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Motivation: Sort a List of Numbers

Sort

INSTANCE: Nonempty list x1, x2, . . . , xn of integers.

SOLUTION: A permutation y1, y2, . . . , yn of x1, x2, . . . , xn such that
yi ≤ yi+1, for all 1 ≤ i < n.

I Possible algorithm:
I Store all the numbers in a data structure D.
I Repeatedly �nd the smallest number in D, output it, and remove it.

I To get O(n log n) running time, each ��nd minimum� step and each �remove�
step must take O(log n) time.
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Candidate Data Structures for Sorting

I Possible algorithm:
I Store all the numbers in a data structure D.
I Repeatedly �nd the smallest number in D, output it, and remove it.

I Data structure must support insertion of a number, �nding minimum, and
deleting minimum.

List Insertion and deletion take O(1) time but �nding minimum requires
scanning the list and takes Ω(n) time.

Sorted array Finding minimum takes O(1) time but insertion and deletion can
take Ω(n) time in the worst case.
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Priority Queue

I Store a set S of elements, where each element v has a priority value key(v).

I Smaller key values ≡ higher priorities.

I Operations supported:
I �nd the element with smallest key
I remove the smallest element
I insert an element
I delete an element
I update the key of an element

I Element deletion and key update require knowledge of the position of the
element in the priority queue.

September 9, 2014 Priority Queues and Heaps



Heaps

I Combine bene�ts of both lists and sorted arrays.

I Conceptually, a heap is a balanced binary tree.

I Heap order: For every element v at a node i , the element w at i 's parent
satis�es key(w) ≤ key(v).

I We can implement a heap in a pointer-based data structure.

I Alternatively, assume maximum number N of elements is known in advance.

I Store nodes of the heap in an array.
I Node at index i has children at indices 2i and 2i + 1 and parent at index bi/2c.
I Index 1 is the root.
I How do you know that a node at index i is a leaf? If 2i > n, where n is the

current number of elements in the heap.
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Example of a Heap
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Inserting an Element: Heapify-up

1. Insert new element at index n + 1.

2. Fix heap order using Heapify-up(H, n + 1).
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Example of Heapify-up
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Correctness of Heapify-up: Setup

To the root

Index

Key

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Strategy

I Heapify-up(H, n + 1) invokes Heapify-up(H, b(n + 1)/2c), which invokes
Heapify-up(H, b(n + 1)/4c), . . . which invokes Heapify-up(H, 1).

I It is possible that the heap property may be violated at any invocation and at
more than one invocation.

I Let us be precise and make a formal de�nition: a heap violation

occurs at index i of H if key(H[i ]) < key(H[bi/2c]).
I What is the precise statement we want to prove?

I After Heapify-up(H, n + 1) returns, H is a heap.
I For every 1 ≤ i ≤ n + 1, after Heapify-up(H, i) returns, H is a

heap.

I Both statements don't say anything about where heap violations

occur!
I A better statement to prove: for every 1 ≤ i ≤ n + 1, if the heap

violation occurs only at i , then after Heapify-up(H, i) returns, H
is a heap.

I Two elements to proof strategy:

1. Heap violation can occur at most one index.

2. For every i , execution of Heapify-up(H, i) pushes heap violation from index i
to index bi/2c.
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Correctness of Heapify-up: Proof by Induction

To prove:

For every 1 ≤ i ≤ n + 1, if the heap violation occurs only at i , then after
Heapify-up(H, i) returns, H is a heap.

I Base case: i = 1. Statement is trivially true, since node with index 1 has no
parent; hence, no heap violation can occur at this index.

I Inductive hypothesis: (suggested by statement we need to prove) If the heap
violation occurs only at bi/2c, then after Heapify-up(H, bi/2c) returns, H
is a heap.

I Inductive step: What do we need to prove? If the heap violation occurs only
at i , then after the swap statement in Heapify-up(H, i), H is a heap or the
heap violation occurs only at bi/2c.
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Correctness of Heapify-up: Inductive Step
To the root

I Starting point: Heap violation occurs only at i .
I Goal: Before Heapify-up(H, bi/2c): H is a heap or the heap violation

occurs only at bi/2c.

I What is the situation after the swap statement in Heapify-up(H, i)?
I How do we show that x < u, v? Di�cult since we do not know anything

about relationship of x with respect to u and v from the proof so far.
I Let us try de�nition from the textbook (slightly modi�ed).
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Correctness of Heapify-up: Strategy

I Modi�ed de�nition from textbook: H is too small at index i
if

1. key(H[i ]) < key(H[bi/2c]) and

2. there is a value α such that increasing key(H[i ]) to α makes

H a heap.

I We want to prove for every 1 ≤ i ≤ n + 1, if H is too small
at i , then after Heapify-up(H, i) returns, H is a heap.

To the root

I Two elements to proof strategy:

1. Heap violation can occur at most one index and we know how to �x it.

2. For every i , execution of Heapify-up(H, i) pushes heap violation from index i
to index bi/2c.

To prove:

For every 1 ≤ i ≤ n+1, if H is too small at i , then after Heapify-up(H, i) returns,
H is a heap.
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2. For every i , execution of Heapify-up(H, i) pushes heap violation from index i
to index bi/2c.

To prove:

For every 1 ≤ i ≤ n+1, if H is too small at i , then after Heapify-up(H, i) returns,
H is a heap.
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Correctness of Heapify-up: Base Case

Root

1

I Base case: i = 1.

I H is too small at 1.
I There is a value α ≥ key(H[1]) such that increasing key(H[1]) to α makes H

a heap.
I key(H[1]) ≤ α ≤ key(H[2]), key(H[3]) =⇒ H is a heap.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Base Case

Root

1

I Base case: i = 1.
I H is too small at 1.

I There is a value α ≥ key(H[1]) such that increasing key(H[1]) to α makes H
a heap.

I key(H[1]) ≤ α ≤ key(H[2]), key(H[3]) =⇒ H is a heap.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Base Case

Root

1

I Base case: i = 1.
I H is too small at 1.
I There is a value α ≥ key(H[1]) such that increasing key(H[1]) to α makes H

a heap.

I key(H[1]) ≤ α ≤ key(H[2]), key(H[3]) =⇒ H is a heap.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Base Case

Root

1

I Base case: i = 1.
I H is too small at 1.
I There is a value α ≥ key(H[1]) such that increasing key(H[1]) to α makes H

a heap.
I key(H[1]) ≤ α ≤ key(H[2]), key(H[3]) =⇒ H is a heap.

September 9, 2014 Priority Queues and Heaps



Correctness of Heapify-up: Inductive Hypothesis

To prove:

For every 1 ≤ i ≤ n+1, if H is too small at i , then after Heapify-up(H, i) returns,
H is a heap.

I Inductive hypothesis: (suggested by statement we need to prove) If H is too
small at bi/2c, then after Heapify-up(H, bi/2c) returns, H is a heap.

I Inductive step: What do we need to prove? If H is too small at i , then after
the swap statement in Heapify-up(H, i), H is a heap or H is too small at
bi/2c.
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Correctness of Heapify-up: Inductive Step
To the root

I Starting point: H is too small at i .
I Goal: Before Heapify-up(H, bi/2c): H is a heap or H is too small at bi/2c.

I What is the situation after the swap statement in Heapify-up(H, i)?
I How do we show that x < u, v?

I Use the fact that H is too small at i : there is an α ≥ x such that increasing x
to α makes H a heap.

I Therefore, x ≤ α ≤ u, v .

I Now if H is not a heap, why is it too small at bi/2c?

Increasing y to x makes
H a heap!
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Correctness of Heapify-up: Completing the Proof

I For every 1 ≤ i ≤ n + 1, we have shown if H is too small at i , then after
Heapify-up(H, i) returns, H is a heap.

I We know that before Heapify-up(H, n + 1), H is too small at n + 1. Why?

I Therefore, setting i = n + 1, we have that Heapify-up(H, n + 1) creates a
heap on all n + 1 elements.
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Running time of Heapify-up

I Running time of Heapify-up(i)

is O(log i).

T (i) ≤

{
T (b i

2
c) + O(1) if i > 1

O(1) if i = 1
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Deleting an Element: Heapify-down

I Suppose H has n + 1 elements.

1. Delete element at H[i ] by moving element at H[n + 1] to H[i ].
2. If element at H[i ] is too small, �x heap order using Heapify-up(H, i).
3. If element at H[i ] is too large, �x heap order using Heapify-down(H, i).
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Example of Heapify-down
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Correctness of Heapify-down

I H is too big at j if there is a value α ≤ key(H[j ]) such that decreasing
key(H[j ]) to α makes H a heap. (Note: at start, H is indeed too big at i .)

I Statement to prove: for every i ≤ j ≤ n, if H is too big at j then
Heapify-down(H, j) creates a heap.

I Proof by reverse induction on j from n down to i .

I Base case: 2j > n. If decreasing key(H[j ]) to α makes H a heap, then
key(H[j ]) ≤ key(H[bj/2c]).
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Correctness of Heapify-down: Inductive Step

I H is too big at j if there is a value α ≤ key(H[j ]) such that decreasing
key(H[j ]) to α makes H a heap.

I Inductive hypothesis (two parts):
I If H too big at 2j , then Heapify-down(H, 2j) creates a heap.
I If H is too big at 2j + 1, then Heapify-down(H, 2j + 1) creates a heap.

I Start of inductive step: H is too big at j .
I Inductive step: After the swap statement in Heapify-down(H, j), (a) H is a

heap, (b) H is too big at 2j , or (c) H is too big at 2j + 1. Proof on board.
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Running time of Heapify-down

I Recurrence for running time of Heapify-down(H, i)

T (i) =

{
max

(
T (2i),T (2i + 1)

)
+ 1 if i > 1

O(1) if 2i > n

I Alternative proof since the recurrence is ugly.
I Every invocation of Heapify-down increases its second argument by a factor

of at least two.
I After k invocations argument must be at least i2k ≤ n, which implies that

k ≤ log
2
n/i . Therefore running time is O(log

2
n/i).
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Sorting Numbers with the Priority Queue

Sort

INSTANCE: Nonempty list x1, x2, . . . , xn of integers.

SOLUTION: A permutation y1, y2, . . . , yn of x1, x2, . . . , xn such that
yi ≤ yi+1, for all 1 ≤ i < n.

I Final algorithm:
I Insert each number in a priority queue H.
I Repeatedly �nd the smallest number in H, output it, and delete it from H.

I Each insertion and deletion takes O(log n) time for a total running time of
O(n log n).
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