ]) ≤ key(H[bj/2c]).

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-down: Inductive Step

I H is too big at j if there is a value α ≤ key(H[j ]) such that decreasing
key(H[j ]) to α makes H a heap.

I Inductive hypothesis (two parts):
I If H too big at 2j , then Heapify-down(H, 2j) creates a heap.
I If H is too big at 2j + 1, then Heapify-down(H, 2j + 1) creates a heap.

I Start of inductive step: H is too big at j .
I Inductive step: After the swap statement in Heapify-down(H, j), (a) H is a

heap, (b) H is too big at 2j , or (c) H is too big at 2j + 1. Proof on board.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-down: Inductive Step

I H is too big at j if there is a value α ≤ key(H[j ]) such that decreasing
key(H[j ]) to α makes H a heap.

I Inductive hypothesis (two parts):
I If H too big at 2j , then Heapify-down(H, 2j) creates a heap.
I If H is too big at 2j + 1, then Heapify-down(H, 2j + 1) creates a heap.

I Start of inductive step: H is too big at j .
I Inductive step: After the swap statement in Heapify-down(H, j), (a) H is a

heap, (b) H is too big at 2j , or (c) H is too big at 2j + 1. Proof on board.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-down: Inductive Step

I H is too big at j if there is a value α ≤ key(H[j ]) such that decreasing
key(H[j ]) to α makes H a heap.

I Inductive hypothesis (two parts):
I If H too big at 2j , then Heapify-down(H, 2j) creates a heap.
I If H is too big at 2j + 1, then Heapify-down(H, 2j + 1) creates a heap.

I Start of inductive step: H is too big at j .
I Inductive step: After the swap statement in Heapify-down(H, j), (a) H is a

heap, (b) H is too big at 2j , or (c) H is too big at 2j + 1. Proof on board.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-down: Inductive Step

I H is too big at j if there is a value α ≤ key(H[j ]) such that decreasing
key(H[j ]) to α makes H a heap.

I Inductive hypothesis (two parts):
I If H too big at 2j , then Heapify-down(H, 2j) creates a heap.
I If H is too big at 2j + 1, then Heapify-down(H, 2j + 1) creates a heap.

I Start of inductive step: H is too big at j .
I Inductive step:

After the swap statement in Heapify-down(H, j), (a) H is a
heap, (b) H is too big at 2j , or (c) H is too big at 2j + 1. Proof on board.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-down: Inductive Step

I H is too big at j if there is a value α ≤ key(H[j ]) such that decreasing
key(H[j ]) to α makes H a heap.

I Inductive hypothesis (two parts):
I If H too big at 2j , then Heapify-down(H, 2j) creates a heap.
I If H is too big at 2j + 1, then Heapify-down(H, 2j + 1) creates a heap.

I Start of inductive step: H is too big at j .
I Inductive step: After the swap statement in Heapify-down(H, j), (a) H is a

heap, (b) H is too big at 2j , or (c) H is too big at 2j + 1.

Proof on board.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-down: Inductive Step

I H is too big at j if there is a value α ≤ key(H[j ]) such that decreasing
key(H[j ]) to α makes H a heap.

I Inductive hypothesis (two parts):
I If H too big at 2j , then Heapify-down(H, 2j) creates a heap.
I If H is too big at 2j + 1, then Heapify-down(H, 2j + 1) creates a heap.

I Start of inductive step: H is too big at j .
I Inductive step: After the swap statement in Heapify-down(H, j), (a) H is a

heap, (b) H is too big at 2j , or (c) H is too big at 2j + 1. Proof on board.

September 9, 2014 Priority Queues and Heaps



Running time of Heapify-down

I Recurrence for running time of Heapify-down(H, i)

T (i) =

{
max

(
T (2i),T (2i + 1)

)
+ 1 if i > 1

O(1) if 2i > n

I Alternative proof since the recurrence is ugly.
I Every invocation of Heapify-down increases its second argument by a factor

of at least two.
I After k invocations argument must be at least i2k ≤ n, which implies that

k ≤ log
2
n/i . Therefore running time is O(log

2
n/i).

September 9, 2014 Priority Queues and Heaps



Running time of Heapify-down

I Recurrence for running time of Heapify-down(H, i)

T (i) =

{
max

(
T (2i),T (2i + 1)

)
+ 1 if i > 1

O(1) if 2i > n

I Alternative proof since the recurrence is ugly.
I Every invocation of Heapify-down increases its second argument by a factor

of at least two.
I After k invocations argument must be at least i2k ≤ n, which implies that

k ≤ log
2
n/i . Therefore running time is O(log

2
n/i).

September 9, 2014 Priority Queues and Heaps



Running time of Heapify-down

I Recurrence for running time of Heapify-down(H, i)

T (i) =

{
max

(
T (2i),T (2i + 1)

)
+ 1 if i > 1

O(1) if 2i > n

I Alternative proof since the recurrence is ugly.

I Every invocation of Heapify-down increases its second argument by a factor
of at least two.

I After k invocations argument must be at least i2k ≤ n, which implies that
k ≤ log

2
n/i . Therefore running time is O(log

2
n/i).

September 9, 2014 Priority Queues and Heaps



Running time of Heapify-down

I Recurrence for running time of Heapify-down(H, i)

T (i) =

{
max

(
T (2i),T (2i + 1)

)
+ 1 if i > 1

O(1) if 2i > n

I Alternative proof since the recurrence is ugly.
I Every invocation of Heapify-down increases its second argument by a factor

of at least two.

I After k invocations argument must be at least i2k ≤ n, which implies that
k ≤ log

2
n/i . Therefore running time is O(log

2
n/i).

September 9, 2014 Priority Queues and Heaps



Running time of Heapify-down

I Recurrence for running time of Heapify-down(H, i)

T (i) =

{
max

(
T (2i),T (2i + 1)

)
+ 1 if i > 1

O(1) if 2i > n

I Alternative proof since the recurrence is ugly.
I Every invocation of Heapify-down increases its second argument by a factor

of at least two.
I After k invocations argument must be at least

i2k ≤ n, which implies that
k ≤ log

2
n/i . Therefore running time is O(log

2
n/i).

September 9, 2014 Priority Queues and Heaps



Running time of Heapify-down

I Recurrence for running time of Heapify-down(H, i)

T (i) =

{
max

(
T (2i),T (2i + 1)

)
+ 1 if i > 1

O(1) if 2i > n

I Alternative proof since the recurrence is ugly.
I Every invocation of Heapify-down increases its second argument by a factor

of at least two.
I After k invocations argument must be at least i2k ≤ n, which implies that

k ≤ log
2
n/i . Therefore running time is O(log

2
n/i).

September 9, 2014 Priority Queues and Heaps



Sorting Numbers with the Priority Queue

Sort

INSTANCE: Nonempty list x1, x2, . . . , xn of integers.

SOLUTION: A permutation y1, y2, . . . , yn of x1, x2, . . . , xn such that
yi ≤ yi+1, for all 1 ≤ i < n.

I Final algorithm:
I Insert each number in a priority queue H.
I Repeatedly �nd the smallest number in H, output it, and delete it from H.

I Each insertion and deletion takes O(log n) time for a total running time of
O(n log n).

September 9, 2014 Priority Queues and Heaps



Sorting Numbers with the Priority Queue

Sort

INSTANCE: Nonempty list x1, x2, . . . , xn of integers.

SOLUTION: A permutation y1, y2, . . . , yn of x1, x2, . . . , xn such that
yi ≤ yi+1, for all 1 ≤ i < n.

I Final algorithm:
I Insert each number in a priority queue H.
I Repeatedly �nd the smallest number in H, output it, and delete it from H.

I Each insertion and deletion takes O(log n) time for a total running time of
O(n log n).

September 9, 2014 Priority Queues and Heaps



Sorting Numbers with the Priority Queue

Sort

INSTANCE: Nonempty list x1, x2, . . . , xn of integers.

SOLUTION: A permutation y1, y2, . . . , yn of x1, x2, . . . , xn such that
yi ≤ yi+1, for all 1 ≤ i < n.

I Final algorithm:
I Insert each number in a priority queue H.
I Repeatedly �nd the smallest number in H, output it, and delete it from H.

I Each insertion and deletion takes O(log n) time for a total running time of
O(n log n).

September 9, 2014 Priority Queues and Heaps


