NP and Computational Intractability

T. M. Murali

November 30, 2009

Algorithm Design

Patterns

- Greed.
- Divide-and-conquer.
- Dynamic programming.
- Duality.

 $O(n \log n)$ interval scheduling. $O(n \log n)$ closest pair of points. $O(n^2)$ edit distance. $O(n^3)$ maximum flow and minimum cuts.

Algorithm Design

Patterns

- ► Greed.
- Divide-and-conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.

 $O(n \log n)$ interval scheduling. $O(n \log n)$ closest pair of points. $O(n^2)$ edit distance. $O(n^3)$ maximum flow and minimum cuts.

Algorithm Design

Patterns

- Greed.
- Divide-and-conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.
- "Anti-patterns"
 - NP-completeness.
 - PSPACE-completeness.
 - Undecidability.

 $O(n \log n)$ interval scheduling. $O(n \log n)$ closest pair of points. $O(n^2)$ edit distance. $O(n^3)$ maximum flow and minimum cuts.

 $O(n^k)$ algorithm unlikely. $O(n^k)$ certification algorithm unlikely. No algorithm possible.

▶ When is an algorithm an efficient solution to a problem?

▶ When is an algorithm an efficient solution to a problem? When its running time is polynomial in the size of the input.

- ▶ When is an algorithm an efficient solution to a problem? When its running time is polynomial in the size of the input.
- ▶ A problem is *computationally tractable* if it has a polynomial-time algorithm.

- ▶ When is an algorithm an efficient solution to a problem? When its running time is polynomial in the size of the input.
- ▶ A problem is *computationally tractable* if it has a polynomial-time algorithm.

Polynomial time	Probably not
Shortest path	Longest path
Matching	3-D matching
Minimum cut	Maximum cut
2-SAT	3-SAT
Planar four-colour	Planar three-colour
Bipartite vertex cover	Vertex cover
Primality testing	Factoring

Problem Classification

- Classify problems based on whether they admit efficient solutions or not.
- ► Some extremely hard problems cannot be solved efficiently (e.g., chess on an *n*-by-*n* board).

Problem Classification

- Classify problems based on whether they admit efficient solutions or not.
- ► Some extremely hard problems cannot be solved efficiently (e.g., chess on an *n*-by-*n* board).
- ► However, classification is unclear for a very large number of discrete computational problems.

Problem Classification

- Classify problems based on whether they admit efficient solutions or not.
- ► Some extremely hard problems cannot be solved efficiently (e.g., chess on an *n*-by-*n* board).
- However, classification is unclear for a very large number of discrete computational problems.
- ▶ We can prove that these problems are fundamentally equivalent and are manifestations of the same problem!

Polynomial-Time Reduction

- ▶ Goal is to express statements of the type "Problem X is at least as hard as problem Y."
- Use the notion of reductions.
- Y is polynomial-time reducible to X $(Y \leq_P X)$

Polynomial-Time Reduction

- ▶ Goal is to express statements of the type "Problem X is at least as hard as problem Y."
- Use the notion of reductions.
- ▶ Y is polynomial-time reducible to X ($Y \leq_P X$) if an arbitrary instance of Y can be solved using a polynomial number of standard operations, plus a polynomial number of calls to a black box that solves problem X.
- ▶ $Y \leq_P X$ implies that "X is at least as hard as Y."
- ► Such reductions are *Cook reductions*. *Karp reductions* allow only one call to the black box that solves *X*.

Usefulness of Reductions

▶ Claim: If $Y \leq_P X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.

Usefulness of Reductions

- ▶ Claim: If $Y \leq_P X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.
- ▶ Contrapositive: If $Y \leq_P X$ and Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.
- ▶ Informally: If Y is hard, and we can show that Y reduces to X, then the hardness "spreads" to X.

Reduction Strategies

- Simple equivalence.
- Special case to general case.
- ► Encoding with gadgets.

Optimisation versus Decision Problems

- ▶ So far, we have developed algorithms that solve optimisation problems.
 - Compute the largest flow.
 - Find the closest pair of points.
 - Find the schedule with the least completion time.

Optimisation versus Decision Problems

- ▶ So far, we have developed algorithms that solve optimisation problems.
 - Compute the largest flow.
 - Find the closest pair of points.
 - Find the schedule with the least completion time.
- ▶ Now, we will focus on *decision versions* of problems, e.g., is there a flow with value at least *k*, for a given value of *k*?

- ▶ Given an undirected graph G(V, E), a subset $S \subseteq V$ is an *independent set* if no two vertices in S are connected by an edge.
- ▶ Given an undirected graph G(V, E), a subset $S \subseteq V$ is a *vertex cover* if every edge in E is incident on at least one vertex in S.

- ▶ Given an undirected graph G(V, E), a subset $S \subseteq V$ is an *independent set* if no two vertices in S are connected by an edge.
- ▶ Given an undirected graph G(V, E), a subset $S \subseteq V$ is a *vertex cover* if every edge in E is incident on at least one vertex in S.

INDEPENDENT SET

INSTANCE: Undirected graph

G and an integer k

QUESTION: Does *G* contain an independent set of size

Vertex cover

INSTANCE: Undirected graph

G and an integer I

QUESTION: Does *G* contain a

vertex cover of size

- ▶ Given an undirected graph G(V, E), a subset $S \subseteq V$ is an *independent set* if no two vertices in S are connected by an edge.
- ▶ Given an undirected graph G(V, E), a subset $S \subseteq V$ is a *vertex cover* if every edge in E is incident on at least one vertex in S.

INDEPENDENT SET

INSTANCE: Undirected graph

G and an integer k

QUESTION: Does G contain an independent set of size at

least k?

Vertex cover

INSTANCE: Undirected graph

G and an integer I

QUESTION: Does *G* contain a vertex cover of size at most *I*?

- ▶ Given an undirected graph G(V, E), a subset $S \subseteq V$ is an *independent set* if no two vertices in S are connected by an edge.
- ▶ Given an undirected graph G(V, E), a subset $S \subseteq V$ is a *vertex cover* if every edge in E is incident on at least one vertex in S.

INDEPENDENT SET

INSTANCE: Undirected graph

G and an integer k

QUESTION: Does *G* contain an independent set of size at least *k*?

Vertex cover

INSTANCE: Undirected graph

G and an integer I

QUESTION: Does G contain a vertex cover of size at most I?

Demonstrate simple equivalence between these two problems.

- ▶ Given an undirected graph G(V, E), a subset $S \subseteq V$ is an *independent set* if no two vertices in S are connected by an edge.
- ▶ Given an undirected graph G(V, E), a subset $S \subseteq V$ is a *vertex cover* if every edge in E is incident on at least one vertex in S.

INDEPENDENT SET

INSTANCE: Undirected graph

G and an integer k

QUESTION: Does G contain an independent set of size at least k?

Vertex cover

INSTANCE: Undirected graph

G and an integer I

QUESTION: Does G contain a vertex cover of size at most I?

- Demonstrate simple equivalence between these two problems.
- ► Claim: INDEPENDENT SET ≤_P VERTEX COVER and VERTEX COVER ≤_P INDEPENDENT SET.

Strategy for Proving Indep. Set \leq_P Vertex Cover

- 1. Start with an arbitrary instance of INDEPENDENT SET: an undirected graph G(V, E) and an integer k.
- 2. From G(V, E) and k, create an instance of VERTEX COVER: an undirected graph G'(V', E') and an integer I.
- 3. Prove that G(V, E) has an independent set of size $\geq k$ iff G'(V', E') has a vertex cover of size $\leq l$.

Strategy for Proving Indep. Set \leq_P Vertex Cover

- 1. Start with an arbitrary instance of INDEPENDENT SET: an undirected graph G(V, E) and an integer k.
- 2. From G(V, E) and k, create an instance of VERTEX COVER: an undirected graph G'(V', E') and an integer I.
- 3. Prove that G(V, E) has an independent set of size $\geq k$ iff G'(V', E') has a vertex cover of size $\leq l$.
- ▶ Transformation and proof must be correct for all possible graphs G(V, E) and all possible values of k.
- Why is the proof an iff statement?

Strategy for Proving Indep. Set \leq_P Vertex Cover

- 1. Start with an arbitrary instance of INDEPENDENT SET: an undirected graph G(V, E) and an integer k.
- 2. From G(V, E) and k, create an instance of VERTEX COVER: an undirected graph G'(V', E') and an integer I.
- 3. Prove that G(V, E) has an independent set of size $\geq k$ iff G'(V', E') has a vertex cover of size $\leq l$.
- ▶ Transformation and proof must be correct for all possible graphs G(V, E) and all possible values of k.
- ▶ Why is the proof an iff statement? In the reduction, we are using black box for VERTEX COVER to solve INDEPENDENT SET.
 - (i) If there is an independent set size $\geq k$, we must be sure that there is a vertex cover of size $\leq l$, so that we know that the black box will find this vertex cover.
 - (ii) If the black box finds a vertex cover of size $\leq I$, we must be sure we can construct an independent set of size $\geq k$ from this vertex cover.

T. M. Murali November 30, 2009 CS 4104: NP

Proof that Independent Set \leq_P **Vertex Cover**

- 1. Arbitrary instance of INDEPENDENT SET: an undirected graph G(V, E) and an integer k.
- 2. Let |V| = n.
- 3. Create an instance of VERTEX COVER: same undirected graph G(V, E) and integer n k.

Proof that Independent Set \leq_P **Vertex Cover**

- 1. Arbitrary instance of INDEPENDENT SET: an undirected graph G(V, E) and an integer k.
- 2. Let |V| = n.
- 3. Create an instance of VERTEX COVER: same undirected graph G(V, E) and integer n k.
- 4. Claim: G(V, E) has an independent set of size $\geq k$ iff G(V, E) has a vertex cover of size $\leq n k$.

Proof: S is an independent set in G iff V - S is a vertex cover in G.

Proof that Independent Set \leq_P **Vertex Cover**

- 1. Arbitrary instance of INDEPENDENT SET: an undirected graph G(V, E) and an integer k.
- 2. Let |V| = n.
- 3. Create an instance of VERTEX COVER: same undirected graph G(V, E) and integer n k.
- 4. Claim: G(V, E) has an independent set of size $\geq k$ iff G(V, E) has a vertex cover of size $\leq n k$.
 - Proof: S is an independent set in G iff V S is a vertex cover in G.
- ▶ Same idea proves that VERTEX COVER \leq_P INDEPENDENT SET

ntroduction Reductions \mathcal{NP} \mathcal{NP} -Complete

Vertex Cover and Set Cover

- ▶ INDEPENDENT SET is a "packing" problem: pack as many vertices as possible, subject to constraints (the edges).
- ▶ VERTEX COVER is a "covering" problem: cover all edges in the graph with as few vertices as possible.
- ▶ There are more general covering problems.

SET COVER

INSTANCE: A set U of n elements, a collection S_1, S_2, \ldots, S_m of subsets of U, and an integer k.

QUESTION: Is there a collection of $\leq k$ sets in the collection whose union is U?

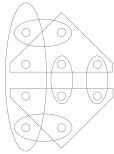


Figure 8.2 An instance of the Set Cover Problem.

Vertex Cover \leq_P **Set Cover**

- ▶ Input to VERTEX COVER: an undirected graph G(V, E) and an integer k.
- $\blacktriangleright \text{ Let } |V| = n.$
- ▶ Create an instance $\{U, \{S_1, S_2, ... S_n\}\}$ of Set Cover where

Vertex Cover \leq_P Set Cover

- ▶ Input to VERTEX COVER: an undirected graph G(V, E) and an integer k.
- $\blacktriangleright \text{ Let } |V| = n.$
- ▶ Create an instance $\{U, \{S_1, S_2, \dots S_n\}\}$ of SET COVER where
 - ► *U* = *E*,
 - ▶ for each vertex $i \in V$, create a set $S_i \subseteq U$ of the edges incident on i.

Vertex Cover \leq_P **Set Cover**

- Input to VERTEX COVER: an undirected graph G(V, E) and an integer k.
- ▶ Let |V| = n.
- ▶ Create an instance $\{U, \{S_1, S_2, \dots S_n\}\}$ of SET COVER where
 - V = E.
 - ▶ for each vertex $i \in V$, create a set $S_i \subseteq U$ of the edges incident on i.
- ▶ Claim: U can be covered with fewer than k subsets iff G has a vertex cover with at most k nodes.
- Proof strategy:
 - 1. If G(V, E) has a vertex cover of size at most k, then U can be covered with at most k subsets.
 - 2. If U can be covered with at most k subsets, then G(V, E) has a vertex cover of size at most k.

T. M. Murali November 30, 2009 CS 4104: NP

Boolean Satisfiability

- Abstract problems formulated in Boolean notation.
- ▶ Often used to specify problems, e.g., in Al.

Boolean Satisfiability

- Abstract problems formulated in Boolean notation.
- ▶ Often used to specify problems, e.g., in Al.
- ▶ We are given a set $X = \{x_1, x_2, ..., x_n\}$ of n Boolean variables.
- ► Each variable can take the value 0 or 1.
- ▶ A *term* is a variable x_i or its negation $\overline{x_i}$.
- ▶ A clause of length I is a disjunction of I distinct terms $t_1 \lor t_2 \lor \cdots t_I$.
- ▶ A truth assignment for X is a function $\nu: X \to \{0,1\}$.
- ▶ An assignment *satisfies* a clause *C* if it causes *C* to evaluate to 1 under the rules of Boolean logic.
- ▶ An assignment *satisfies* a collection of clauses $C_1, C_2, ..., C_k$ if it causes $C_1 \land C_2 \land \cdots \land C_k$ to evaluate to 1.
 - \triangleright ν is a satisfying assignment with respect to $C_1, C_2, \ldots C_k$.
 - ▶ set of clauses $C_1, C_2, ... C_k$ is satisfiable.

SAT and 3-SAT

Satisfiability Problem (SAT)

INSTANCE: A set of clauses $C_1, C_2, \dots C_k$ over a set $X = \{x_1, x_2, \dots x_n\}$ of n variables.

QUESTION: Is there a satisfying truth assignment for X with respect to C?

SAT and 3-SAT

3-Satisfiability Problem (SAT)

INSTANCE: A set of clauses $C_1, C_2, ..., C_k$, each of length three, over a set $X = \{x_1, x_2, ..., x_n\}$ of n variables.

QUESTION: Is there a satisfying truth assignment for X with respect to C?

SAT and 3-SAT

3-Satisfiability Problem (SAT)

INSTANCE: A set of clauses $C_1, C_2, ..., C_k$, each of length three, over a set $X = \{x_1, x_2, ..., x_n\}$ of n variables.

QUESTION: Is there a satisfying truth assignment for X with respect to C?

- ▶ SAT and 3-SAT are fundamental combinatorial search problems.
- ▶ We have to make *n* independent decisions (the assignments for each variable) while satisfying a set of constraints.
- ► Satisfying each constraint in isolation is easy, but we have to make our decisions so that all constraints are satisfied simultaneously.

- ▶ $C_1 = x_1 \lor 0 \lor 0$
- ► $C_2 = x_2 \lor 0 \lor 0$

- ► $C_1 = x_1 \lor 0 \lor 0$
- ► $C_2 = x_2 \lor 0 \lor 0$
- $C_3 = \overline{x_1} \vee \overline{x_2}$
- 1. Is $C_1 \wedge C_2$ satisfiable?

- ► $C_1 = x_1 \lor 0 \lor 0$
- ► $C_2 = x_2 \lor 0 \lor 0$
- $C_3 = \overline{x_1} \vee \overline{x_2}$
- 1. Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.

- ► $C_1 = x_1 \lor 0 \lor 0$
- ► $C_2 = x_2 \lor 0 \lor 0$
- $C_3 = \overline{x_1} \vee \overline{x_2}$
- 1. Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
- 2. Is $C_1 \wedge C_3$ satisfiable?

- ► $C_1 = x_1 \lor 0 \lor 0$
- ► $C_2 = x_2 \lor 0 \lor 0$
- $C_3 = \overline{x_1} \vee \overline{x_2}$
- 1. Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
- 2. Is $C_1 \wedge C_3$ satisfiable? Yes, by $x_1 = 1, x_2 = 0$.

- ► $C_1 = x_1 \lor 0 \lor 0$
- ► $C_2 = x_2 \lor 0 \lor 0$
- $C_3 = \overline{x_1} \vee \overline{x_2}$
- 1. Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
- 2. Is $C_1 \wedge C_3$ satisfiable? Yes, by $x_1 = 1, x_2 = 0$.
- 3. Is $C_2 \wedge C_3$ satisfiable?

- ► $C_1 = x_1 \lor 0 \lor 0$
- ► $C_2 = x_2 \lor 0 \lor 0$
- $C_3 = \overline{x_1} \vee \overline{x_2}$
- 1. Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
- 2. Is $C_1 \wedge C_3$ satisfiable? Yes, by $x_1 = 1, x_2 = 0$.
- 3. Is $C_2 \wedge C_3$ satisfiable? Yes, by $x_1 = 0, x_2 = 1$.

- ► $C_1 = x_1 \lor 0 \lor 0$
- ► $C_2 = x_2 \lor 0 \lor 0$
- $C_3 = \overline{x_1} \vee \overline{x_2}$
- 1. Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
- 2. Is $C_1 \wedge C_3$ satisfiable? Yes, by $x_1 = 1, x_2 = 0$.
- 3. Is $C_2 \wedge C_3$ satisfiable? Yes, by $x_1 = 0, x_2 = 1$.
- 4. Is $C_1 \wedge C_2 \wedge C_3$ satisfiable?

- ► $C_1 = x_1 \lor 0 \lor 0$
- ► $C_2 = x_2 \lor 0 \lor 0$
- $C_3 = \overline{x_1} \vee \overline{x_2}$
- 1. Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
- 2. Is $C_1 \wedge C_3$ satisfiable? Yes, by $x_1 = 1, x_2 = 0$.
- 3. Is $C_2 \wedge C_3$ satisfiable? Yes, by $x_1 = 0, x_2 = 1$.
- 4. Is $C_1 \wedge C_2 \wedge C_3$ satisfiable? No.

3-SAT and **Independent Set**

▶ We want to prove $3\text{-SAT} \leq_P \text{INDEPENDENT SET.}$ \bigcirc Skip proof

3-SAT and Independent Set

- ► Two ways to think about 3-SAT:
 - Make an independent 0/1 decision on each variable and succeed if we achieve one of three ways in which to satisfy each clause.
 - 2. Choose (at least) one term from each clause. Find a truth assignment that causes each chosen term to evaluate to 1. Ensure that no two terms selected *conflict*, i.e., select x_i and $\overline{x_i}$.

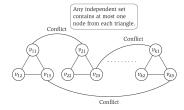


Figure 8.3 The reduction from 3-SAT to Independent Set.

- We are given an instance of 3-SAT with k clauses of length three over n variables.
- ▶ Construct a graph G(V, E) with 3k nodes.
 - ▶ For each clause C_i , $1 \le i \le k$, add a triangle of three nodes v_{i1} , v_{i2} , v_{i3} and three edges to G.
 - ▶ Label each node v_{ij} , $1 \le j \le 3$ with the *j*th term in C_i .

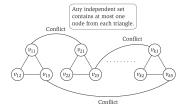


Figure 8.3 The reduction from 3-SAT to Independent Set.

- We are given an instance of 3-SAT with k clauses of length three over n variables.
- ► Construct a graph G(V, E) with 3k nodes.
 - ▶ For each clause C_i , $1 \le i \le k$, add a triangle of three nodes v_{i1} , v_{i2} , v_{i3} and three edges to G.
 - ▶ Label each node v_{ij} , $1 \le j \le 3$ with the *j*th term in C_i .
 - Add an edge between each pair of nodes whose labels correspond to terms that conflict

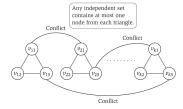


Figure 8.3 The reduction from 3-SAT to Independent Set.

► Claim: 3-SAT instance is satisfiable iff *G* has an independent set of size at least *k*.

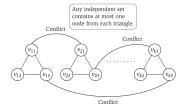


Figure 8.3 The reduction from 3-SAT to Independent Set.

- ► Claim: 3-SAT instance is satisfiable iff G has an independent set of size at least k.
- ▶ Satisfiable assignment \rightarrow independent set of size $\geq k$:

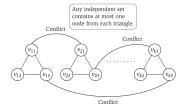


Figure 8.3 The reduction from 3-SAT to Independent Set.

- ▶ Claim: 3-SAT instance is satisfiable iff *G* has an independent set of size at least *k*.
- ▶ Satisfiable assignment \rightarrow independent set of size $\geq k$: Each triangle in G has at least one node whose label evaluates to 1. These nodes form an independent set of size $\geq k$. Why?

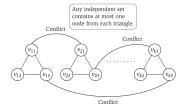


Figure 8.3 The reduction from 3-SAT to Independent Set.

- ► Claim: 3-SAT instance is satisfiable iff G has an independent set of size at least k.
- ▶ Satisfiable assignment \rightarrow independent set of size $\geq k$: Each triangle in G has at least one node whose label evaluates to 1. These nodes form an independent set of size $\geq k$. Why?
- ▶ Independent set of size $\geq k \rightarrow$ satisfiable assignment:

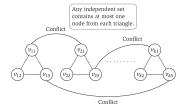


Figure 8.3 The reduction from 3-SAT to Independent Set.

- ► Claim: 3-SAT instance is satisfiable iff G has an independent set of size at least k.
- ▶ Satisfiable assignment \rightarrow independent set of size $\geq k$: Each triangle in G has at least one node whose label evaluates to 1. These nodes form an independent set of size $\geq k$. Why?
- Independent set of size ≥ k → satisfiable assignment: the size of this set is k. How do we construct a satisfying truth assignment from the nodes in the independent set?

Transitivity of Reductions

▶ Claim: If $Z \leq_P Y$ and $Y \leq_P X$, then $Z \leq_P X$.

Transitivity of Reductions

- ▶ Claim: If $Z \leq_P Y$ and $Y \leq_P X$, then $Z \leq_P X$.
- ▶ We have shown

3-SAT \leq_P INDEPENDENT SET \leq_P VERTEX COVER \leq_P SET COVER

Finding vs. Certifying

- ▶ Is it easy to check if a given set of vertices in an undirected graph forms an independent set of size at least *k*?
- ▶ Is it easy to check if a particular truth assignment satisfies a set of clauses?

Finding vs. Certifying

- ▶ Is it easy to check if a given set of vertices in an undirected graph forms an independent set of size at least *k*?
- ▶ Is it easy to check if a particular truth assignment satisfies a set of clauses?
- We draw a contrast between finding a solution and checking a solution (in polynomial time).
- Since we have not been able to develop efficient algorithms to solve many decision problems, let us turn our attention to whether we can check if a proposed solution is correct.

- Encode input to a computational problem as a finite binary string s of length |s|.
- Identify a decision problem *X* with the set of strings for which the answer is "yes",

- Encode input to a computational problem as a finite binary string s of length |s|.
- Identify a decision problem X with the set of strings for which the answer is "yes", e.g., $PRIMES = \{2, 3, 5, 7, 11, ...\}$.

- Encode input to a computational problem as a finite binary string s of length |s|.
- ▶ Identify a decision problem X with the set of strings for which the answer is "yes", e.g., $PRIMES = \{2, 3, 5, 7, 11, ...\}$.
- ▶ An algorithm A for a decision problem receives an input string s and returns $A(s) \in \{yes, no\}$.
- ▶ A solves the problem X if for every string s, A(s) = yes iff $s \in X$.

- Encode input to a computational problem as a finite binary string s of length |s|.
- ▶ Identify a decision problem X with the set of strings for which the answer is "yes", e.g., $PRIMES = \{2, 3, 5, 7, 11, ...\}$.
- ▶ An algorithm A for a decision problem receives an input string s and returns $A(s) \in \{yes, no\}$.
- ▶ A solves the problem X if for every string s, A(s) = yes iff $s \in X$.
- ▶ A has a polynomial running time if there is a polynomial function $p(\cdot)$ such that for every input string s, A terminates on s in at most O(p(|s|)) steps,

- ▶ Encode input to a computational problem as a finite binary string s of length |s|.
- ▶ Identify a decision problem X with the set of strings for which the answer is "yes", e.g., $PRIMES = \{2, 3, 5, 7, 11, ...\}$.
- ▶ An algorithm A for a decision problem receives an input string s and returns $A(s) \in \{yes, no\}$.
- A solves the problem X if for every string s, A(s) = yes iff $s \in X$.
- ▶ A has a *polynomial running time* if there is a polynomial function $p(\cdot)$ such that for every input string s, A terminates on s in at most O(p(|s|)) steps, e.g., there is an algorithm such that $p(|s|) = |s|^8$ for PRIMES (Agarwal, Kayal, Saxena, 2002).

- ▶ Encode input to a computational problem as a finite binary string s of length |s|.
- ▶ Identify a decision problem X with the set of strings for which the answer is "yes", e.g., $PRIMES = \{2, 3, 5, 7, 11, ...\}$.
- ▶ An algorithm A for a decision problem receives an input string s and returns $A(s) \in \{yes, no\}$.
- ▶ A solves the problem X if for every string s, A(s) = yes iff $s \in X$.
- ▶ A has a *polynomial running time* if there is a polynomial function $p(\cdot)$ such that for every input string s, A terminates on s in at most O(p(|s|)) steps, e.g., there is an algorithm such that $p(|s|) = |s|^8$ for PRIMES (Agarwal, Kayal, Saxena, 2002).
- \triangleright \mathcal{P} : set of problems X for which there is a polynomial time algorithm.

Efficient Certification

- ▶ A "checking" algorithm for a decision problem *X* has a different structure from an algorithm that solves *X*.
- ▶ Checking algorithm needs input string s as well as a separate "certificate" string t that contains evidence that $s \in X$.

Efficient Certification

- ▶ A "checking" algorithm for a decision problem *X* has a different structure from an algorithm that solves *X*.
- ▶ Checking algorithm needs input string s as well as a separate "certificate" string t that contains evidence that $s \in X$.
- ▶ An algorithm *B* is an *efficient certifier* for a problem *X* if
 - 1. B is a polynomial time algorithm that takes two inputs s and t and
 - 2. there is a polynomial function p so that for every string s, we have $s \in X$ iff there exists a string t such that $|t| \le p(|s|)$ and B(s,t) = yes.

Efficient Certification

- ▶ A "checking" algorithm for a decision problem *X* has a different structure from an algorithm that solves *X*.
- ▶ Checking algorithm needs input string s as well as a separate "certificate" string t that contains evidence that $s \in X$.
- ▶ An algorithm *B* is an *efficient certifier* for a problem *X* if
 - 1. B is a polynomial time algorithm that takes two inputs s and t and
 - 2. there is a polynomial function p so that for every string s, we have $s \in X$ iff there exists a string t such that $|t| \le p(|s|)$ and B(s,t) = yes.
- ▶ Certifier's job is to take a candidate short proof (t) that $s \in X$ and check in polynomial time whether t is a correct proof.
- Certifier does not care about how to find these proofs.

$$\mathcal{NP}$$

- \blacktriangleright \mathcal{NP} is the set of all problems for which there exists an efficient certifier.
- ▶ $3\text{-SAT} \in \mathcal{NP}$:

$$\mathcal{NP}$$

- $ightharpoonup \mathcal{NP}$ is the set of all problems for which there exists an efficient certifier.
- ▶ 3-SAT ∈ \mathcal{NP} : t is a truth assignment; B evaluates the clauses with respect to the assignment.

\mathcal{NP}

- $ightharpoonup \mathcal{NP}$ is the set of all problems for which there exists an efficient certifier.
- ▶ 3-SAT ∈ \mathcal{NP} : t is a truth assignment; B evaluates the clauses with respect to the assignment.
- ▶ INDEPENDENT SET $\in \mathcal{NP}$:

\mathcal{NP}

- $ightharpoonup \mathcal{NP}$ is the set of all problems for which there exists an efficient certifier.
- ▶ $3\text{-SAT} \in \mathcal{NP}$: t is a truth assignment; B evaluates the clauses with respect to the assignment.
- ▶ INDEPENDENT SET ∈ \mathcal{NP} : t is a set of at least k vertices; B checks that no pair of these vertices are connected by an edge.

\mathcal{NP}

- $ightharpoonup \mathcal{NP}$ is the set of all problems for which there exists an efficient certifier.
- ▶ $3\text{-SAT} \in \mathcal{NP}$: t is a truth assignment; B evaluates the clauses with respect to the assignment.
- ▶ INDEPENDENT SET ∈ \mathcal{NP} : t is a set of at least k vertices; B checks that no pair of these vertices are connected by an edge.
- ▶ Set Cover $\in \mathcal{NP}$:

\mathcal{NP}

- $ightharpoonup \mathcal{NP}$ is the set of all problems for which there exists an efficient certifier.
- ▶ 3-SAT ∈ \mathcal{NP} : t is a truth assignment; B evaluates the clauses with respect to the assignment.
- ▶ INDEPENDENT SET ∈ \mathcal{NP} : t is a set of at least k vertices; B checks that no pair of these vertices are connected by an edge.
- ▶ SET COVER ∈ \mathcal{NP} : t is a list of k sets from the collection; B checks if their union is U.

T. M. Murali November 30, 2009 CS 4104: NP

$${\mathcal P}$$
 vs. ${\mathcal N}{\mathcal P}$

▶ Claim: $\mathcal{P} \subseteq \mathcal{NP}$.

$$\mathcal P$$
 vs. $\mathcal N\mathcal P$

▶ Claim: $\mathcal{P} \subseteq \mathcal{NP}$. If $X \in P$, then there is a polynomial time algorithm A that solves X. B ignores t and returns A(s). Why is B an efficient certifier?

\mathcal{P} vs. $\mathcal{N}\mathcal{P}$

- ▶ Claim: $\mathcal{P} \subseteq \mathcal{NP}$. If $X \in P$, then there is a polynomial time algorithm A that solves X. B ignores t and returns A(s). Why is B an efficient certifier?
- ▶ Is $\mathcal{P} = \mathcal{NP}$ or is $\mathcal{NP} \mathcal{P} \neq \emptyset$?

\mathcal{P} vs. $\mathcal{N}\mathcal{P}$

- ▶ Claim: $\mathcal{P} \subseteq \mathcal{NP}$. If $X \in P$, then there is a polynomial time algorithm A that solves X. B ignores t and returns A(s). Why is B an efficient certifier?
- ▶ Is $\mathcal{P} = \mathcal{NP}$ or is $\mathcal{NP} \mathcal{P} \neq \emptyset$? One of the major unsolved problems in computer science.

\mathcal{P} vs. $\mathcal{N}\mathcal{P}$

- ▶ Claim: $\mathcal{P} \subseteq \mathcal{NP}$. If $X \in P$, then there is a polynomial time algorithm A that solves X. B ignores t and returns A(s). Why is B an efficient certifier?
- ▶ Is $\mathcal{P} = \mathcal{NP}$ or is $\mathcal{NP} \mathcal{P} \neq \emptyset$? One of the major unsolved problems in computer science.

▶ What are the hardest problems in \mathcal{NP} ?

- ▶ What are the hardest problems in \mathcal{NP} ?
- ▶ A problem X is \mathcal{NP} -Complete if
 - 1. $X \in \mathcal{NP}$ and
 - 2. for every problem $Y \in \mathcal{NP}$, $Y \leq_P X$.

- ▶ What are the hardest problems in \mathcal{NP} ?
- ▶ A problem X is \mathcal{NP} -Complete if
 - 1. $X \in \mathcal{NP}$ and
 - 2. for every problem $Y \in \mathcal{NP}$, $Y \leq_P X$.
- ▶ Claim: Suppose X is \mathcal{NP} -Complete. Then X can be solved in polynomial time iff $\mathcal{P} = \mathcal{NP}$.

- ▶ What are the hardest problems in \mathcal{NP} ?
- ▶ A problem X is \mathcal{NP} -Complete if
 - 1. $X \in \mathcal{NP}$ and
 - 2. for every problem $Y \in \mathcal{NP}$, $Y \leq_P X$.
- ▶ Claim: Suppose X is \mathcal{NP} -Complete. Then X can be solved in polynomial time iff $\mathcal{P} = \mathcal{NP}$.
- ▶ Corollary: If there is any problem in \mathcal{NP} that cannot be solved in polynomial time, then no \mathcal{NP} -Complete problem can be solved in polynomial time.

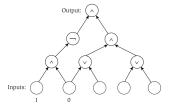
- ▶ What are the hardest problems in \mathcal{NP} ?
- ▶ A problem X is \mathcal{NP} -Complete if
 - 1. $X \in \mathcal{NP}$ and
 - 2. for every problem $Y \in \mathcal{NP}$, $Y \leq_P X$.
- ▶ Claim: Suppose X is \mathcal{NP} -Complete. Then X can be solved in polynomial time iff $\mathcal{P} = \mathcal{NP}$.
- ▶ Corollary: If there is any problem in \mathcal{NP} that cannot be solved in polynomial time, then no \mathcal{NP} -Complete problem can be solved in polynomial time.
- ▶ Are there any \mathcal{NP} -Complete problems?
 - 1. Perhaps there are two problems X_1 and X_2 in \mathcal{NP} such that there is no problem $X \in \mathcal{NP}$ where $X_1 \leq_P X$ and $X_2 \leq_P X$.
 - 2. Perhaps there is a sequence of problems X_1, X_2, X_3, \ldots in \mathcal{NP} , each strictly harder than the previous one.

Circuit Satisfiability

▶ Cook-Levin Theorem: CIRCUIT SATISFIABILITY is \mathcal{NP} -Complete.

Circuit Satisfiability

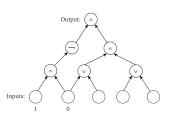
- ► Cook-Levin Theorem: CIRCUIT SATISFIABILITY is \mathcal{NP} -Complete.
- ▶ A circuit K is a labelled, directed acyclic graph such that
 - 1. the sources in K are labelled with constants (0 or 1) or the name of a distinct variable (the *inputs* to the circuit).
 - 2. every other node is labelled with one Boolean operator \land , \lor , or \neg .
 - 3. a single node with no outgoing edges represents the *output* of K.



 $\textbf{Figure 8.4} \ \, \text{A circuit with three inputs, two additional sources that have assigned truth values, and one output.}$

Circuit Satisfiability

- ▶ Cook-Levin Theorem: CIRCUIT SATISFIABILITY is \mathcal{NP} -Complete.
- ▶ A circuit K is a labelled, directed acyclic graph such that
 - 1. the sources in K are labelled with constants (0 or 1) or the name of a distinct variable (the *inputs* to the circuit).
 - 2. every other node is labelled with one Boolean operator \land , \lor , or \neg .
 - 3. a single node with no outgoing edges represents the *output* of K.



CIRCUIT SATISFIABILITY

INSTANCE: A circuit *K*.

QUESTION: Is there a truth assignment to the inputs that causes the output to have value 1?

 $\textbf{Figure 8.4} \ \, \text{A circuit with three inputs, two additional sources that have assigned truth values, and one output.}$

▶ Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_P \text{CIRCUIT SATISFIABILITY}$.

- ▶ Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_P \text{CIRCUIT SATISFIABILITY}$.
- Claim we will not prove: any algorithm that takes a fixed number n of bits as input and produces a yes/no answer
 - 1. can be represented by an equivalent circuit and
 - 2. If the running time of the algorithm is polynomial in *n*, the size of the circuit is a polynomial in *n*.

- ▶ Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_P \text{CIRCUIT SATISFIABILITY}$.
- ► Claim we will not prove: any algorithm that takes a fixed number *n* of bits as input and produces a yes/no answer
 - 1. can be represented by an equivalent circuit and
 - 2. If the running time of the algorithm is polynomial in *n*, the size of the circuit is a polynomial in *n*.
- ▶ To show $X \leq_P \text{CIRCUIT SATISFIABILITY}$, given an input s of length n, we want to determine whether $s \in X$ using a black box that solves CIRCUIT SATISFIABILITY.

- ▶ Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_P \text{CIRCUIT SATISFIABILITY}$.
- ► Claim we will not prove: any algorithm that takes a fixed number *n* of bits as input and produces a yes/no answer
 - 1. can be represented by an equivalent circuit and
 - 2. If the running time of the algorithm is polynomial in *n*, the size of the circuit is a polynomial in *n*.
- ▶ To show $X \leq_P \text{CIRCUIT SATISFIABILITY}$, given an input s of length n, we want to determine whether $s \in X$ using a black box that solves CIRCUIT SATISFIABILITY.
- ▶ What do we know about X?

- ▶ Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_P \text{CIRCUIT SATISFIABILITY}$.
- ► Claim we will not prove: any algorithm that takes a fixed number *n* of bits as input and produces a yes/no answer
 - 1. can be represented by an equivalent circuit and
 - 2. If the running time of the algorithm is polynomial in *n*, the size of the circuit is a polynomial in *n*.
- ▶ To show $X \leq_P \text{CIRCUIT SATISFIABILITY}$, given an input s of length n, we want to determine whether $s \in X$ using a black box that solves CIRCUIT SATISFIABILITY.
- ▶ What do we know about X? It has an efficient certifier $B(\cdot, \cdot)$.

- ▶ Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_P \text{CIRCUIT SATISFIABILITY}$.
- ▶ Claim we will not prove: any algorithm that takes a fixed number *n* of bits as input and produces a yes/no answer
 - 1. can be represented by an equivalent circuit and
 - 2. If the running time of the algorithm is polynomial in *n*, the size of the circuit is a polynomial in *n*.
- ▶ To show $X \leq_P \text{CIRCUIT SATISFIABILITY}$, given an input s of length n, we want to determine whether $s \in X$ using a black box that solves CIRCUIT SATISFIABILITY.
- ▶ What do we know about X? It has an efficient certifier $B(\cdot, \cdot)$.
- ▶ To determine whether $s \in X$, we ask "Is there a string t of length p(n) such that B(s,t) = yes?"

▶ To determine whether $s \in X$, we ask "Is there a string t of length p(|s|) such that B(s,t) = yes?"

- ▶ To determine whether $s \in X$, we ask "Is there a string t of length p(|s|) such that B(s,t) = yes?"
- ▶ View $B(\cdot, \cdot)$ as an algorithm on n + p(n) bits.
- ▶ Convert B to a polynomial-sized circuit K with n + p(n) sources.
 - 1. First *n* sources are hard-coded with the bits of *s*.
 - 2. The remaining p(n) sources labelled with variables representing the bits of t.

- ▶ To determine whether $s \in X$, we ask "Is there a string t of length p(|s|) such that B(s,t) = yes?"
- ▶ View $B(\cdot, \cdot)$ as an algorithm on n + p(n) bits.
- ▶ Convert B to a polynomial-sized circuit K with n + p(n) sources.
 - 1. First *n* sources are hard-coded with the bits of *s*.
 - 2. The remaining p(n) sources labelled with variables representing the bits of t.
- ▶ $s \in X$ iff there is an assignment of the input bits of K that makes K satisfiable.

▶ Does a graph *G* on *n* nodes have a two-node independent set?

- ▶ Does a graph G on n nodes have a two-node independent set?
- s encodes the graph G with $\binom{n}{2}$ bits.
- t encodes the independent set with n bits.
- Certifier needs to check if
 - 1. at least two bits in t are set to 1 and
 - no two bits in t are set to 1 if they form the ends of an edge (the corresponding bit in s is set to 1).

 \triangleright Suppose G contains three nodes u, v, and w with v connected to u and w.

 \triangleright Suppose G contains three nodes u, v, and w with v connected to u and w.

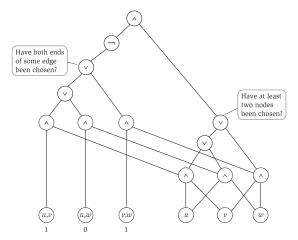


Figure 8.5 A circuit to verify whether a 3-node graph contains a 2-node independent set.

- ▶ A problem X is \mathcal{NP} -Complete if
 - 1. $X \in \mathcal{NP}$ and
 - 2. for every problem $Y \in \mathcal{NP}$, $Y \leq_P X$.

- ▶ A problem X is \mathcal{NP} -Complete if
 - 1. $X \in \mathcal{NP}$ and
 - 2. for every problem $Y \in \mathcal{NP}$, $Y \leq_P X$.
- ▶ Claim: If Z is \mathcal{NP} -Complete and $X \in \mathcal{NP}$ such that $Z \leq_P X$, then X is \mathcal{NP} -Complete.

- ▶ A problem X is \mathcal{NP} -Complete if
 - 1. $X \in \mathcal{NP}$ and
 - 2. for every problem $Y \in \mathcal{NP}$, $Y \leq_P X$.
- ▶ Claim: If Z is \mathcal{NP} -Complete and $X \in \mathcal{NP}$ such that $Z \leq_P X$, then X is \mathcal{NP} -Complete.
- \triangleright Given a new problem X, a general strategy for proving it \mathcal{NP} -Complete is

- ▶ A problem X is \mathcal{NP} -Complete if
 - 1. $X \in \mathcal{NP}$ and
 - 2. for every problem $Y \in \mathcal{NP}$, $Y \leq_P X$.
- ▶ Claim: If Z is \mathcal{NP} -Complete and $X \in \mathcal{NP}$ such that $Z \leq_P X$, then X is \mathcal{NP} -Complete.
- ▶ Given a new problem X, a general strategy for proving it \mathcal{NP} -Complete is
 - 1. Prove that $X \in \mathcal{NP}$.
 - 2. Select a problem Z known to be $\mathcal{NP} ext{-}\mathsf{Complete}.$
 - 3. Prove that $Z \leq_P X$.

- ▶ A problem X is \mathcal{NP} -Complete if
 - 1. $X \in \mathcal{NP}$ and
 - 2. for every problem $Y \in \mathcal{NP}$, $Y \leq_P X$.
- ▶ Claim: If Z is \mathcal{NP} -Complete and $X \in \mathcal{NP}$ such that $Z \leq_P X$, then X is \mathcal{NP} -Complete.
- ▶ Given a new problem X, a general strategy for proving it \mathcal{NP} -Complete is
 - 1. Prove that $X \in \mathcal{NP}$.
 - 2. Select a problem Z known to be \mathcal{NP} -Complete.
 - 3. Prove that $Z \leq_P X$.
- ▶ If we use Karp reductions, we can refine the strategy:
 - 1. Prove that $X \in \mathcal{NP}$.
 - 2. Select a problem Z known to be \mathcal{NP} -Complete.
 - 3. Consider an arbitrary instance s_Z of problem Z. Show how to construct, in polynomial time, an instance s_X of problem X such that
 - (a) If $s_Z \in Z$, then $s_X \in X$ and
 - (b) If $s_X \in X$, then $s_z \in z$.