
Homework 5

CS 4104 (Spring 2014)

Assigned on Wednesday, April 2, 2014.
Submit PDF solutions by on Scholar by the beginning of class on Monday, April 9, 2014.

Instructions:

• You can pair up with another student to solve the homework. You are allowed to discuss possible
algorithms and bounce ideas with your team-mate. Do not discuss proofs of correctness or
running time in detail with your team-mate. Please form teams yourselves. Of course, you can
ask me for help if you cannot find a team-mate. You may choose to work alone. Each of you must
write down your solution individually, and write down the name of the other member in your team. If
you do not have a team-mate, please say so. If your solution is largely identical to that of your
team-mate or another student, we will return it ungraded.

• Apart from your team-mate, you are not allowed to consult any sources other than your textbook, the
slides on the course web page, your own class notes, the TAs, and the instructor. In particular, do not
use a search engine.

• Do not forget to typeset your solutions. Every mathematical expression must be typeset as a mathe-
matical expression, e.g., the square of n must appear as n2 and not as “nˆ2”. Students can use the
LATEX version of the homework problems to start entering their solutions.

• Describe your algorithms as clearly as possible. The style used in the book is fine, as long as your de-
scription is not ambiguous. Explain your algorithm in words. A step-wise description is fine. However,
if you submit detailed pseudo-code without an explanation, we will not grade your solutions.

• Do not make any assumptions not stated in the problem. If you do make any assumptions, state them
clearly, and explain why the assumption does not decrease the generality of your solution.

• Do not describe your algorithms only for a specific example you may have worked out.

• You must also provide a clear proof that your solution is correct (or a counter-example, where appli-
cable). Type out all the statements you need to complete your proof. You must convince us that you
can write out the complete proof. You will lose points if you work out some details of the proof in your
head but do not type them out in your solution.

• Describe an analysis of your algorithm and state and prove the running time. You will only get partial
credit if your analysis is not tight, i.e., if the bound you prove for your algorithm is not the best upper
bound possible.

Problem 1 (10 points) Solve the recurrence T (n) = T (b
√
nc) + 1. In words, the T (n) is the running time

of an algorithm that creates one sub-problem of the size equal to the square root of n, solves this
sub-problem recursively, and spends one more unit of time. You can assume that T (1) = T (2) = 1 and
that n > 2 in the recurrence relation. Remember to prove your solution by induction, even if you use
the “unrolling” method to guess a solution.

Problem 2 (30 points) You are given three algorithms to solve the same problem of size n. Analyse each
algorithm in O() notation. Provide a clear proof of the analysis. Which algorithm would you choose
and why? In other words, write down which algorithm is asymptotically the fastest and provide a
proof why this algorithm is asymptotically the fastest of all three. If you can directly apply a formula
we discussed in class, feel free to do so. For some sub-problems, you will have to come up with proofs
from scratch, although your proofs will follow the general outlines we have used in class. Remember
to prove your solution by induction, even if you use the “unrolling” method to guess a solution.

1



CS 4104 (Spring 2014): Homework 5

(i) Algorithm A solves the problem by dividing it into five sub-problems of half the size, recursively
solving each sub-problem, and then combining the solutions in linear time.

(ii) Algorithm B solves the problem by dividing it into two sub-problems of size n − 1, recursively
solving each subproblem, and then combining the solutions in constant time.

(iii) Algorithm C solves the problem by dividing it into three sub-problems of size n/3, recursively
solving each sub-problem, and then combining the solutions in O(n2) time.

Problem 3 (25 points) Solve exercise 1 in Chapter 5 (page 246) of your textbook. Note that you cannot
delete elements from the databases. The only operation you are allowed is to query the kth smallest
value in one of the databases. You are likely to come up with an algorithm that somehow eliminates
parts of each database and recurses on the remaining parts. Be sure to prove that whatever elements
you may return from the recursive calls, these returned values are related to the the median element
in the original set of 2n values, i.e., in the conquer step, how can you be sure that you have computed
the median of the 2n values from the elements returned by the recursive calls?

Problem 4 (35 points) Solve exercise 3 in Chapter 5 (pages 246–247) of your textbook. Let us call the
equivalence class with more than n/2 cards the important class. It is enough for your algorithm to
return a card that belongs to this class, if it exists, or no card at all. Note that the problem specifies that
the only operation you can perform on a pair of cards is to decide if they are equivalent. You cannot
perform any other operation, e.g., compare them in order to sort them. Your proof of correctness must
clearly address why your algorithm will find a set of important class, if it exists. There are many things
that can go wrong. For instance, there may be an important class for all n cards but the recursive
calls don’t find any important class (for the subset of cards they process). Alternatively, the recursive
calls may find a different important class. It is also possible that there is no important class for all
n cards but your recursive calls find an important class. Your algorithm or your proof of correctness
must consider all such bad eventualities and you must show that they cannot happen.

2


