
Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming

T. M. Murali

October 14, 19, 21, 26, 28, 2009

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Algorithm Design Techniques

1. Goal: design efficient (polynomial-time) algorithms.

2. Greedy
I Pro: natural approach to algorithm design.
I Con: many greedy approaches to a problem. Only some may work.
I Con: many problems for which no greedy approach is known.

3. Divide and conquer
I Pro: simple to develop algorithm skeleton.
I Con: conquer step can be very hard to implement efficiently.
I Con: usually reduces time for a problem known to be solvable in polynomial

time.

4. Dynamic programming
I More powerful than greedy and divide-and-conquer strategies.
I Implicitly explore space of all possible solutions.
I Solve multiple sub-problems and build up correct solutions to larger and larger

sub-problems.
I Careful analysis needed to ensure number of sub-problems solved is polynomial

in the size of the input.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Algorithm Design Techniques

1. Goal: design efficient (polynomial-time) algorithms.

2. Greedy
I Pro: natural approach to algorithm design.
I Con: many greedy approaches to a problem. Only some may work.
I Con: many problems for which no greedy approach is known.

3. Divide and conquer
I Pro: simple to develop algorithm skeleton.
I Con: conquer step can be very hard to implement efficiently.
I Con: usually reduces time for a problem known to be solvable in polynomial

time.

4. Dynamic programming
I More powerful than greedy and divide-and-conquer strategies.
I Implicitly explore space of all possible solutions.
I Solve multiple sub-problems and build up correct solutions to larger and larger

sub-problems.
I Careful analysis needed to ensure number of sub-problems solved is polynomial

in the size of the input.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Algorithm Design Techniques

1. Goal: design efficient (polynomial-time) algorithms.

2. Greedy
I Pro: natural approach to algorithm design.
I Con: many greedy approaches to a problem. Only some may work.
I Con: many problems for which no greedy approach is known.

3. Divide and conquer
I Pro: simple to develop algorithm skeleton.
I Con: conquer step can be very hard to implement efficiently.
I Con: usually reduces time for a problem known to be solvable in polynomial

time.

4. Dynamic programming
I More powerful than greedy and divide-and-conquer strategies.
I Implicitly explore space of all possible solutions.
I Solve multiple sub-problems and build up correct solutions to larger and larger

sub-problems.
I Careful analysis needed to ensure number of sub-problems solved is polynomial

in the size of the input.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Algorithm Design Techniques

1. Goal: design efficient (polynomial-time) algorithms.

2. Greedy
I Pro: natural approach to algorithm design.
I Con: many greedy approaches to a problem. Only some may work.
I Con: many problems for which no greedy approach is known.

3. Divide and conquer
I Pro: simple to develop algorithm skeleton.
I Con: conquer step can be very hard to implement efficiently.
I Con: usually reduces time for a problem known to be solvable in polynomial

time.

4. Dynamic programming
I More powerful than greedy and divide-and-conquer strategies.
I Implicitly explore space of all possible solutions.
I Solve multiple sub-problems and build up correct solutions to larger and larger

sub-problems.
I Careful analysis needed to ensure number of sub-problems solved is polynomial

in the size of the input.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

History of Dynamic Programming

I Bellman pioneered the systematic study of dynamic programming in the
1950s.

I The Secretary of Defense at that time was hostile to mathematical research.

I Bellman sought an impressive name to avoid confrontation.
I “it’s impossible to use dynamic in a pejorative sense”
I “something not even a Congressman could object to” (Bellman, R. E., Eye of

the Hurricane, An Autobiography).

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

History of Dynamic Programming

I Bellman pioneered the systematic study of dynamic programming in the
1950s.

I The Secretary of Defense at that time was hostile to mathematical research.

I Bellman sought an impressive name to avoid confrontation.
I “it’s impossible to use dynamic in a pejorative sense”
I “something not even a Congressman could object to” (Bellman, R. E., Eye of

the Hurricane, An Autobiography).

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Applications of Dynamic Programming

I Computational biology: Smith-Waterman algorithm for sequence alignment.

I Operations research: Bellman-Ford algorithm for shortest path routing in
networks.

I Control theory: Viterbi algorithm for hidden Markov models (CS 6604, MCB
110, 3:30-4:45pm on Oct 15).

I Computer science (theory, graphics, AI, . . . ): Unix diff command for
comparing two files.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Review: Interval Scheduling

Interval Scheduling

INSTANCE: Nonempty set {(si , fi ), 1 ≤ i ≤ n} of start and finish times
of n jobs.

SOLUTION: The largest subset of mutually compatible jobs.

I Two jobs are compatible if they do not overlap.

I Greedy algorithm: sort jobs in increasing order of finish times. Add next job
to current subset only if it is compatible with previously-selected jobs.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Review: Interval Scheduling

Interval Scheduling

INSTANCE: Nonempty set {(si , fi ), 1 ≤ i ≤ n} of start and finish times
of n jobs.

SOLUTION: The largest subset of mutually compatible jobs.

I Two jobs are compatible if they do not overlap.

I Greedy algorithm: sort jobs in increasing order of finish times. Add next job
to current subset only if it is compatible with previously-selected jobs.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Weighted Interval Scheduling

Weighted Interval Scheduling

INSTANCE: Nonempty set {(si , fi ), 1 ≤ i ≤ n} of start and finish times
of n jobs and a weight vi ≥ 0 associated with each job.

SOLUTION: A set S of mutually compatible jobs such that
∑

i∈S vi is
maximised.

I Greedy algorithm can produce arbitrarily bad results for this problem.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Weighted Interval Scheduling

Weighted Interval Scheduling

INSTANCE: Nonempty set {(si , fi ), 1 ≤ i ≤ n} of start and finish times
of n jobs and a weight vi ≥ 0 associated with each job.

SOLUTION: A set S of mutually compatible jobs such that
∑

i∈S vi is
maximised.

I Greedy algorithm can produce arbitrarily bad results for this problem.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Approach

I Sort jobs in increasing order of finish time and relabel: f1 ≤ f2 ≤ . . . ≤ fn.
I Request i comes before request j if i < j .
I p(j) is the largest index i < j such that job i is compatible with job j .

p(j) = 0 if there is no such job i .
I Jobs at indices {p(j) + 1, p(j) + 2, . . . , j − 1} are incompatible with job j .

I We will develop optimal algorithm from obvious statements about the
problem.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Detour: a Binomial Identity

I Pascal’s triangle:
I Each element is a binomial co-efficient.
I Each element is the sum of the two

elements above it.(
n

r

)
=

(
n − 1

r − 1

)
+

(
n − 1

r

)

I Proof: Consider any subset S of r elements.

Case 1 S contains the nth element:(
n−1
r−1

)
such subsets.

Case 2 S does not contain the nth
element:

(
n−1

r

)
such subsets.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Detour: a Binomial Identity

I Pascal’s triangle:
I Each element is a binomial co-efficient.
I Each element is the sum of the two

elements above it.

(
n

r

)
=

(
n − 1

r − 1

)
+

(
n − 1

r

)

I Proof: Consider any subset S of r elements.

Case 1 S contains the nth element:(
n−1
r−1

)
such subsets.

Case 2 S does not contain the nth
element:

(
n−1

r

)
such subsets.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Detour: a Binomial Identity

I Pascal’s triangle:
I Each element is a binomial co-efficient.
I Each element is the sum of the two

elements above it.(
n

r

)
=

(
n − 1

r − 1

)
+

(
n − 1

r

)

I Proof: Consider any subset S of r elements.

Case 1 S contains the nth element:(
n−1
r−1

)
such subsets.

Case 2 S does not contain the nth
element:

(
n−1

r

)
such subsets.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Detour: a Binomial Identity

I Pascal’s triangle:
I Each element is a binomial co-efficient.
I Each element is the sum of the two

elements above it.(
n

r

)
=

(
n − 1

r − 1

)
+

(
n − 1

r

)
I Proof: Consider any subset S of r elements.

Case 1 S contains the nth element:(
n−1
r−1

)
such subsets.

Case 2 S does not contain the nth
element:

(
n−1

r

)
such subsets.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Sub-problems

I Let O be the optimal solution. Let us reason about O.

Case 1 job n is not in O.

O must be the optimal solution for jobs
{1, 2, . . . , n − 1}.

Case 2 job n is in O.

I O cannot use incompatible jobs
{p(n) + 1, p(n) + 2, . . . , n − 1}.

I Remaining jobs in O must be the optimal solution for jobs
{1, 2, . . . , p(n)}.

I O must be the best of these two choices!

I Suggests finding optimal solution for sub-problems consisting of jobs
{1, 2, . . . , j − 1, j}, for all values of j .

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Sub-problems

I Let O be the optimal solution. Let us reason about O.

Case 1 job n is not in O. O must be the optimal solution for jobs
{1, 2, . . . , n − 1}.

Case 2 job n is in O.

I O cannot use incompatible jobs
{p(n) + 1, p(n) + 2, . . . , n − 1}.

I Remaining jobs in O must be the optimal solution for jobs
{1, 2, . . . , p(n)}.

I O must be the best of these two choices!

I Suggests finding optimal solution for sub-problems consisting of jobs
{1, 2, . . . , j − 1, j}, for all values of j .

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Sub-problems

I Let O be the optimal solution. Let us reason about O.

Case 1 job n is not in O. O must be the optimal solution for jobs
{1, 2, . . . , n − 1}.

Case 2 job n is in O.
I O cannot use incompatible jobs
{p(n) + 1, p(n) + 2, . . . , n − 1}.

I Remaining jobs in O must be the optimal solution for jobs
{1, 2, . . . , p(n)}.

I O must be the best of these two choices!

I Suggests finding optimal solution for sub-problems consisting of jobs
{1, 2, . . . , j − 1, j}, for all values of j .

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Sub-problems

I Let O be the optimal solution. Let us reason about O.

Case 1 job n is not in O. O must be the optimal solution for jobs
{1, 2, . . . , n − 1}.

Case 2 job n is in O.
I O cannot use incompatible jobs
{p(n) + 1, p(n) + 2, . . . , n − 1}.

I Remaining jobs in O must be the optimal solution for jobs
{1, 2, . . . , p(n)}.

I O must be the best of these two choices!

I Suggests finding optimal solution for sub-problems consisting of jobs
{1, 2, . . . , j − 1, j}, for all values of j .

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Sub-problems

I Let O be the optimal solution. Let us reason about O.

Case 1 job n is not in O. O must be the optimal solution for jobs
{1, 2, . . . , n − 1}.

Case 2 job n is in O.
I O cannot use incompatible jobs
{p(n) + 1, p(n) + 2, . . . , n − 1}.

I Remaining jobs in O must be the optimal solution for jobs
{1, 2, . . . , p(n)}.

I O must be the best of these two choices!

I Suggests finding optimal solution for sub-problems consisting of jobs
{1, 2, . . . , j − 1, j}, for all values of j .

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Recursion

I Let Oj be the optimal solution for jobs {1, 2, . . . , j} and OPT(j) be the value
of this solution (OPT(0) = 0).

I We are seeking On with a value of OPT(n).

I To compute OPT(j):

Case 1 j 6∈ Oj : OPT(j) = OPT(j − 1).
Case 2 j ∈ Oj : OPT(j) = vj + OPT(p(j))

I Final recurrence:

OPT(j) = max(vj + OPT(p(j)),OPT(j − 1))

I To compute Oj : when does request j belong to Oj? If and only if
vj + OPT(p(j)) ≥ OPT(j − 1).

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Recursion

I Let Oj be the optimal solution for jobs {1, 2, . . . , j} and OPT(j) be the value
of this solution (OPT(0) = 0).

I We are seeking On with a value of OPT(n).

I To compute OPT(j):

Case 1 j 6∈ Oj : OPT(j) = OPT(j − 1).
Case 2 j ∈ Oj : OPT(j) = vj + OPT(p(j))

I Final recurrence:

OPT(j) = max(vj + OPT(p(j)),OPT(j − 1))

I To compute Oj : when does request j belong to Oj? If and only if
vj + OPT(p(j)) ≥ OPT(j − 1).

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Recursion

I Let Oj be the optimal solution for jobs {1, 2, . . . , j} and OPT(j) be the value
of this solution (OPT(0) = 0).

I We are seeking On with a value of OPT(n).

I To compute OPT(j):

Case 1 j 6∈ Oj :

OPT(j) = OPT(j − 1).
Case 2 j ∈ Oj : OPT(j) = vj + OPT(p(j))

I Final recurrence:

OPT(j) = max(vj + OPT(p(j)),OPT(j − 1))

I To compute Oj : when does request j belong to Oj? If and only if
vj + OPT(p(j)) ≥ OPT(j − 1).

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Recursion

I Let Oj be the optimal solution for jobs {1, 2, . . . , j} and OPT(j) be the value
of this solution (OPT(0) = 0).

I We are seeking On with a value of OPT(n).

I To compute OPT(j):

Case 1 j 6∈ Oj : OPT(j) = OPT(j − 1).

Case 2 j ∈ Oj : OPT(j) = vj + OPT(p(j))

I Final recurrence:

OPT(j) = max(vj + OPT(p(j)),OPT(j − 1))

I To compute Oj : when does request j belong to Oj? If and only if
vj + OPT(p(j)) ≥ OPT(j − 1).

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Recursion

I Let Oj be the optimal solution for jobs {1, 2, . . . , j} and OPT(j) be the value
of this solution (OPT(0) = 0).

I We are seeking On with a value of OPT(n).

I To compute OPT(j):

Case 1 j 6∈ Oj : OPT(j) = OPT(j − 1).
Case 2 j ∈ Oj :

OPT(j) = vj + OPT(p(j))

I Final recurrence:

OPT(j) = max(vj + OPT(p(j)),OPT(j − 1))

I To compute Oj : when does request j belong to Oj? If and only if
vj + OPT(p(j)) ≥ OPT(j − 1).

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Recursion

I Let Oj be the optimal solution for jobs {1, 2, . . . , j} and OPT(j) be the value
of this solution (OPT(0) = 0).

I We are seeking On with a value of OPT(n).

I To compute OPT(j):

Case 1 j 6∈ Oj : OPT(j) = OPT(j − 1).
Case 2 j ∈ Oj : OPT(j) = vj + OPT(p(j))

I Final recurrence:

OPT(j) = max(vj + OPT(p(j)),OPT(j − 1))

I To compute Oj : when does request j belong to Oj? If and only if
vj + OPT(p(j)) ≥ OPT(j − 1).

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Recursion

I Let Oj be the optimal solution for jobs {1, 2, . . . , j} and OPT(j) be the value
of this solution (OPT(0) = 0).

I We are seeking On with a value of OPT(n).

I To compute OPT(j):

Case 1 j 6∈ Oj : OPT(j) = OPT(j − 1).
Case 2 j ∈ Oj : OPT(j) = vj + OPT(p(j))

I Final recurrence:

OPT(j) = max(vj + OPT(p(j)),OPT(j − 1))

I To compute Oj : when does request j belong to Oj? If and only if
vj + OPT(p(j)) ≥ OPT(j − 1).

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Recursion

I Let Oj be the optimal solution for jobs {1, 2, . . . , j} and OPT(j) be the value
of this solution (OPT(0) = 0).

I We are seeking On with a value of OPT(n).

I To compute OPT(j):

Case 1 j 6∈ Oj : OPT(j) = OPT(j − 1).
Case 2 j ∈ Oj : OPT(j) = vj + OPT(p(j))

I Final recurrence:

OPT(j) = max(vj + OPT(p(j)),OPT(j − 1))

I To compute Oj : when does request j belong to Oj?

If and only if
vj + OPT(p(j)) ≥ OPT(j − 1).

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Recursion

I Let Oj be the optimal solution for jobs {1, 2, . . . , j} and OPT(j) be the value
of this solution (OPT(0) = 0).

I We are seeking On with a value of OPT(n).

I To compute OPT(j):

Case 1 j 6∈ Oj : OPT(j) = OPT(j − 1).
Case 2 j ∈ Oj : OPT(j) = vj + OPT(p(j))

I Final recurrence:

OPT(j) = max(vj + OPT(p(j)),OPT(j − 1))

I To compute Oj : when does request j belong to Oj? If and only if
vj + OPT(p(j)) ≥ OPT(j − 1).

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Recursive Algorithm

I Correctness of algorithm follows by induction.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Recursive Algorithm

I Correctness of algorithm follows by induction.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Recursive Algorithm

OPT(6) =

max(v6 + OPT(p(6)),OPT(5)) = max(1 + OPT(3),OPT(5))

= 8

OPT(5) =

max(v5 + OPT(p(j)),OPT(4)) = max(2 + OPT(3),OPT(4))

= 8

OPT(4) =

max(v4 + OPT(p(4)),OPT(3)) = max(7 + OPT(0),OPT(3))

= 7

OPT(3) =

max(v3 + OPT(p(3)),OPT(2)) = max(4 + OPT(1),OPT(2))

= 6

OPT(2) =

max(v2 + OPT(p(2)),OPT(1)) = max(4 + OPT(0),OPT(1))

= 4

OPT(1) =

v1 = 2

OPT(0) = 0

I Optimal solution is

job 5, job 3, and job 1.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Recursive Algorithm

OPT(6) = max(v6 + OPT(p(6)),OPT(5)) = max(1 + OPT(3),OPT(5))

= 8

OPT(5) =

max(v5 + OPT(p(j)),OPT(4)) = max(2 + OPT(3),OPT(4))

= 8

OPT(4) =

max(v4 + OPT(p(4)),OPT(3)) = max(7 + OPT(0),OPT(3))

= 7

OPT(3) =

max(v3 + OPT(p(3)),OPT(2)) = max(4 + OPT(1),OPT(2))

= 6

OPT(2) =

max(v2 + OPT(p(2)),OPT(1)) = max(4 + OPT(0),OPT(1))

= 4

OPT(1) =

v1 = 2

OPT(0) = 0

I Optimal solution is

job 5, job 3, and job 1.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Recursive Algorithm

OPT(6) = max(v6 + OPT(p(6)),OPT(5)) = max(1 + OPT(3),OPT(5))

= 8

OPT(5) = max(v5 + OPT(p(j)),OPT(4)) = max(2 + OPT(3),OPT(4))

= 8

OPT(4) =

max(v4 + OPT(p(4)),OPT(3)) = max(7 + OPT(0),OPT(3))

= 7

OPT(3) =

max(v3 + OPT(p(3)),OPT(2)) = max(4 + OPT(1),OPT(2))

= 6

OPT(2) =

max(v2 + OPT(p(2)),OPT(1)) = max(4 + OPT(0),OPT(1))

= 4

OPT(1) =

v1 = 2

OPT(0) = 0

I Optimal solution is

job 5, job 3, and job 1.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Recursive Algorithm

OPT(6) = max(v6 + OPT(p(6)),OPT(5)) = max(1 + OPT(3),OPT(5))

= 8

OPT(5) = max(v5 + OPT(p(j)),OPT(4)) = max(2 + OPT(3),OPT(4))

= 8

OPT(4) = max(v4 + OPT(p(4)),OPT(3)) = max(7 + OPT(0),OPT(3))

= 7

OPT(3) =

max(v3 + OPT(p(3)),OPT(2)) = max(4 + OPT(1),OPT(2))

= 6

OPT(2) =

max(v2 + OPT(p(2)),OPT(1)) = max(4 + OPT(0),OPT(1))

= 4

OPT(1) =

v1 = 2

OPT(0) = 0

I Optimal solution is

job 5, job 3, and job 1.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Recursive Algorithm

OPT(6) = max(v6 + OPT(p(6)),OPT(5)) = max(1 + OPT(3),OPT(5))

= 8

OPT(5) = max(v5 + OPT(p(j)),OPT(4)) = max(2 + OPT(3),OPT(4))

= 8

OPT(4) = max(v4 + OPT(p(4)),OPT(3)) = max(7 + OPT(0),OPT(3))

= 7

OPT(3) = max(v3 + OPT(p(3)),OPT(2)) = max(4 + OPT(1),OPT(2))

= 6

OPT(2) =

max(v2 + OPT(p(2)),OPT(1)) = max(4 + OPT(0),OPT(1))

= 4

OPT(1) =

v1 = 2

OPT(0) = 0

I Optimal solution is

job 5, job 3, and job 1.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Recursive Algorithm

OPT(6) = max(v6 + OPT(p(6)),OPT(5)) = max(1 + OPT(3),OPT(5))

= 8

OPT(5) = max(v5 + OPT(p(j)),OPT(4)) = max(2 + OPT(3),OPT(4))

= 8

OPT(4) = max(v4 + OPT(p(4)),OPT(3)) = max(7 + OPT(0),OPT(3))

= 7

OPT(3) = max(v3 + OPT(p(3)),OPT(2)) = max(4 + OPT(1),OPT(2))

= 6

OPT(2) = max(v2 + OPT(p(2)),OPT(1)) = max(4 + OPT(0),OPT(1))

= 4

OPT(1) =

v1 = 2

OPT(0) = 0

I Optimal solution is

job 5, job 3, and job 1.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Recursive Algorithm

OPT(6) = max(v6 + OPT(p(6)),OPT(5)) = max(1 + OPT(3),OPT(5))

= 8

OPT(5) = max(v5 + OPT(p(j)),OPT(4)) = max(2 + OPT(3),OPT(4))

= 8

OPT(4) = max(v4 + OPT(p(4)),OPT(3)) = max(7 + OPT(0),OPT(3))

= 7

OPT(3) = max(v3 + OPT(p(3)),OPT(2)) = max(4 + OPT(1),OPT(2))

= 6

OPT(2) = max(v2 + OPT(p(2)),OPT(1)) = max(4 + OPT(0),OPT(1))

= 4

OPT(1) = v1 = 2
OPT(0) = 0

I Optimal solution is

job 5, job 3, and job 1.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Recursive Algorithm

OPT(6) = max(v6 + OPT(p(6)),OPT(5)) = max(1 + OPT(3),OPT(5))

= 8

OPT(5) = max(v5 + OPT(p(j)),OPT(4)) = max(2 + OPT(3),OPT(4))

= 8

OPT(4) = max(v4 + OPT(p(4)),OPT(3)) = max(7 + OPT(0),OPT(3))

= 7

OPT(3) = max(v3 + OPT(p(3)),OPT(2)) = max(4 + OPT(1),OPT(2))

= 6

OPT(2) = max(v2 + OPT(p(2)),OPT(1)) = max(4 + OPT(0),OPT(1)) = 4
OPT(1) = v1 = 2
OPT(0) = 0

I Optimal solution is

job 5, job 3, and job 1.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Recursive Algorithm

OPT(6) = max(v6 + OPT(p(6)),OPT(5)) = max(1 + OPT(3),OPT(5))

= 8

OPT(5) = max(v5 + OPT(p(j)),OPT(4)) = max(2 + OPT(3),OPT(4))

= 8

OPT(4) = max(v4 + OPT(p(4)),OPT(3)) = max(7 + OPT(0),OPT(3))

= 7

OPT(3) = max(v3 + OPT(p(3)),OPT(2)) = max(4 + OPT(1),OPT(2)) = 6
OPT(2) = max(v2 + OPT(p(2)),OPT(1)) = max(4 + OPT(0),OPT(1)) = 4
OPT(1) = v1 = 2
OPT(0) = 0

I Optimal solution is

job 5, job 3, and job 1.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Recursive Algorithm

OPT(6) = max(v6 + OPT(p(6)),OPT(5)) = max(1 + OPT(3),OPT(5))

= 8

OPT(5) = max(v5 + OPT(p(j)),OPT(4)) = max(2 + OPT(3),OPT(4))

= 8

OPT(4) = max(v4 + OPT(p(4)),OPT(3)) = max(7 + OPT(0),OPT(3)) = 7
OPT(3) = max(v3 + OPT(p(3)),OPT(2)) = max(4 + OPT(1),OPT(2)) = 6
OPT(2) = max(v2 + OPT(p(2)),OPT(1)) = max(4 + OPT(0),OPT(1)) = 4
OPT(1) = v1 = 2
OPT(0) = 0

I Optimal solution is

job 5, job 3, and job 1.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Recursive Algorithm

OPT(6) = max(v6 + OPT(p(6)),OPT(5)) = max(1 + OPT(3),OPT(5))

= 8

OPT(5) = max(v5 + OPT(p(j)),OPT(4)) = max(2 + OPT(3),OPT(4)) = 8
OPT(4) = max(v4 + OPT(p(4)),OPT(3)) = max(7 + OPT(0),OPT(3)) = 7
OPT(3) = max(v3 + OPT(p(3)),OPT(2)) = max(4 + OPT(1),OPT(2)) = 6
OPT(2) = max(v2 + OPT(p(2)),OPT(1)) = max(4 + OPT(0),OPT(1)) = 4
OPT(1) = v1 = 2
OPT(0) = 0

I Optimal solution is

job 5, job 3, and job 1.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Recursive Algorithm

OPT(6) = max(v6 + OPT(p(6)),OPT(5)) = max(1 + OPT(3),OPT(5)) = 8
OPT(5) = max(v5 + OPT(p(j)),OPT(4)) = max(2 + OPT(3),OPT(4)) = 8
OPT(4) = max(v4 + OPT(p(4)),OPT(3)) = max(7 + OPT(0),OPT(3)) = 7
OPT(3) = max(v3 + OPT(p(3)),OPT(2)) = max(4 + OPT(1),OPT(2)) = 6
OPT(2) = max(v2 + OPT(p(2)),OPT(1)) = max(4 + OPT(0),OPT(1)) = 4
OPT(1) = v1 = 2
OPT(0) = 0

I Optimal solution is

job 5, job 3, and job 1.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Recursive Algorithm

OPT(6) = max(v6 + OPT(p(6)),OPT(5)) = max(1 + OPT(3),OPT(5)) = 8
OPT(5) = max(v5 + OPT(p(j)),OPT(4)) = max(2 + OPT(3),OPT(4)) = 8
OPT(4) = max(v4 + OPT(p(4)),OPT(3)) = max(7 + OPT(0),OPT(3)) = 7
OPT(3) = max(v3 + OPT(p(3)),OPT(2)) = max(4 + OPT(1),OPT(2)) = 6
OPT(2) = max(v2 + OPT(p(2)),OPT(1)) = max(4 + OPT(0),OPT(1)) = 4
OPT(1) = v1 = 2
OPT(0) = 0

I Optimal solution is

job 5, job 3, and job 1.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Recursive Algorithm

OPT(6) = max(v6 + OPT(p(6)),OPT(5)) = max(1 + OPT(3),OPT(5)) = 8
OPT(5) = max(v5 + OPT(p(j)),OPT(4)) = max(2 + OPT(3),OPT(4)) = 8
OPT(4) = max(v4 + OPT(p(4)),OPT(3)) = max(7 + OPT(0),OPT(3)) = 7
OPT(3) = max(v3 + OPT(p(3)),OPT(2)) = max(4 + OPT(1),OPT(2)) = 6
OPT(2) = max(v2 + OPT(p(2)),OPT(1)) = max(4 + OPT(0),OPT(1)) = 4
OPT(1) = v1 = 2
OPT(0) = 0

I Optimal solution is job 5, job 3, and job 1.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Running Time of Recursive Algorithm

I What is the running time of the algorithm? Can be exponential in n.

I When p(j) = j − 2, for all j ≥ 2: recursive calls are for j − 1 and j − 2.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Running Time of Recursive Algorithm

I What is the running time of the algorithm?

Can be exponential in n.

I When p(j) = j − 2, for all j ≥ 2: recursive calls are for j − 1 and j − 2.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Running Time of Recursive Algorithm

I What is the running time of the algorithm? Can be exponential in n.

I When p(j) = j − 2, for all j ≥ 2: recursive calls are for j − 1 and j − 2.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Running Time of Recursive Algorithm

I What is the running time of the algorithm? Can be exponential in n.

I When p(j) = j − 2, for all j ≥ 2: recursive calls are for j − 1 and j − 2.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Memoisation

I Store OPT(j) values in a cache and reuse them rather than recompute them.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Memoisation

I Store OPT(j) values in a cache and reuse them rather than recompute them.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Running Time of Memoisation

I Claim: running time of this algorithm is O(n) (after sorting).

I Time spent in a single call to M-Compute-Opt is O(1) apart from time spent in
recursive calls.

I Total time spent is the order of the number of recursive calls to M-Compute-Opt.
I How many such recursive calls are there in total?
I Use number of filled entries in M as a measure of progress.
I Each time M-Compute-Opt issues two recursive calls, it fills in a new entry in M.
I Therefore, total number of recursive calls is O(n).

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Running Time of Memoisation

I Claim: running time of this algorithm is O(n) (after sorting).
I Time spent in a single call to M-Compute-Opt is O(1) apart from time spent in

recursive calls.
I Total time spent is the order of the number of recursive calls to M-Compute-Opt.
I How many such recursive calls are there in total?

I Use number of filled entries in M as a measure of progress.
I Each time M-Compute-Opt issues two recursive calls, it fills in a new entry in M.
I Therefore, total number of recursive calls is O(n).

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Running Time of Memoisation

I Claim: running time of this algorithm is O(n) (after sorting).
I Time spent in a single call to M-Compute-Opt is O(1) apart from time spent in

recursive calls.
I Total time spent is the order of the number of recursive calls to M-Compute-Opt.
I How many such recursive calls are there in total?
I Use number of filled entries in M as a measure of progress.
I Each time M-Compute-Opt issues two recursive calls, it fills in a new entry in M.
I Therefore, total number of recursive calls is O(n).

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Computing O in Addition to OPT(n)

I Explicitly store Oj in addition to OPT(j). Running time becomes O(n2).

I Recall: request j belongs to Oj if and only if vj + OPT(p(j)) ≥ OPT(j − 1).

I Can recover Oj from values of the optimal solutions in O(j) time.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Computing O in Addition to OPT(n)

I Explicitly store Oj in addition to OPT(j).

Running time becomes O(n2).

I Recall: request j belongs to Oj if and only if vj + OPT(p(j)) ≥ OPT(j − 1).

I Can recover Oj from values of the optimal solutions in O(j) time.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Computing O in Addition to OPT(n)

I Explicitly store Oj in addition to OPT(j). Running time becomes O(n2).

I Recall: request j belongs to Oj if and only if vj + OPT(p(j)) ≥ OPT(j − 1).

I Can recover Oj from values of the optimal solutions in O(j) time.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Computing O in Addition to OPT(n)

I Explicitly store Oj in addition to OPT(j). Running time becomes O(n2).

I Recall: request j belongs to Oj if and only if vj + OPT(p(j)) ≥ OPT(j − 1).

I Can recover Oj from values of the optimal solutions in O(j) time.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Computing O in Addition to OPT(n)

I Explicitly store Oj in addition to OPT(j). Running time becomes O(n2).

I Recall: request j belongs to Oj if and only if vj + OPT(p(j)) ≥ OPT(j − 1).

I Can recover Oj from values of the optimal solutions in O(j) time.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

From Recursion to Iteration

I Unwind the recursion and convert it into iteration.

I Can compute values in M iteratively in O(n) time.

I Find-Solution works as before.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Basic Outline of Dynamic Programming

I To solve a problem, we need a collection of sub-problems that satisfy a few
properties:

1. There are a polynomial number of sub-problems.
2. The solution to the problem can be computed easily from the solutions to the

sub-problems.
3. There is a natural ordering of the sub-problems from “smallest” to “largest”.
4. There is an easy-to-compute recurrence that allows us to compute the solution

to a sub-problem from the solutions to some smaller sub-problems.

I Difficulties in designing dynamic programming algorithms:

1. Which sub-problems to define?
2. How can we tie together sub-problems using a recurrence?
3. How do we order the sub-problems (to allow iterative computation of optimal

solutions to sub-problems)?

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Basic Outline of Dynamic Programming

I To solve a problem, we need a collection of sub-problems that satisfy a few
properties:

1. There are a polynomial number of sub-problems.
2. The solution to the problem can be computed easily from the solutions to the

sub-problems.
3. There is a natural ordering of the sub-problems from “smallest” to “largest”.
4. There is an easy-to-compute recurrence that allows us to compute the solution

to a sub-problem from the solutions to some smaller sub-problems.

I Difficulties in designing dynamic programming algorithms:

1. Which sub-problems to define?
2. How can we tie together sub-problems using a recurrence?
3. How do we order the sub-problems (to allow iterative computation of optimal

solutions to sub-problems)?

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Least Squares Problem

I Given scientific or statistical data
plotted on two axes.

I Find the “best” line that “passes”
through these points.

I How do we formalise the problem?

Least Squares
INSTANCE: Set P = {(x1, y1), (x2, y2), . . . , (xn, yn)} of n points.
SOLUTION: Line L : y = ax + b that minimises

Error(L,P) =
n∑

i=1

(yi − axi − b)2.

I Solution is achieved by

a =
n
∑

i xiyi − (
∑

i xi ) (
∑

i yi )

n
∑

i x
2
i − (

∑
i xi )

2 and b =

∑
i yi − a

∑
i xi

n

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Least Squares Problem

I Given scientific or statistical data
plotted on two axes.

I Find the “best” line that “passes”
through these points.

I How do we formalise the problem?

Least Squares
INSTANCE: Set P = {(x1, y1), (x2, y2), . . . , (xn, yn)} of n points.
SOLUTION: Line L : y = ax + b that minimises

Error(L,P) =
n∑

i=1

(yi − axi − b)2.

I Solution is achieved by

a =
n
∑

i xiyi − (
∑

i xi ) (
∑

i yi )

n
∑

i x
2
i − (

∑
i xi )

2 and b =

∑
i yi − a

∑
i xi

n

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Least Squares Problem

I Given scientific or statistical data
plotted on two axes.

I Find the “best” line that “passes”
through these points.

I How do we formalise the problem?

Least Squares
INSTANCE: Set P = {(x1, y1), (x2, y2), . . . , (xn, yn)} of n points.
SOLUTION: Line L : y = ax + b that minimises

Error(L,P) =
n∑

i=1

(yi − axi − b)2.

I Solution is achieved by

a =
n
∑

i xiyi − (
∑

i xi ) (
∑

i yi )

n
∑

i x
2
i − (

∑
i xi )

2 and b =

∑
i yi − a

∑
i xi

n

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Least Squares Problem

I Given scientific or statistical data
plotted on two axes.

I Find the “best” line that “passes”
through these points.

I How do we formalise the problem?

Least Squares
INSTANCE: Set P = {(x1, y1), (x2, y2), . . . , (xn, yn)} of n points.
SOLUTION: Line L : y = ax + b that minimises

Error(L,P) =
n∑

i=1

(yi − axi − b)2.

I Solution is achieved by

a =
n
∑

i xiyi − (
∑

i xi ) (
∑

i yi )

n
∑

i x
2
i − (

∑
i xi )

2 and b =

∑
i yi − a

∑
i xi

n

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Segmented Least Squares

I Want to fit multiple lines through P.

I Each line must fit contiguous set of x-coordinates.

I Lines must minimise total error.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Segmented Least Squares

I Want to fit multiple lines through P.

I Each line must fit contiguous set of x-coordinates.

I Lines must minimise total error.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Segmented Least Squares

I Want to fit multiple lines through P.

I Each line must fit contiguous set of x-coordinates.

I Lines must minimise total error.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Segmented Least Squares

Segmented Least Squares

INSTANCE: Set P = {pi = (xi , yi ), 1 ≤ i ≤ n} of n points,
x1 < x2 < · · · < xn

and a parameter C > 0

.

SOLUTION: A integer k, a partition of P into k segments
{P1,P2, . . . ,Pk}, k lines Lj : y = ajx + bj , 1 ≤ j ≤ k that minimise

k∑
j=1

Error(Lj ,Pj)

+ Ck.

I A subset P ′ of P is a segment if 1 ≤ i < j ≤ n exist such that
P ′ = {(xi , yi ), (xi+1, yi+1), . . . , (xj−1, yj−1), (xj , yj)}.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Segmented Least Squares

Segmented Least Squares

INSTANCE: Set P = {pi = (xi , yi ), 1 ≤ i ≤ n} of n points,
x1 < x2 < · · · < xn

and a parameter C > 0

.

SOLUTION: A integer k , a partition of P into k segments
{P1,P2, . . . ,Pk}, k lines Lj : y = ajx + bj , 1 ≤ j ≤ k that minimise

k∑
j=1

Error(Lj ,Pj)

+ Ck.

I A subset P ′ of P is a segment if 1 ≤ i < j ≤ n exist such that
P ′ = {(xi , yi ), (xi+1, yi+1), . . . , (xj−1, yj−1), (xj , yj)}.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Segmented Least Squares

Segmented Least Squares

INSTANCE: Set P = {pi = (xi , yi ), 1 ≤ i ≤ n} of n points,
x1 < x2 < · · · < xn and a parameter C > 0.

SOLUTION: A integer k , a partition of P into k segments
{P1,P2, . . . ,Pk}, k lines Lj : y = ajx + bj , 1 ≤ j ≤ k that minimise

k∑
j=1

Error(Lj ,Pj) + Ck.

I A subset P ′ of P is a segment if 1 ≤ i < j ≤ n exist such that
P ′ = {(xi , yi ), (xi+1, yi+1), . . . , (xj−1, yj−1), (xj , yj)}.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Formulating the Recursion I

I Observation: pn is part of some segment in the optimal solution. This
segment starts at some point pi .

I Let OPT(i) be the optimal value for the points {p1, p2, . . . , pi}.
I Let ei,j denote the minimum error of any line that fits {pi , p2, . . . , pj}.
I We want to compute OPT(n).

I If the last segment in the optimal partition is {pi , pi+1, . . . , pn}, then

OPT(n) = ei,n + C + OPT(i − 1)

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Formulating the Recursion II

I Consider the sub-problem on the points {p1, p2, . . . pj}
I To obtain OPT(j), if the last segment in the optimal partition is
{pi , pi+1, . . . , pj}, then

OPT(j) = ei,j + C + OPT(i − 1)

I Since i can take only j distinct values,

OPT(j) = min
1≤i≤j

(
ei,j + C + OPT(i − 1)

)
I Segment {pi , pi+1, . . . pj} is part of the optimal solution for this sub-problem

if and only if the minimum value of OPT(j) is obtained using index i .

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Formulating the Recursion II

I Consider the sub-problem on the points {p1, p2, . . . pj}
I To obtain OPT(j), if the last segment in the optimal partition is
{pi , pi+1, . . . , pj}, then

OPT(j) = ei,j + C + OPT(i − 1)

I Since i can take only j distinct values,

OPT(j) = min
1≤i≤j

(
ei,j + C + OPT(i − 1)

)
I Segment {pi , pi+1, . . . pj} is part of the optimal solution for this sub-problem

if and only if the minimum value of OPT(j) is obtained using index i .

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Algorithm

OPT(j) = min
1≤i≤j

(
ei,j + C + OPT(i − 1)

)

I Running time is O(n3), can be improved to O(n2).
I We can find the segments in the optimal solution by backtracking.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Algorithm

OPT(j) = min
1≤i≤j

(
ei,j + C + OPT(i − 1)

)

I Running time is O(n3), can be improved to O(n2).
I We can find the segments in the optimal solution by backtracking.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

RNA Molecules

I RNA is a basic biological molecule. It is single stranded.
I RNA molecules fold into complex “secondary structures.”
I Secondary structure often governs the behaviour of an RNA molecule.
I Various rules govern secondary structure formation:

1. Pairs of bases match up; each base
matches with ≤ 1 other base.

2. Adenine always matches with Uracil.

3. Cytosine always matches with Guanine.

4. There are no kinks in the folded
molecule.

5. Structures are “knot-free”.
I Problem: given an RNA molecule, predict its secondary structure.
I Hypothesis: In the cell, RNA molecules form the secondary structure with the

lowest total free energy.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

RNA Molecules

I RNA is a basic biological molecule. It is single stranded.
I RNA molecules fold into complex “secondary structures.”
I Secondary structure often governs the behaviour of an RNA molecule.
I Various rules govern secondary structure formation:

1. Pairs of bases match up; each base
matches with ≤ 1 other base.

2. Adenine always matches with Uracil.

3. Cytosine always matches with Guanine.

4. There are no kinks in the folded
molecule.

5. Structures are “knot-free”.

I Problem: given an RNA molecule, predict its secondary structure.
I Hypothesis: In the cell, RNA molecules form the secondary structure with the

lowest total free energy.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

RNA Molecules

I RNA is a basic biological molecule. It is single stranded.
I RNA molecules fold into complex “secondary structures.”
I Secondary structure often governs the behaviour of an RNA molecule.
I Various rules govern secondary structure formation:

1. Pairs of bases match up; each base
matches with ≤ 1 other base.

2. Adenine always matches with Uracil.

3. Cytosine always matches with Guanine.

4. There are no kinks in the folded
molecule.

5. Structures are “knot-free”.
I Problem: given an RNA molecule, predict its secondary structure.

I Hypothesis: In the cell, RNA molecules form the secondary structure with the
lowest total free energy.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

RNA Molecules

I RNA is a basic biological molecule. It is single stranded.
I RNA molecules fold into complex “secondary structures.”
I Secondary structure often governs the behaviour of an RNA molecule.
I Various rules govern secondary structure formation:

1. Pairs of bases match up; each base
matches with ≤ 1 other base.

2. Adenine always matches with Uracil.

3. Cytosine always matches with Guanine.

4. There are no kinks in the folded
molecule.

5. Structures are “knot-free”.
I Problem: given an RNA molecule, predict its secondary structure.
I Hypothesis: In the cell, RNA molecules form the secondary structure with the

lowest total free energy.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Formulating the Problem

I An RNA molecule is a string B = b1b2 . . . bn; each bi ∈ {A,C ,G ,U}.
I A secondary structure on B is a set of pairs S = {(i , j)}, where 1 ≤ i , j ≤ n

and

1. (No kinks.) If (i , j) ∈ S , then i < j − 4.
2. (Watson-Crick) The elements in each pair in S consist of either {A,U} or
{C ,G} (in either order).

3. S is a matching: no index appears in more than one pair.
4. (No knots) If (i , j) and (k, l) are two pairs in S , then we cannot have

i < k < j < l .

I The energy of a secondary structure ∝ the number of base pairs in it.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Formulating the Problem

I An RNA molecule is a string B = b1b2 . . . bn; each bi ∈ {A,C ,G ,U}.
I A secondary structure on B is a set of pairs S = {(i , j)}, where 1 ≤ i , j ≤ n

and
1. (No kinks.) If (i , j) ∈ S , then i < j − 4.
2. (Watson-Crick) The elements in each pair in S consist of either {A,U} or
{C ,G} (in either order).

3. S is a matching: no index appears in more than one pair.
4. (No knots) If (i , j) and (k, l) are two pairs in S , then we cannot have

i < k < j < l .

I The energy of a secondary structure ∝ the number of base pairs in it.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Approach

I OPT(j) is the maximum number of base pairs in a secondary structure for
b1b2 . . . bj .

OPT(j) = 0, if j ≤ 5.

I In the optimal secondary structure on b1b2 . . . bj

1. if j is not a member of any pair, use OPT(j − 1).
2. if j pairs with some t < j − 4,

knot condition yields two independent
sub-problems! OPT(t − 1) and ???

I Insight: need sub-problems indexed both by start and by end.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Approach

I OPT(j) is the maximum number of base pairs in a secondary structure for
b1b2 . . . bj . OPT(j) = 0, if j ≤ 5.

I In the optimal secondary structure on b1b2 . . . bj

1. if j is not a member of any pair, use OPT(j − 1).
2. if j pairs with some t < j − 4,

knot condition yields two independent
sub-problems! OPT(t − 1) and ???

I Insight: need sub-problems indexed both by start and by end.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Approach

I OPT(j) is the maximum number of base pairs in a secondary structure for
b1b2 . . . bj . OPT(j) = 0, if j ≤ 5.

I In the optimal secondary structure on b1b2 . . . bj

1. if j is not a member of any pair, use OPT(j − 1).
2. if j pairs with some t < j − 4,

knot condition yields two independent
sub-problems! OPT(t − 1) and ???

I Insight: need sub-problems indexed both by start and by end.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Approach

I OPT(j) is the maximum number of base pairs in a secondary structure for
b1b2 . . . bj . OPT(j) = 0, if j ≤ 5.

I In the optimal secondary structure on b1b2 . . . bj

1. if j is not a member of any pair, use OPT(j − 1).

2. if j pairs with some t < j − 4,

knot condition yields two independent
sub-problems! OPT(t − 1) and ???

I Insight: need sub-problems indexed both by start and by end.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Approach

I OPT(j) is the maximum number of base pairs in a secondary structure for
b1b2 . . . bj . OPT(j) = 0, if j ≤ 5.

I In the optimal secondary structure on b1b2 . . . bj

1. if j is not a member of any pair, use OPT(j − 1).
2. if j pairs with some t < j − 4,

knot condition yields two independent
sub-problems! OPT(t − 1) and ???

I Insight: need sub-problems indexed both by start and by end.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Approach

I OPT(j) is the maximum number of base pairs in a secondary structure for
b1b2 . . . bj . OPT(j) = 0, if j ≤ 5.

I In the optimal secondary structure on b1b2 . . . bj

1. if j is not a member of any pair, use OPT(j − 1).
2. if j pairs with some t < j − 4, knot condition yields two independent

sub-problems!

OPT(t − 1) and ???

I Insight: need sub-problems indexed both by start and by end.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Approach

I OPT(j) is the maximum number of base pairs in a secondary structure for
b1b2 . . . bj . OPT(j) = 0, if j ≤ 5.

I In the optimal secondary structure on b1b2 . . . bj

1. if j is not a member of any pair, use OPT(j − 1).
2. if j pairs with some t < j − 4, knot condition yields two independent

sub-problems! OPT(t − 1) and ???

I Insight: need sub-problems indexed both by start and by end.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Approach

I OPT(j) is the maximum number of base pairs in a secondary structure for
b1b2 . . . bj . OPT(j) = 0, if j ≤ 5.

I In the optimal secondary structure on b1b2 . . . bj

1. if j is not a member of any pair, use OPT(j − 1).
2. if j pairs with some t < j − 4, knot condition yields two independent

sub-problems! OPT(t − 1) and ???

I Insight: need sub-problems indexed both by start and by end.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Correct Dynamic Programming Approach

I OPT(i , j) is the maximum number of base pairs in a secondary structure for
bib2 . . . bj .

OPT(i , j) = 0, if i ≥ j − 4.

I In the optimal secondary structure on bib2 . . . bj

1. if j is not a member of any pair, compute OPT(i , j − 1).
2. if j pairs with some t < j − 4, compute OPT(i , t − 1) and OPT(t + 1, j − 1).

I Since t can range from i to j − 5,

OPT(i , j) = max

(
OPT(i , j − 1),

max
t

(
1 + OPT(i , t − 1) + OPT(t + 1, j − 1)

)

)
I In the “inner” maximisation, t runs over all indices between i and j − 5 that

are allowed to pair with j .

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Correct Dynamic Programming Approach

I OPT(i , j) is the maximum number of base pairs in a secondary structure for
bib2 . . . bj . OPT(i , j) = 0, if i ≥ j − 4.

I In the optimal secondary structure on bib2 . . . bj

1. if j is not a member of any pair, compute OPT(i , j − 1).
2. if j pairs with some t < j − 4, compute OPT(i , t − 1) and OPT(t + 1, j − 1).

I Since t can range from i to j − 5,

OPT(i , j) = max

(
OPT(i , j − 1),

max
t

(
1 + OPT(i , t − 1) + OPT(t + 1, j − 1)

)

)
I In the “inner” maximisation, t runs over all indices between i and j − 5 that

are allowed to pair with j .

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Correct Dynamic Programming Approach

I OPT(i , j) is the maximum number of base pairs in a secondary structure for
bib2 . . . bj . OPT(i , j) = 0, if i ≥ j − 4.

I In the optimal secondary structure on bib2 . . . bj

1. if j is not a member of any pair, compute OPT(i , j − 1).
2. if j pairs with some t < j − 4, compute OPT(i , t − 1) and OPT(t + 1, j − 1).

I Since t can range from i to j − 5,

OPT(i , j) = max

(
OPT(i , j − 1),

max
t

(
1 + OPT(i , t − 1) + OPT(t + 1, j − 1)

)

)
I In the “inner” maximisation, t runs over all indices between i and j − 5 that

are allowed to pair with j .

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Correct Dynamic Programming Approach

I OPT(i , j) is the maximum number of base pairs in a secondary structure for
bib2 . . . bj . OPT(i , j) = 0, if i ≥ j − 4.

I In the optimal secondary structure on bib2 . . . bj

1. if j is not a member of any pair, compute OPT(i , j − 1).

2. if j pairs with some t < j − 4, compute OPT(i , t − 1) and OPT(t + 1, j − 1).

I Since t can range from i to j − 5,

OPT(i , j) = max

(
OPT(i , j − 1),

max
t

(
1 + OPT(i , t − 1) + OPT(t + 1, j − 1)

)

)

I In the “inner” maximisation, t runs over all indices between i and j − 5 that
are allowed to pair with j .

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Correct Dynamic Programming Approach

I OPT(i , j) is the maximum number of base pairs in a secondary structure for
bib2 . . . bj . OPT(i , j) = 0, if i ≥ j − 4.

I In the optimal secondary structure on bib2 . . . bj

1. if j is not a member of any pair, compute OPT(i , j − 1).
2. if j pairs with some t < j − 4, compute OPT(i , t − 1) and OPT(t + 1, j − 1).

I Since t can range from i to j − 5,

OPT(i , j) = max

(
OPT(i , j − 1),

max
t

(
1 + OPT(i , t − 1) + OPT(t + 1, j − 1)

)

)

I In the “inner” maximisation, t runs over all indices between i and j − 5 that
are allowed to pair with j .

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Correct Dynamic Programming Approach

I OPT(i , j) is the maximum number of base pairs in a secondary structure for
bib2 . . . bj . OPT(i , j) = 0, if i ≥ j − 4.

I In the optimal secondary structure on bib2 . . . bj

1. if j is not a member of any pair, compute OPT(i , j − 1).
2. if j pairs with some t < j − 4, compute OPT(i , t − 1) and OPT(t + 1, j − 1).

I Since t can range from i to j − 5,

OPT(i , j) = max

(
OPT(i , j − 1),

max
t

(
1 + OPT(i , t − 1) + OPT(t + 1, j − 1)

)

)

I In the “inner” maximisation, t runs over all indices between i and j − 5 that
are allowed to pair with j .

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Correct Dynamic Programming Approach

I OPT(i , j) is the maximum number of base pairs in a secondary structure for
bib2 . . . bj . OPT(i , j) = 0, if i ≥ j − 4.

I In the optimal secondary structure on bib2 . . . bj

1. if j is not a member of any pair, compute OPT(i , j − 1).
2. if j pairs with some t < j − 4, compute OPT(i , t − 1) and OPT(t + 1, j − 1).

I Since t can range from i to j − 5,

OPT(i , j) = max

(
OPT(i , j − 1), max

t

(
1 + OPT(i , t − 1) + OPT(t + 1, j − 1)

))

I In the “inner” maximisation, t runs over all indices between i and j − 5 that
are allowed to pair with j .

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Correct Dynamic Programming Approach

I OPT(i , j) is the maximum number of base pairs in a secondary structure for
bib2 . . . bj . OPT(i , j) = 0, if i ≥ j − 4.

I In the optimal secondary structure on bib2 . . . bj

1. if j is not a member of any pair, compute OPT(i , j − 1).
2. if j pairs with some t < j − 4, compute OPT(i , t − 1) and OPT(t + 1, j − 1).

I Since t can range from i to j − 5,

OPT(i , j) = max

(
OPT(i , j − 1), max

t

(
1 + OPT(i , t − 1) + OPT(t + 1, j − 1)

))
I In the “inner” maximisation, t runs over all indices between i and j − 5 that

are allowed to pair with j .

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Algorithm

OPT(i , j) = max

(
OPT(i , j − 1),max

t

(
1 + OPT(i , t − 1) + OPT(t + 1, j − 1)

))
I There are O(n2) sub-problems.
I How do we order them from “smallest” to “largest”?

I Note that computing OPT(i , j) involves sub-problems OPT(l ,m) where
m − l < j − i .

I Running time of the algorithm is O(n3).

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Algorithm

OPT(i , j) = max

(
OPT(i , j − 1),max

t

(
1 + OPT(i , t − 1) + OPT(t + 1, j − 1)

))
I There are O(n2) sub-problems.
I How do we order them from “smallest” to “largest”?
I Note that computing OPT(i , j) involves sub-problems OPT(l ,m) where

m − l < j − i .

I Running time of the algorithm is O(n3).

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Algorithm

OPT(i , j) = max

(
OPT(i , j − 1),max

t

(
1 + OPT(i , t − 1) + OPT(t + 1, j − 1)

))
I There are O(n2) sub-problems.
I How do we order them from “smallest” to “largest”?
I Note that computing OPT(i , j) involves sub-problems OPT(l ,m) where

m − l < j − i .

I Running time of the algorithm is O(n3).

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Algorithm

OPT(i , j) = max

(
OPT(i , j − 1),max

t

(
1 + OPT(i , t − 1) + OPT(t + 1, j − 1)

))
I There are O(n2) sub-problems.
I How do we order them from “smallest” to “largest”?
I Note that computing OPT(i , j) involves sub-problems OPT(l ,m) where

m − l < j − i .

I Running time of the algorithm is O(n3).

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Algorithm

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Google Search for “Dymanic Programming”

I How do they know “Dynamic” and “Dymanic” are similar?

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Sequence Similarity

I Given two strings, measure how similar they are.

I Given a database of strings and a query string, compute the string most
similar to query in the database.

I Applications:
I Online searches (Web, dictionary).
I Spell-checkers.
I Computational biology
I Speech recognition.
I Basis for Unix diff.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Defining Sequence Similarity

I Edit distance model: how many changes must you to make to one string to
transform it into another?

I Changes allowed are deleting a letter, adding a letter, changing a letter.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Defining Sequence Similarity

I Edit distance model: how many changes must you to make to one string to
transform it into another?

I Changes allowed are deleting a letter, adding a letter, changing a letter.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Edit Distance

o-currance o-curr-ance
occurrence occurre-nce

I Proposed by Needleman and Wunsch in the early 1970s.
I Input: two strings x = x1x2x3 . . . xm and y = y1y2 . . . yn.
I Sets {1, 2, . . . ,m} and {1, 2, . . . , n} represent positions in x and y .

I A matching of these sets is a set M of ordered pairs such that
1. in each pair (i , j), 1 ≤ i ≤ m and 1 ≤ j ≤ n and
2. no index from x (respectively, from y) appears as the first (respectively,

second) element in more than one ordered pair.

I An index is not matched if it does not appear in the matching.
I A matching M is an alignment if there are no “crossing pairs” in M: if

(i , j) ∈ M and (i ′, j ′) ∈ M and i < i ′ then j < j ′.
I Cost of an alignment is the sum of gap and mismatch penalties:

Gap penalty Penalty δ > 0 for every unmatched index.
Mismatch penalty Penalty αxiyj > 0 if (i , j) ∈ M and xi 6= yj .

I Output: compute an alignment of minimal cost.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Edit Distance

o-currance o-curr-ance
occurrence occurre-nce

I Proposed by Needleman and Wunsch in the early 1970s.
I Input: two strings x = x1x2x3 . . . xm and y = y1y2 . . . yn.
I Sets {1, 2, . . . ,m} and {1, 2, . . . , n} represent positions in x and y .
I A matching of these sets is a set M of ordered pairs such that

1. in each pair (i , j), 1 ≤ i ≤ m and 1 ≤ j ≤ n and
2. no index from x (respectively, from y) appears as the first (respectively,

second) element in more than one ordered pair.

I An index is not matched if it does not appear in the matching.

I A matching M is an alignment if there are no “crossing pairs” in M: if
(i , j) ∈ M and (i ′, j ′) ∈ M and i < i ′ then j < j ′.

I Cost of an alignment is the sum of gap and mismatch penalties:

Gap penalty Penalty δ > 0 for every unmatched index.
Mismatch penalty Penalty αxiyj > 0 if (i , j) ∈ M and xi 6= yj .

I Output: compute an alignment of minimal cost.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Edit Distance

o-currance o-curr-ance
occurrence occurre-nce

I Proposed by Needleman and Wunsch in the early 1970s.
I Input: two strings x = x1x2x3 . . . xm and y = y1y2 . . . yn.
I Sets {1, 2, . . . ,m} and {1, 2, . . . , n} represent positions in x and y .
I A matching of these sets is a set M of ordered pairs such that

1. in each pair (i , j), 1 ≤ i ≤ m and 1 ≤ j ≤ n and
2. no index from x (respectively, from y) appears as the first (respectively,

second) element in more than one ordered pair.

I An index is not matched if it does not appear in the matching.
I A matching M is an alignment if there are no “crossing pairs” in M: if

(i , j) ∈ M and (i ′, j ′) ∈ M and i < i ′ then j < j ′.

I Cost of an alignment is the sum of gap and mismatch penalties:

Gap penalty Penalty δ > 0 for every unmatched index.
Mismatch penalty Penalty αxiyj > 0 if (i , j) ∈ M and xi 6= yj .

I Output: compute an alignment of minimal cost.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Edit Distance

o-currance o-curr-ance
occurrence occurre-nce

I Proposed by Needleman and Wunsch in the early 1970s.
I Input: two strings x = x1x2x3 . . . xm and y = y1y2 . . . yn.
I Sets {1, 2, . . . ,m} and {1, 2, . . . , n} represent positions in x and y .
I A matching of these sets is a set M of ordered pairs such that

1. in each pair (i , j), 1 ≤ i ≤ m and 1 ≤ j ≤ n and
2. no index from x (respectively, from y) appears as the first (respectively,

second) element in more than one ordered pair.

I An index is not matched if it does not appear in the matching.
I A matching M is an alignment if there are no “crossing pairs” in M: if

(i , j) ∈ M and (i ′, j ′) ∈ M and i < i ′ then j < j ′.
I Cost of an alignment is the sum of gap and mismatch penalties:

Gap penalty Penalty δ > 0 for every unmatched index.
Mismatch penalty Penalty αxiyj > 0 if (i , j) ∈ M and xi 6= yj .

I Output: compute an alignment of minimal cost.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Edit Distance

o-currance o-curr-ance
occurrence occurre-nce

I Proposed by Needleman and Wunsch in the early 1970s.
I Input: two strings x = x1x2x3 . . . xm and y = y1y2 . . . yn.
I Sets {1, 2, . . . ,m} and {1, 2, . . . , n} represent positions in x and y .
I A matching of these sets is a set M of ordered pairs such that

1. in each pair (i , j), 1 ≤ i ≤ m and 1 ≤ j ≤ n and
2. no index from x (respectively, from y) appears as the first (respectively,

second) element in more than one ordered pair.

I An index is not matched if it does not appear in the matching.
I A matching M is an alignment if there are no “crossing pairs” in M: if

(i , j) ∈ M and (i ′, j ′) ∈ M and i < i ′ then j < j ′.
I Cost of an alignment is the sum of gap and mismatch penalties:

Gap penalty Penalty δ > 0 for every unmatched index.
Mismatch penalty Penalty αxiyj > 0 if (i , j) ∈ M and xi 6= yj .

I Output: compute an alignment of minimal cost.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Approach

I Consider index m ∈ x and index n ∈ y . Is (m, n) ∈ M?

I Claim: (m, n) 6∈ M ⇒ m ∈ x not matched or n ∈ y not matched.

I OPT(i , j): cost of optimal alignment between x = x1x2x3 . . . xi and
y = y1y2 . . . yj .

I (i , j) ∈ M: OPT(i , j) = αxi yj + OPT(i − 1, j − 1).
I i not matched: OPT(i , j) = δ + OPT(i − 1, j).
I j not matched: OPT(i , j) = δ + OPT(i , j − 1).

OPT(i , j) = min
`
αxi yj + OPT(i−1, j−1), δ+ OPT(i−1, j), δ+ OPT(i , j−1)

´
I (i , j) ∈ M if and only if minimum is achieved by the first term.

I What are the base cases? OPT(i , 0) = OPT(0, i) = iδ.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Approach

I Consider index m ∈ x and index n ∈ y . Is (m, n) ∈ M?

I Claim: (m, n) 6∈ M ⇒ m ∈ x not matched or n ∈ y not matched.

I OPT(i , j): cost of optimal alignment between x = x1x2x3 . . . xi and
y = y1y2 . . . yj .

I (i , j) ∈ M: OPT(i , j) = αxi yj + OPT(i − 1, j − 1).
I i not matched: OPT(i , j) = δ + OPT(i − 1, j).
I j not matched: OPT(i , j) = δ + OPT(i , j − 1).

OPT(i , j) = min
`
αxi yj + OPT(i−1, j−1), δ+ OPT(i−1, j), δ+ OPT(i , j−1)

´
I (i , j) ∈ M if and only if minimum is achieved by the first term.

I What are the base cases? OPT(i , 0) = OPT(0, i) = iδ.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Approach

I Consider index m ∈ x and index n ∈ y . Is (m, n) ∈ M?

I Claim: (m, n) 6∈ M ⇒ m ∈ x not matched or n ∈ y not matched.

I OPT(i , j): cost of optimal alignment between x = x1x2x3 . . . xi and
y = y1y2 . . . yj .

I (i , j) ∈ M:

OPT(i , j) = αxi yj + OPT(i − 1, j − 1).
I i not matched: OPT(i , j) = δ + OPT(i − 1, j).
I j not matched: OPT(i , j) = δ + OPT(i , j − 1).

OPT(i , j) = min
`
αxi yj + OPT(i−1, j−1), δ+ OPT(i−1, j), δ+ OPT(i , j−1)

´
I (i , j) ∈ M if and only if minimum is achieved by the first term.

I What are the base cases? OPT(i , 0) = OPT(0, i) = iδ.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Approach

I Consider index m ∈ x and index n ∈ y . Is (m, n) ∈ M?

I Claim: (m, n) 6∈ M ⇒ m ∈ x not matched or n ∈ y not matched.

I OPT(i , j): cost of optimal alignment between x = x1x2x3 . . . xi and
y = y1y2 . . . yj .

I (i , j) ∈ M: OPT(i , j) = αxi yj + OPT(i − 1, j − 1).

I i not matched: OPT(i , j) = δ + OPT(i − 1, j).
I j not matched: OPT(i , j) = δ + OPT(i , j − 1).

OPT(i , j) = min
`
αxi yj + OPT(i−1, j−1), δ+ OPT(i−1, j), δ+ OPT(i , j−1)

´
I (i , j) ∈ M if and only if minimum is achieved by the first term.

I What are the base cases? OPT(i , 0) = OPT(0, i) = iδ.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Approach

I Consider index m ∈ x and index n ∈ y . Is (m, n) ∈ M?

I Claim: (m, n) 6∈ M ⇒ m ∈ x not matched or n ∈ y not matched.

I OPT(i , j): cost of optimal alignment between x = x1x2x3 . . . xi and
y = y1y2 . . . yj .

I (i , j) ∈ M: OPT(i , j) = αxi yj + OPT(i − 1, j − 1).
I i not matched:

OPT(i , j) = δ + OPT(i − 1, j).
I j not matched: OPT(i , j) = δ + OPT(i , j − 1).

OPT(i , j) = min
`
αxi yj + OPT(i−1, j−1), δ+ OPT(i−1, j), δ+ OPT(i , j−1)

´
I (i , j) ∈ M if and only if minimum is achieved by the first term.

I What are the base cases? OPT(i , 0) = OPT(0, i) = iδ.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Approach

I Consider index m ∈ x and index n ∈ y . Is (m, n) ∈ M?

I Claim: (m, n) 6∈ M ⇒ m ∈ x not matched or n ∈ y not matched.

I OPT(i , j): cost of optimal alignment between x = x1x2x3 . . . xi and
y = y1y2 . . . yj .

I (i , j) ∈ M: OPT(i , j) = αxi yj + OPT(i − 1, j − 1).
I i not matched: OPT(i , j) = δ + OPT(i − 1, j).

I j not matched: OPT(i , j) = δ + OPT(i , j − 1).

OPT(i , j) = min
`
αxi yj + OPT(i−1, j−1), δ+ OPT(i−1, j), δ+ OPT(i , j−1)

´
I (i , j) ∈ M if and only if minimum is achieved by the first term.

I What are the base cases? OPT(i , 0) = OPT(0, i) = iδ.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Approach

I Consider index m ∈ x and index n ∈ y . Is (m, n) ∈ M?

I Claim: (m, n) 6∈ M ⇒ m ∈ x not matched or n ∈ y not matched.

I OPT(i , j): cost of optimal alignment between x = x1x2x3 . . . xi and
y = y1y2 . . . yj .

I (i , j) ∈ M: OPT(i , j) = αxi yj + OPT(i − 1, j − 1).
I i not matched: OPT(i , j) = δ + OPT(i − 1, j).
I j not matched: OPT(i , j) = δ + OPT(i , j − 1).

OPT(i , j) = min
`
αxi yj + OPT(i−1, j−1), δ+ OPT(i−1, j), δ+ OPT(i , j−1)

´
I (i , j) ∈ M if and only if minimum is achieved by the first term.

I What are the base cases? OPT(i , 0) = OPT(0, i) = iδ.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Approach

I Consider index m ∈ x and index n ∈ y . Is (m, n) ∈ M?

I Claim: (m, n) 6∈ M ⇒ m ∈ x not matched or n ∈ y not matched.

I OPT(i , j): cost of optimal alignment between x = x1x2x3 . . . xi and
y = y1y2 . . . yj .

I (i , j) ∈ M: OPT(i , j) = αxi yj + OPT(i − 1, j − 1).
I i not matched: OPT(i , j) = δ + OPT(i − 1, j).
I j not matched: OPT(i , j) = δ + OPT(i , j − 1).

OPT(i , j) = min
`
αxi yj + OPT(i−1, j−1), δ+ OPT(i−1, j), δ+ OPT(i , j−1)

´
I (i , j) ∈ M if and only if minimum is achieved by the first term.

I What are the base cases?

OPT(i , 0) = OPT(0, i) = iδ.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Approach

I Consider index m ∈ x and index n ∈ y . Is (m, n) ∈ M?

I Claim: (m, n) 6∈ M ⇒ m ∈ x not matched or n ∈ y not matched.

I OPT(i , j): cost of optimal alignment between x = x1x2x3 . . . xi and
y = y1y2 . . . yj .

I (i , j) ∈ M: OPT(i , j) = αxi yj + OPT(i − 1, j − 1).
I i not matched: OPT(i , j) = δ + OPT(i − 1, j).
I j not matched: OPT(i , j) = δ + OPT(i , j − 1).

OPT(i , j) = min
`
αxi yj + OPT(i−1, j−1), δ+ OPT(i−1, j), δ+ OPT(i , j−1)

´
I (i , j) ∈ M if and only if minimum is achieved by the first term.

I What are the base cases? OPT(i , 0) = OPT(0, i) = iδ.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Algorithm

OPT(i , j) = min
(
αxiyj + OPT(i − 1, j − 1), δ + OPT(i − 1, j), δ + OPT(i , j − 1)

)

I Running time is O(mn). Space used in O(mn).
I Can compute OPT(m, n) in O(mn) time and O(m + n) space (Hirschberg

1975, Chapter 6.7).
I Can compute alignment in the same bounds by combining dynamic

programming with divide and conquer.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Algorithm

OPT(i , j) = min
(
αxiyj + OPT(i − 1, j − 1), δ + OPT(i − 1, j), δ + OPT(i , j − 1)

)

I Running time is O(mn). Space used in O(mn).

I Can compute OPT(m, n) in O(mn) time and O(m + n) space (Hirschberg
1975, Chapter 6.7).

I Can compute alignment in the same bounds by combining dynamic
programming with divide and conquer.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Algorithm

OPT(i , j) = min
(
αxiyj + OPT(i − 1, j − 1), δ + OPT(i − 1, j), δ + OPT(i , j − 1)

)

I Running time is O(mn). Space used in O(mn).
I Can compute OPT(m, n) in O(mn) time and O(m + n) space (Hirschberg

1975, Chapter 6.7).

I Can compute alignment in the same bounds by combining dynamic
programming with divide and conquer.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Algorithm

OPT(i , j) = min
(
αxiyj + OPT(i − 1, j − 1), δ + OPT(i − 1, j), δ + OPT(i , j − 1)

)

I Running time is O(mn). Space used in O(mn).
I Can compute OPT(m, n) in O(mn) time and O(m + n) space (Hirschberg

1975, Chapter 6.7).
I Can compute alignment in the same bounds by combining dynamic

programming with divide and conquer.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Graph-theoretic View of Sequence Alignment

I Grid graph Gxy :
I Rows labelled by symbols in x and columns labelled by symbols in y .
I Edges from node (i , j) to (i , j + 1)), to (i + 1, j), and to (i + 1, j + 1).
I Edges directed upward and to the right have cost δ.
I Edge directed from (i , j) to (i + 1, j + 1) has cost αxi+1yj+1 .

I f(i, j): minimum cost of a path in GXY from (0, 0) to (i , j).
I Claim: f (i , j) = OPT(i , j) and diagonal edges in the shortest path are the

matched pairs in the alignment.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Graph-theoretic View of Sequence Alignment

I Grid graph Gxy :
I Rows labelled by symbols in x and columns labelled by symbols in y .
I Edges from node (i , j) to (i , j + 1)), to (i + 1, j), and to (i + 1, j + 1).
I Edges directed upward and to the right have cost δ.
I Edge directed from (i , j) to (i + 1, j + 1) has cost αxi+1yj+1 .

I f(i, j): minimum cost of a path in GXY from (0, 0) to (i , j).
I Claim: f (i , j) = OPT(i , j) and diagonal edges in the shortest path are the

matched pairs in the alignment.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Motivation
I Computational finance:

I Each node is a financial agent.
I The cost cuv of an edge (u, v) is the cost of a transaction in which we buy

from agent u and sell to agent v .
I Negative cost corresponds to a profit.

I Internet routing protocols
I Dijkstra’s algorithm needs knowledge of the entire network.
I Routers only know which other routers they are connected to.
I Algorithm for shortest paths with negative edges is decentralised.
I We will not study this algorithm in the class. See Chapter 6.9.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Problem Statement

I Input: a directed graph G = (V ,E ) with a cost function c : E → R, i.e., cuv

is the cost of the edge (u, v) ∈ E .

I A negative cycle is a directed cycle whose edges have a total cost that is
negative.

I Two related problems:

1. If G has no negative cycles, find the shortest s-t path: a path of from source s
to destination t with minimum total cost.

2. Does G have a negative cycle?

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Problem Statement

I Input: a directed graph G = (V ,E ) with a cost function c : E → R, i.e., cuv

is the cost of the edge (u, v) ∈ E .

I A negative cycle is a directed cycle whose edges have a total cost that is
negative.

I Two related problems:

1. If G has no negative cycles, find the shortest s-t path: a path of from source s
to destination t with minimum total cost.

2. Does G have a negative cycle?

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Approaches for Shortest Path Algorithm

1. Dijsktra’s algorithm.

Computes
incorrect answers because it is
greedy.

2. Add some large constant to each
edge.

Computes incorrect answers
because the minimum cost path
changes.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Approaches for Shortest Path Algorithm

1. Dijsktra’s algorithm. Computes
incorrect answers because it is
greedy.

2. Add some large constant to each
edge. Computes incorrect answers
because the minimum cost path
changes.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Approach

I Assume G has no negative cycles.
I Claim: There is a shortest path from s to t that is simple (does not repeat a

node)

and hence has at most n − 1 edges.
I How do we define sub-problems?

I Shortest s-t path has ≤ n − 1
edges: how we can reach t using i
edges, for different values of i?

I We do not know which nodes will
be in shortest s-t path: how we
can reach t from each node in V ?

I Sub-problems defined by varying the
number of edges in the shortest
path and by varying the starting
node in the shortest path.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Approach

I Assume G has no negative cycles.
I Claim: There is a shortest path from s to t that is simple (does not repeat a

node) and hence has at most n − 1 edges.

I How do we define sub-problems?

I Shortest s-t path has ≤ n − 1
edges: how we can reach t using i
edges, for different values of i?

I We do not know which nodes will
be in shortest s-t path: how we
can reach t from each node in V ?

I Sub-problems defined by varying the
number of edges in the shortest
path and by varying the starting
node in the shortest path.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Approach

I Assume G has no negative cycles.
I Claim: There is a shortest path from s to t that is simple (does not repeat a

node) and hence has at most n − 1 edges.
I How do we define sub-problems?

I Shortest s-t path has ≤ n − 1
edges: how we can reach t using i
edges, for different values of i?

I We do not know which nodes will
be in shortest s-t path: how we
can reach t from each node in V ?

I Sub-problems defined by varying the
number of edges in the shortest
path and by varying the starting
node in the shortest path.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Approach

I Assume G has no negative cycles.
I Claim: There is a shortest path from s to t that is simple (does not repeat a

node) and hence has at most n − 1 edges.
I How do we define sub-problems?

I Shortest s-t path has ≤ n − 1
edges: how we can reach t using i
edges, for different values of i?

I We do not know which nodes will
be in shortest s-t path: how we
can reach t from each node in V ?

I Sub-problems defined by varying the
number of edges in the shortest
path and by varying the starting
node in the shortest path.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Approach

I Assume G has no negative cycles.
I Claim: There is a shortest path from s to t that is simple (does not repeat a

node) and hence has at most n − 1 edges.
I How do we define sub-problems?

I Shortest s-t path has ≤ n − 1
edges: how we can reach t using i
edges, for different values of i?

I We do not know which nodes will
be in shortest s-t path: how we
can reach t from each node in V ?

I Sub-problems defined by varying the
number of edges in the shortest
path and by varying the starting
node in the shortest path.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Recursion

I OPT(i , v): minimum cost of a v -t path that uses at most i edges.

I t is not explicitly mentioned in the sub-problems.

I Goal is to compute OPT(n − 1, s).

I Let P be the optimal path whose cost is OPT(i , v).

1. If P actually uses i − 1 edges, then OPT(i , v) = OPT(i − 1, v).
2. If first node on P is w , then OPT(i , v) = cvw + OPT(i − 1,w).

OPT(i , v) = min

(
OPT(i − 1, v), min

w∈V

(
cvw + OPT(i − 1,w)

))

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Recursion

I OPT(i , v): minimum cost of a v -t path that uses at most i edges.

I t is not explicitly mentioned in the sub-problems.

I Goal is to compute OPT(n − 1, s).

I Let P be the optimal path whose cost is OPT(i , v).

1. If P actually uses i − 1 edges, then OPT(i , v) = OPT(i − 1, v).
2. If first node on P is w , then OPT(i , v) = cvw + OPT(i − 1,w).

OPT(i , v) = min

(
OPT(i − 1, v), min

w∈V

(
cvw + OPT(i − 1,w)

))

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Recursion

I OPT(i , v): minimum cost of a v -t path that uses at most i edges.

I t is not explicitly mentioned in the sub-problems.

I Goal is to compute OPT(n − 1, s).

I Let P be the optimal path whose cost is OPT(i , v).

1. If P actually uses i − 1 edges, then OPT(i , v) = OPT(i − 1, v).
2. If first node on P is w , then OPT(i , v) = cvw + OPT(i − 1,w).

OPT(i , v) = min

(
OPT(i − 1, v), min

w∈V

(
cvw + OPT(i − 1,w)

))

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Recursion

I OPT(i , v): minimum cost of a v -t path that uses at most i edges.

I t is not explicitly mentioned in the sub-problems.

I Goal is to compute OPT(n − 1, s).

I Let P be the optimal path whose cost is OPT(i , v).

1. If P actually uses i − 1 edges, then OPT(i , v) = OPT(i − 1, v).
2. If first node on P is w , then OPT(i , v) = cvw + OPT(i − 1,w).

OPT(i , v) = min

(
OPT(i − 1, v), min

w∈V

(
cvw + OPT(i − 1,w)

))

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Dynamic Programming Recursion
OPT(i , v) = min

(
OPT(i − 1, v), min

w∈V

(
cvw + OPT(i − 1,w)

))

a

b

c

d

e

t

-4

8
-3

-2

-1

6
-3

4

2

3

a
b

c

d

e

t
0 1 2 3 4 5

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Dynamic Programming Recursion
OPT(i , v) = min

(
OPT(i − 1, v), min

w∈V

(
cvw + OPT(i − 1,w)

))

a

b

c

d

e

t

-4

8
-3

-2

-1

6
-3

4

2

3

a
b

c

d

e

t
0 1 2 3 4 5

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Dynamic Programming Recursion
OPT(i , v) = min

(
OPT(i − 1, v), min

w∈V

(
cvw + OPT(i − 1,w)

))

a

b

c

d

e

t

-4

8
-3

-2

-1

6
-3

4

2

3

a
b

c

d

e

t
0 1 2 3 4 5

0 0 0 0 0 0
∞

∞
∞
∞
∞

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Dynamic Programming Recursion
OPT(i , v) = min

(
OPT(i − 1, v), min

w∈V

(
cvw + OPT(i − 1,w)

))

a

b

c

d

e

t

-4

8
-3

-2

-1

6
-3

4

2

3

a
b

c

d

e

t
0 1 2 3 4 5

0 0 0 0 0 0
∞

∞
∞
∞
∞

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Dynamic Programming Recursion
OPT(i , v) = min

(
OPT(i − 1, v), min

w∈V

(
cvw + OPT(i − 1,w)

))

a

b

c

d

e

t

-4

8
-3

-2

-1

6
-3

4

2

3

a
b

c

d

e

t
0 1 2 3 4 5

0 0 0 0 0 0
∞

∞
∞
∞

∞

-3

3

4

2

∞

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Dynamic Programming Recursion
OPT(i , v) = min

(
OPT(i − 1, v), min

w∈V

(
cvw + OPT(i − 1,w)

))

a

b

c

d

e

t

-4

8
-3

-2

-1

6
-3

4

2

3

a
b

c

d

e

t
0 1 2 3 4 5

0 0 0 0 0 0
∞

∞
∞
∞

∞

-3

3

4

2

∞

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Dynamic Programming Recursion
OPT(i , v) = min

(
OPT(i − 1, v), min

w∈V

(
cvw + OPT(i − 1,w)

))

a

b

c

d

e

t

-4

8
-3

-2

-1

6
-3

4

2

3

a
b

c

d

e

t
0 1 2 3 4 5

-3

0
3

3

0

0 0 0 0 0 0
∞

∞
∞
∞

∞

-3

3

4

2

∞

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Dynamic Programming Recursion
OPT(i , v) = min

(
OPT(i − 1, v), min

w∈V

(
cvw + OPT(i − 1,w)

))

a

b

c

d

e

t

-4

8
-3

-2

-1

6
-3

4

2

3

a
b

c

d

e

t
0 1 2 3 4 5

-3

0
3

3

0

0 0 0 0 0 0
∞

∞
∞
∞

∞

-3

3

4

2

∞

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Dynamic Programming Recursion
OPT(i , v) = min

(
OPT(i − 1, v), min

w∈V

(
cvw + OPT(i − 1,w)

))

a

b

c

d

e

t

-4

8
-3

-2

-1

6
-3

4

2

3

a
b

c

d

e

t
0 1 2 3 4 5

-3

0
3

3

0

-4
-2

3
3

0

0 0 0 0 0 0
∞

∞
∞
∞

∞

-3

3

4

2

∞

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Dynamic Programming Recursion
OPT(i , v) = min

(
OPT(i − 1, v), min

w∈V

(
cvw + OPT(i − 1,w)

))

a

b

c

d

e

t

-4

8
-3

-2

-1

6
-3

4

2

3

a
b

c

d

e

t
0 1 2 3 4 5

-3

0
3

3

0

-4
-2

3
3

0

0 0 0 0 0 0
∞

∞
∞
∞

∞

-3

3

4

2

∞

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Dynamic Programming Recursion
OPT(i , v) = min

(
OPT(i − 1, v), min

w∈V

(
cvw + OPT(i − 1,w)

))

a

b

c

d

e

t

-4

8
-3

-2

-1

6
-3

4

2

3

a
b

c

d

e

t
0 1 2 3 4 5

-3

0
3

3

0

-4
-2

3
3

0

-6

-2

3

2

0

0 0 0 0 0 0
∞

∞
∞
∞

∞

-3

3

4

2

∞

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Dynamic Programming Recursion
OPT(i , v) = min

(
OPT(i − 1, v), min

w∈V

(
cvw + OPT(i − 1,w)

))

a

b

c

d

e

t

-4

8
-3

-2

-1

6
-3

4

2

3

a
b

c

d

e

t
0 1 2 3 4 5

-3

0
3

3

0

-4
-2

3
3

0

-6

-2

3

2

0

0 0 0 0 0 0
∞

∞
∞
∞

∞

-3

3

4

2

∞

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Dynamic Programming Recursion
OPT(i , v) = min

(
OPT(i − 1, v), min

w∈V

(
cvw + OPT(i − 1,w)

))

a

b

c

d

e

t

-4

8
-3

-2

-1

6
-3

4

2

3

a
b

c

d

e

t
0 1 2 3 4 5

-3

0
3

3

0

-4
-2

3
3

0

-6

-2

3

2

0

-6

-2

3

0
0

0 0 0 0 0 0
∞

∞
∞
∞

∞

-3

3

4

2

∞

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Dynamic Programming Recursion
OPT(i , v) = min

(
OPT(i − 1, v), min

w∈V

(
cvw + OPT(i − 1,w)

))

a

b

c

d

e

t

-4

8
-3

-2

-1

6
-3

4

2

3

a
b

c

d

e

t
0 1 2 3 4 5

-3

0
3

3

0

-4
-2

3
3

0

-6

-2

3

2

0

-6

-2

3

0
0

0 0 0 0 0 0
∞

∞
∞
∞

∞

-3

3

4

2

∞

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Alternate Dynamic Programming Formulation

I OPT(i , v): minimum cost of a v -t path that uses exactly i edges. Goal is to
compute

n−1
min
i=1

OPT(i , s).

I Let P be the optimal path whose cost is OPT(i , v).
I If first node on P is w , then OPT(i , v) = cvw + OPT(i − 1,w).

OPT(i , v) = min
w∈V

(
cvw + OPT(i − 1,w)

)
I Compare the recurrence above to the previous recurrence:

OPT(i , v) = min

(
OPT(i − 1, v), min

w∈V

(
cvw + OPT(i − 1,w)

))

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Alternate Dynamic Programming Formulation

I OPT(i , v): minimum cost of a v -t path that uses exactly i edges. Goal is to
compute

n−1
min
i=1

OPT(i , s).

I Let P be the optimal path whose cost is OPT(i , v).
I If first node on P is w , then OPT(i , v) = cvw + OPT(i − 1,w).

OPT(i , v) = min
w∈V

(
cvw + OPT(i − 1,w)

)
I Compare the recurrence above to the previous recurrence:

OPT(i , v) = min

(
OPT(i − 1, v), min

w∈V

(
cvw + OPT(i − 1,w)

))

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Alternate Dynamic Programming Formulation

I OPT(i , v): minimum cost of a v -t path that uses exactly i edges. Goal is to
compute

n−1
min
i=1

OPT(i , s).

I Let P be the optimal path whose cost is OPT(i , v).

I If first node on P is w , then OPT(i , v) = cvw + OPT(i − 1,w).

OPT(i , v) = min
w∈V

(
cvw + OPT(i − 1,w)

)
I Compare the recurrence above to the previous recurrence:

OPT(i , v) = min

(
OPT(i − 1, v), min

w∈V

(
cvw + OPT(i − 1,w)

))

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Alternate Dynamic Programming Formulation

I OPT(i , v): minimum cost of a v -t path that uses exactly i edges. Goal is to
compute

n−1
min
i=1

OPT(i , s).

I Let P be the optimal path whose cost is OPT(i , v).
I If first node on P is w , then OPT(i , v) = cvw + OPT(i − 1,w).

OPT(i , v) = min
w∈V

(
cvw + OPT(i − 1,w)

)
I Compare the recurrence above to the previous recurrence:

OPT(i , v) = min

(
OPT(i − 1, v), min

w∈V

(
cvw + OPT(i − 1,w)

))

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Alternate Dynamic Programming Formulation

I OPT(i , v): minimum cost of a v -t path that uses exactly i edges. Goal is to
compute

n−1
min
i=1

OPT(i , s).

I Let P be the optimal path whose cost is OPT(i , v).
I If first node on P is w , then OPT(i , v) = cvw + OPT(i − 1,w).

OPT(i , v) = min
w∈V

(
cvw + OPT(i − 1,w)

)

I Compare the recurrence above to the previous recurrence:

OPT(i , v) = min

(
OPT(i − 1, v), min

w∈V

(
cvw + OPT(i − 1,w)

))

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Alternate Dynamic Programming Formulation

I OPT(i , v): minimum cost of a v -t path that uses exactly i edges. Goal is to
compute

n−1
min
i=1

OPT(i , s).

I Let P be the optimal path whose cost is OPT(i , v).
I If first node on P is w , then OPT(i , v) = cvw + OPT(i − 1,w).

OPT(i , v) = min
w∈V

(
cvw + OPT(i − 1,w)

)
I Compare the recurrence above to the previous recurrence:

OPT(i , v) = min

(
OPT(i − 1, v), min

w∈V

(
cvw + OPT(i − 1,w)

))

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Bellman-Ford Algorithm

OPT(i , v) = min

(
OPT(i − 1, v), min

w∈V

(
cvw + OPT(i − 1,w)

))

I Space used is O(n2). Running time is O(n3).

I If shortest path uses k edges, we can recover it in O(kn) time by tracing back
through smaller sub-problems.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Bellman-Ford Algorithm

OPT(i , v) = min

(
OPT(i − 1, v), min

w∈V

(
cvw + OPT(i − 1,w)

))

I Space used is O(n2). Running time is O(n3).

I If shortest path uses k edges, we can recover it in O(kn) time by tracing back
through smaller sub-problems.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

An Improved Bound on the Running Time

I Suppose G has n nodes and m�
(
n
2

)
edges. Can we demonstrate a better

upper bound on the running time?

M[i , v ] = min

(
M[i − 1, v ], min

w∈V

(
cvw + M[i − 1,w ]

))
I w only needs to range over neighbours of v (Nv ).

I If nv is the number of neighbours of v , then in each round, we spend time
equal to ∑

v∈V

nv = m.

I The total running time is O(mn).

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

An Improved Bound on the Running Time

I Suppose G has n nodes and m�
(
n
2

)
edges. Can we demonstrate a better

upper bound on the running time?

M[i , v ] = min

(
M[i − 1, v ], min

w∈V

(
cvw + M[i − 1,w ]

))

I w only needs to range over neighbours of v (Nv ).

I If nv is the number of neighbours of v , then in each round, we spend time
equal to ∑

v∈V

nv = m.

I The total running time is O(mn).

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

An Improved Bound on the Running Time

I Suppose G has n nodes and m�
(
n
2

)
edges. Can we demonstrate a better

upper bound on the running time?

M[i , v ] = min

(
M[i − 1, v ], min

w∈V

(
cvw + M[i − 1,w ]

))
I w only needs to range over neighbours of v (Nv ).

I If nv is the number of neighbours of v , then in each round, we spend time
equal to ∑

v∈V

nv =

m.

I The total running time is O(mn).

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

An Improved Bound on the Running Time

I Suppose G has n nodes and m�
(
n
2

)
edges. Can we demonstrate a better

upper bound on the running time?

M[i , v ] = min

(
M[i − 1, v ], min

w∈V

(
cvw + M[i − 1,w ]

))
I w only needs to range over neighbours of v (Nv ).

I If nv is the number of neighbours of v , then in each round, we spend time
equal to ∑

v∈V

nv = m.

I The total running time is O(mn).

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Improving the Memory Requirements

M[i , v ] = min

(
M[i − 1, v ], min

w∈Nv

(
cvw + M[i − 1,w ]

))
I The algorithm uses O(n2) space to store the array M.

I Observe that M[i , v ] depends only on M[i − 1, ∗] and no other indices.
I Modified algorithm:

1. Maintain two arrays M and M ′ indexed over V .
2. At the beginning of each iteration, copy M into M ′.
3. To update M, use

M[v ] = min

„
M ′[v ], min

w∈Nv

`
cvw + M ′[w ]

´«

I Claim: at the beginning of iteration i , M stores values of OPT(i − 1, v) for
all nodes v ∈ V .

I Space used is O(n).

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Improving the Memory Requirements

M[i , v ] = min

(
M[i − 1, v ], min

w∈Nv

(
cvw + M[i − 1,w ]

))
I The algorithm uses O(n2) space to store the array M.

I Observe that M[i , v ] depends only on M[i − 1, ∗] and no other indices.

I Modified algorithm:
1. Maintain two arrays M and M ′ indexed over V .
2. At the beginning of each iteration, copy M into M ′.
3. To update M, use

M[v ] = min

„
M ′[v ], min

w∈Nv

`
cvw + M ′[w ]

´«

I Claim: at the beginning of iteration i , M stores values of OPT(i − 1, v) for
all nodes v ∈ V .

I Space used is O(n).

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Improving the Memory Requirements

M[i , v ] = min

(
M[i − 1, v ], min

w∈Nv

(
cvw + M[i − 1,w ]

))
I The algorithm uses O(n2) space to store the array M.

I Observe that M[i , v ] depends only on M[i − 1, ∗] and no other indices.
I Modified algorithm:

1. Maintain two arrays M and M ′ indexed over V .
2. At the beginning of each iteration, copy M into M ′.
3. To update M, use

M[v ] = min

„
M ′[v ], min

w∈Nv

`
cvw + M ′[w ]

´«

I Claim: at the beginning of iteration i , M stores values of OPT(i − 1, v) for
all nodes v ∈ V .

I Space used is O(n).

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Improving the Memory Requirements

M[i , v ] = min

(
M[i − 1, v ], min

w∈Nv

(
cvw + M[i − 1,w ]

))
I The algorithm uses O(n2) space to store the array M.

I Observe that M[i , v ] depends only on M[i − 1, ∗] and no other indices.
I Modified algorithm:

1. Maintain two arrays M and M ′ indexed over V .
2. At the beginning of each iteration, copy M into M ′.
3. To update M, use

M[v ] = min

„
M ′[v ], min

w∈Nv

`
cvw + M ′[w ]

´«

I Claim: at the beginning of iteration i , M stores values of OPT(i − 1, v) for
all nodes v ∈ V .

I Space used is O(n).

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Computing the Shortest Path: Algorithm

M[v ] = min

(
M ′[v ], min

w∈Nv

(
cvw + M ′[w ]

))
I How can we recover the shortest path that has cost M[v ]?

I For each node v , maintain f (v), the first node after v in the current shortest
path from v to t.

I To maintain f (v), if we ever set M[v ] to minw∈Nv

(
cvw + M ′[w ]

)
, set f (v) to

be the node w that attains this minimum.

I At the end, follow f (v) pointers from s to t.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Computing the Shortest Path: Algorithm

M[v ] = min

(
M ′[v ], min

w∈Nv

(
cvw + M ′[w ]

))
I How can we recover the shortest path that has cost M[v ]?

I For each node v , maintain f (v), the first node after v in the current shortest
path from v to t.

I To maintain f (v), if we ever set M[v ] to minw∈Nv

(
cvw + M ′[w ]

)
, set f (v) to

be the node w that attains this minimum.

I At the end, follow f (v) pointers from s to t.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Maintaining Pointers

M[v ] = min

(
M ′[v ], min

w∈Nv

(
cvw + M ′[w ]

))

a

b

c

d

e

t

-4

8
-3

-2

-1

6
-3

4

2

3

a
b

c

d

e

t
0 1 2 3 4 5

0 0 0 0 0 0
∞

∞
∞
∞
∞

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Maintaining Pointers

M[v ] = min

(
M ′[v ], min

w∈Nv

(
cvw + M ′[w ]

))

a

b

c

d

e

t

-4

8
-3

-2

-1

6
-3

4

2

3

a
b

c

d

e

t
0 1 2 3 4 5

0 0 0 0 0 0
∞

∞
∞
∞

∞

-3

3

4

2

∞

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Maintaining Pointers

M[v ] = min

(
M ′[v ], min

w∈Nv

(
cvw + M ′[w ]

))

a

b

c

d

e

t

-4

8
-3

-2

-1

6
-3

4

2

3

a
b

c

d

e

t
0 1 2 3 4 5

-3

0
3

3

0

0 0 0 0 0 0
∞

∞
∞
∞

∞

-3

3

4

2

∞

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Maintaining Pointers

M[v ] = min

(
M ′[v ], min

w∈Nv

(
cvw + M ′[w ]

))

a

b

c

d

e

t

-4

8
-3

-2

-1

6
-3

4

2

3

a
b

c

d

e

t
0 1 2 3 4 5

-3

0
3

3

0

-4
-2

3
3

0

0 0 0 0 0 0
∞

∞
∞
∞

∞

-3

3

4

2

∞

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Maintaining Pointers

M[v ] = min

(
M ′[v ], min

w∈Nv

(
cvw + M ′[w ]

))

a

b

c

d

e

t

-4

8
-3

-2

-1

6
-3

4

2

3

a
b

c

d

e

t
0 1 2 3 4 5

-3

0
3

3

0

-4
-2

3
3

0

-6

-2

3

2

0

0 0 0 0 0 0
∞

∞
∞
∞

∞

-3

3

4

2

∞

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Maintaining Pointers

M[v ] = min

(
M ′[v ], min

w∈Nv

(
cvw + M ′[w ]

))

a

b

c

d

e

t

-4

8
-3

-2

-1

6
-3

4

2

3

a
b

c

d

e

t
0 1 2 3 4 5

-3

0
3

3

0

-4
-2

3
3

0

-6

-2

3

2

0

-6

-2

3

0
0

0 0 0 0 0 0
∞

∞
∞
∞

∞

-3

3

4

2

∞

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Example of Maintaining Pointers

M[v ] = min

(
M ′[v ], min

w∈Nv

(
cvw + M ′[w ]

))

a

b

c

d

e

t

-4

8
-3

-2

-1

6
-3

4

2

3

a
b

c

d

e

t
0 1 2 3 4 5

-3

0
3

3

0

-4
-2

3
3

0

-6

-2

3

2

0

-6

-2

3

0
0

0 0 0 0 0 0
∞

∞
∞
∞

∞

-3

3

4

2

∞

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Computing the Shortest Path: Correctness

I Pointer graph P(V ,F ): each edge in F is (v , f (v)).
I Can P have cycles?
I Is there a path from s to t in P?
I Can there be multiple paths s to t in P?
I Which of these is the shortest path?

a

b

c

d

e

t

-4

8
-3

-2

-1

6
-3

4

2

3

a
b

c

d

e

t
0 1 2 3 4 5

-3

0
3

3

0

-4
-2

3
3

0

-6

-2

3

2

0

-6

-2

3

0
0

0 0 0 0 0 0
∞

∞
∞
∞

∞

-3

3

4

2

∞

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Computing the Shortest Path: Cycles in P

M[v ] = min

(
M ′[v ], min

w∈Nv

(
cvw + M ′[w ]

))
I Claim: If P has a cycle C , then C has negative cost.

I Suppose we set f (v) = w . Between this assignment and the assignment of
f (v) to some other node, M[v ] ≥ cvw + M[w ] (because M[w ] may itself
decrease).

I Let v1, v2, . . . vk be the nodes in C and assume that (vk , v1) is the last edge to
have been added.

I What is the situation just before this addition?
I M[vi ]−M[vi+1] ≥ cvi vi+1 , for all 1 ≤ i < k − 1.
I M[vk ]−M[v1] > cvk v1 .
I Adding all these inequalities, 0 >

Pk−1
i=1 cvi vi+1 + cvk v1 = cost of C .

I Corollary: if G has no negative cycles that P does not either.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Computing the Shortest Path: Cycles in P

M[v ] = min

(
M ′[v ], min

w∈Nv

(
cvw + M ′[w ]

))
I Claim: If P has a cycle C , then C has negative cost.

I Suppose we set f (v) = w . Between this assignment and the assignment of
f (v) to some other node, M[v ] ≥ cvw + M[w ] (because M[w ] may itself
decrease).

I Let v1, v2, . . . vk be the nodes in C and assume that (vk , v1) is the last edge to
have been added.

I What is the situation just before this addition?
I M[vi ]−M[vi+1] ≥ cvi vi+1 , for all 1 ≤ i < k − 1.
I M[vk ]−M[v1] > cvk v1 .
I Adding all these inequalities, 0 >

Pk−1
i=1 cvi vi+1 + cvk v1 = cost of C .

I Corollary: if G has no negative cycles that P does not either.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Computing the Shortest Path: Cycles in P

M[v ] = min

(
M ′[v ], min

w∈Nv

(
cvw + M ′[w ]

))
I Claim: If P has a cycle C , then C has negative cost.

I Suppose we set f (v) = w . Between this assignment and the assignment of
f (v) to some other node, M[v ] ≥ cvw + M[w ] (because M[w ] may itself
decrease).

I Let v1, v2, . . . vk be the nodes in C and assume that (vk , v1) is the last edge to
have been added.

I What is the situation just before this addition?

I M[vi ]−M[vi+1] ≥ cvi vi+1 , for all 1 ≤ i < k − 1.
I M[vk ]−M[v1] > cvk v1 .
I Adding all these inequalities, 0 >

Pk−1
i=1 cvi vi+1 + cvk v1 = cost of C .

I Corollary: if G has no negative cycles that P does not either.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Computing the Shortest Path: Cycles in P

M[v ] = min

(
M ′[v ], min

w∈Nv

(
cvw + M ′[w ]

))
I Claim: If P has a cycle C , then C has negative cost.

I Suppose we set f (v) = w . Between this assignment and the assignment of
f (v) to some other node, M[v ] ≥ cvw + M[w ] (because M[w ] may itself
decrease).

I Let v1, v2, . . . vk be the nodes in C and assume that (vk , v1) is the last edge to
have been added.

I What is the situation just before this addition?
I M[vi ]−M[vi+1] ≥ cvi vi+1 , for all 1 ≤ i < k − 1.
I M[vk ]−M[v1] > cvk v1 .

I Adding all these inequalities, 0 >
Pk−1

i=1 cvi vi+1 + cvk v1 = cost of C .

I Corollary: if G has no negative cycles that P does not either.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Computing the Shortest Path: Cycles in P

M[v ] = min

(
M ′[v ], min

w∈Nv

(
cvw + M ′[w ]

))
I Claim: If P has a cycle C , then C has negative cost.

I Suppose we set f (v) = w . Between this assignment and the assignment of
f (v) to some other node, M[v ] ≥ cvw + M[w ] (because M[w ] may itself
decrease).

I Let v1, v2, . . . vk be the nodes in C and assume that (vk , v1) is the last edge to
have been added.

I What is the situation just before this addition?
I M[vi ]−M[vi+1] ≥ cvi vi+1 , for all 1 ≤ i < k − 1.
I M[vk ]−M[v1] > cvk v1 .
I Adding all these inequalities, 0 >

Pk−1
i=1 cvi vi+1 + cvk v1 = cost of C .

I Corollary: if G has no negative cycles that P does not either.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Computing the Shortest Path: Cycles in P

M[v ] = min

(
M ′[v ], min

w∈Nv

(
cvw + M ′[w ]

))
I Claim: If P has a cycle C , then C has negative cost.

I Suppose we set f (v) = w . Between this assignment and the assignment of
f (v) to some other node, M[v ] ≥ cvw + M[w ] (because M[w ] may itself
decrease).

I Let v1, v2, . . . vk be the nodes in C and assume that (vk , v1) is the last edge to
have been added.

I What is the situation just before this addition?
I M[vi ]−M[vi+1] ≥ cvi vi+1 , for all 1 ≤ i < k − 1.
I M[vk ]−M[v1] > cvk v1 .
I Adding all these inequalities, 0 >

Pk−1
i=1 cvi vi+1 + cvk v1 = cost of C .

I Corollary: if G has no negative cycles that P does not either.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Computing the Shortest Path: Paths in P

I Let P be the pointer graph upon termination of the algorithm.

I Consider the path Pv in P obtained by following the pointers from v to
f (v) = v1, to f (v1) = v2, and so on.

I Claim: Pv terminates at t.

I Claim: Pv is the shortest path in G from v to t.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Computing the Shortest Path: Paths in P

I Let P be the pointer graph upon termination of the algorithm.

I Consider the path Pv in P obtained by following the pointers from v to
f (v) = v1, to f (v1) = v2, and so on.

I Claim: Pv terminates at t.

I Claim: Pv is the shortest path in G from v to t.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Computing the Shortest Path: Paths in P

I Let P be the pointer graph upon termination of the algorithm.

I Consider the path Pv in P obtained by following the pointers from v to
f (v) = v1, to f (v1) = v2, and so on.

I Claim: Pv terminates at t.

I Claim: Pv is the shortest path in G from v to t.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Bellman-Ford Algorithm: Early Termination

M[v ] = min

(
M ′[v ], min

w∈Nv

(
cvw + M ′[w ]

))
I In general, after i iterations, the path whose length is M[v ] may have many

more than i edges.

I Early termination: If M equals N after processing all the nodes, we have
computed all the shortest paths to t.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Bellman-Ford Algorithm: Early Termination

M[v ] = min

(
M ′[v ], min

w∈Nv

(
cvw + M ′[w ]

))
I In general, after i iterations, the path whose length is M[v ] may have many

more than i edges.

I Early termination: If M equals N after processing all the nodes, we have
computed all the shortest paths to t.

T. M. Murali October 14, 19, 21, 26, 28, 2009 CS 4104: Dynamic Programming


	Weighted Interval Scheduling
	Segmented Least Squares
	RNA Secondary Structure
	Sequence Alignment
	Shortest Paths in Graphs

