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Minimum Spanning Trees

» We motivated MSTs through the problem of finding a low-cost network
connecting a set of nodes.

» MSTs are useful in a number of seemingly disparate applications.

> We will consider the problem of clustering.
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Motivation for Clustering

> Given a set of objects and distances between them.
» Objects can be images, web pages, people, species .. ..
» Distance function: increasing distance corresponds to decreasing similarity.

> Goal: group objects into clusters, where each cluster is a set of similar
objects.
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Formalising the Clustering Problem

> Let U be the set of n objects labelled py, po, ..., p,.
> For every pair p; and pj, we have a distance d(pj, p;).

» We require d(p;, pi) =0, d(pi, pj) > 0, if i # j, and d(p;, p;) = d(pj, pi)
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Formalising the Clustering Problem

Let U be the set of n objects labelled p;, po, ..., p,.

For every pair p; and p;, we have a distance d(p;, p;).

We require d(pi, pi) = 0, d(pi, p;) > 0, if i # j, and d(p;, p;) = d(pj., pi)
Given a positive integer k, a k-clustering of U is a partition of U into k
non-empty subsets or “clusters” Ci, Gy, ... Ck.
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Figure 4.14 An example of single-linkage clustering with k =3 clusters. The clusters
are formed by adding edges between points in order of increasing distance.
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The Clustering Problem

» The spacing of a clustering is the smallest distance between objects in two
different subsets:

spacing(Cy, Gp, ... k) = min  d(p,q)
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The Clustering Problem

» The spacing of a clustering is the smallest distance between objects in two
different subsets:
spacing(Cy, G, ... Ck) = min d
pacing(Ci, G, - .. Ck) Jin, (p,q)
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Figure 4.14 An example of single-linkage clustering with k =3 clusters. The clusters

SOLUTION: A k-clustering of are formed by adding edges between points in order of increasing distance.
U whose spacing is the largest
over all possible k-clusterings.
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Algorithm for Clustering of Maximum Spacing

» Intuition: greedily cluster objects in increasing order of distance.
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Algorithm for Clustering of Maximum Spacing

v

Intuition: greedily cluster objects in increasing order of distance.
Let C be a set of n clusters, with each object in U in its own cluster.
Process pairs of objects in increasing order of distance.

> Let (p, q) be the next pair with p € C, and g € (.

» If C, # (g, add new cluster C, U (4 to C, delete C, and C; from C.
Stop when there are k clusters in C.
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Algorithm for Clustering of Maximum Spacing

» Intuition: greedily cluster objects in increasing order of distance.
> Let C be a set of n clusters, with each object in U in its own cluster.
» Process pairs of objects in increasing order of distance.
> Let (p, q) be the next pair with p € C, and g € (.
» If C, # (g, add new cluster C, U (4 to C, delete C, and C; from C.
» Stop when there are k clusters in C.
» Same as Kruskal's algorithm but do not add last k — 1 edges in MST.
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are formed by adding edges between points in order of increasing distance.
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Why is the Algorithm Optimal?

> Let C be the clustering produced by the algorithm and let C’' be any other
clustering.

» What is spacing(C)?
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Why is the Algorithm Optimal?

> Let C be the clustering produced by the algorithm and let C’' be any other
clustering.

> What is spacing(C)? It is the cost of the (k — 1)st most expensive edge in
the MST. Let this cost be d*.

> We will prove that spacing(C’) < d*.
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spacing(C’') < d*

> There must be two points p; and p; in U in the same cluster C, in C but in
different clusters in C’:
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spacing(C’') < d*

> There must be two points p; and p; in U in the same cluster C, in C but in
different clusters in C': spacing(C’) < d(pj, pj). But d(p;, pj) could be > d*.
» Suppose p; € C] and pj € C/ in C'.
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spacing(C’') < d*

> There must be two points p; and p; in U in the same cluster C, in C but in
different clusters in C': spacing(C’) < d(pj, pj). But d(p;, pj) could be > d*.

» Suppose p; € C] and pj € C/ in C'.

> All edges in the path Q connecting p; and p; in the MST have length < d*.

> In particular, there is a point p € C, and a point p’ ¢ C/ such that p and p’
are adjacent in Q.

» d(p, p') < dx = spacing(C’) < d(p,p’) < d*.
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Figure 4.15 An illustration of the proof of (4.26), showing that the spacing of any

nolarger than that of th elinkage
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