
Homework 6

CS 4104 (Spring 2014)

Assigned on April 14, 2014.
Submit PDF solutions by email on Scholar
by the beginning of class on April 21, 2014.

Instructions:

• You can pair up with another student to solve the homework. You are allowed to discuss possible
algorithms and bounce ideas with your team-mate. Do not discuss proofs of correctness or
running time in detail with your team-mate. Please form teams yourselves. Of course, you can
ask me for help if you cannot find a team-mate. You may choose to work alone. Each of you must
write down your solution individually, and write down the name of the other member in your team. If
you do not have a team-mate, please say so. If your solution is largely identical to that of your
team-mate or another student, we will return it ungraded.

• Apart from your team-mate, you are not allowed to consult any sources other than your textbook, the
slides on the course web page, your own class notes, the TAs, and the instructor. In particular, do not
use a search engine.

• Do not forget to typeset your solutions. Every mathematical expression must be typeset as a mathe-
matical expression, e.g., the square of n must appear as n2 and not as “nˆ2”. Students can use the
LATEX version of the homework problems to start entering their solutions.

• Describe your algorithms as clearly as possible. The style used in the book is fine, as long as your de-
scription is not ambiguous. Explain your algorithm in words. A step-wise description is fine. However,
if you submit detailed pseudo-code without an explanation, we will not grade your solutions.

• Do not make any assumptions not stated in the problem. If you do make any assumptions, state them
clearly, and explain why the assumption does not decrease the generality of your solution.

• Do not describe your algorithms only for a specific example you may have worked out.

• You must also provide a clear proof that your solution is correct (or a counter-example, where appli-
cable). Type out all the statements you need to complete your proof. You must convince us that you
can write out the complete proof. You will lose points if you work out some details of the proof in your
head but do not type them out in your solution.

• Describe an analysis of your algorithm and state and prove the running time. You will only get partial
credit if your analysis is not tight, i.e., if the bound you prove for your algorithm is not the best upper
bound possible.

Problem 1 (20 points) Solve exercise 1 in Chapter 6 (pages 312-313) of your textbook.

Problem 2 (30 points) Solve exercise 17 in Chapter 6 (pages 327-328) of your textbook. For part (b) of this
exercise, keep in mind that a rising trend must begin on the first day. You should find this requirement
important in defining all your sub-problems.

Problem 3 (10 points) In this problem, you will analyse the worst-case running time of weighted interval
scheduling without memoisation. Recall that we sorted the n jobs in increasing order of finish time
and renumbered these jobs in this order, so that fi ≤ fi+1, for all 1 ≤ i < n, where fi is the finish time
of job i. For every job j, we defined p(j) to be the job with the largest index that finishes earlier than
job j. Consider the input in Figure 6.4 on page 256 of your textbook. Here all jobs have weight 1 and
p(j) = j − 2, for all 3 ≤ j ≤ n and p(1) = p(2) = 0. Let T (n) be the running time of the dynamic
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programming algorithm without memoisation for this particular input. As we discussed in class, we
can write down the following recurrence:

T (n) = T (n− 1) + T (n− 2), n > 2

T (2) = T (1) = 1

Prove an exponential lower bound on T (n). Specifically, prove that T (n) ≥ 1.5n−2, for all n ≥ 1.

Problem 4 (40 points) A convex polygon is a polygon where very interior angle is less than 180 degrees.
A museum is in the shape of a convex polygon with n vertices. The museum is patrolled by guards.
The Directory of Security at the museum has the following rules to ensure the most safety in as
time-economical a way as possible:

(a) Each guard traverses a path in the shape of a triangle; each vertex of such a triangle must a vertex
of the polygon.

(b) A guard can survey all the points inside his or her triangle and only these points; we say that
these points are covered by the guard.

(c) Every point inside the museum must be covered by some guard.

(d) The triangles traversed by any pair of guards do not overlap in their interiors, although they may
share a common edge.
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Each guard can be specified by the triangle he/she patrols. We call a set of triangles that satisfy these
rules legal. Above are four figures that illustrate the problem. The museum is the polygon ABCDEFG.
Each coloured (shaded) triangle corresponds to a guard and the guard traverses the perimeter of his
or her triangle.
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• The top two figures show a set of triangles that are legal, since they satisfy the constraints laid
down by the Directory of Security. In the top left figure, the guards traverse the boundaries of
triangles AFG (blue), ABF (green), BEF (pale red), BDE (light red), and BCD (brown). In the
top right figure, the guards traverse ABG (blue), BCG (green), CDG (brown), DFG (light red),
and DEF (pale red).

• The bottom two figures show a set of triangles that do not satisfy these constraints: in the figure
on the bottom left, part of the museum is not covered by any guard (the unshaded triangle BEF)
while in the figure on the bottom right, the pink triangle (AEF) and the green triangle (BEF)
intersect (note that the part of the green triangle in the image is covered by the pink triangle).

Given these constraints, the cost incurred by a guard is the length of the perimeter of the triangle the
guard traverses. The total cost of a set of legal triangles is the sum of the length of their perimeters.
Our goal is to find a legal set of triangles such that the total cost of the triangles is as small as possible.
Given the x- and y-coordinates of the vertices of the art gallery and the ordering of these vertices along
the boundary of the art gallery, devise an algorithm whose running time is polynomial in n to solve
this problem. Note that we are not trying to minimise the number of guards; we want to minimise
the total lengths of the routes patrolled by the guards. You may assume that the length of any line
segment is the Euclidean distance between the end-points of the line segment and that this length can
be computed in constant time.

Since this problem may be quite difficult, let us split up into more digestible pieces. Let the museum
be a convex polygon P with n vertices p0, p1, . . . pn−1 ordered consecutively in counter-clockwise order
around P . Except for pn−1p0, which is an edge of the polygon, a line segment pipj is a diagonal if
pi and pj are not adjacent vertices, i.e., |i − j| 6= 1. The order of the endpoints does not matter, i.e.,
the diagonals pipj and pjpi are identical. Since P is convex, every point of a diagonal (other than its
end-points) lies in the interior of P . Clearly, in any legal set of triangles, every triangle edge is either
an edge of P or a diagonal of P . For each of the questions below, you must provide a proof for your
answer. Some of the proofs may be short, especially for parts (i) and (iii).

(i) (5 points) How many diagonals does P contain in total?

(ii) (10 points) How many diagonals does any legal set of triangles contain? If you use a proof by
induction, please be sure to state the base case, inductive hypothesis, and inductive step clearly.

(iii) (7 points) Given a legal set of triangles, express the total cost of these triangles in terms of the
perimeter of P and the lengths of those edges of the triangles that are diagonals of P .

(iv) (18 points) To start formulating the dynamic programming recursion, consider the edge p0pn−1.
This edge must be part of some triangle T in the optimal solution. Think about where the third
vertex in T can be. Since the optimal solution contains a legal set of triangles, the edges of the
other triangles in the optimal solution cannot intersect the edges of T . Use this fact to derive
a recursion to compute the optimal solution. State and prove the running time of the resulting
algorithm.
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