An Application of Minimum Spanning Trees

T. M. Murali

September 28, 2009

Minimum Spanning Trees

- We motivated MSTs through the problem of finding a low-cost network connecting a set of nodes.
- ▶ MSTs are useful in a number of seemingly disparate applications.
- We will consider the problem of clustering.

Motivation for Clustering

- Given a set of objects and distances between them.
- Objects can be images, web pages, people, species
- > Distance function: increasing distance corresponds to decreasing similarity.
- Goal: group objects into clusters, where each cluster is a set of similar objects.

- Let U be the set of n objects labelled p_1, p_2, \ldots, p_n .
- For every pair p_i and p_j , we have a distance $d(p_i, p_j)$.
- ▶ We require $d(p_i, p_i) = 0$, $d(p_i, p_j) > 0$, if $i \neq j$, and $d(p_i, p_j) = d(p_j, p_i)$

- Let U be the set of n objects labelled p_1, p_2, \ldots, p_n .
- For every pair p_i and p_j , we have a distance $d(p_i, p_j)$.
- ▶ We require $d(p_i, p_i) = 0$, $d(p_i, p_j) > 0$, if $i \neq j$, and $d(p_i, p_j) = d(p_j, p_i)$
- ▶ Given a positive integer k, a k-clustering of U is a partition of U into k non-empty subsets or "clusters" C₁, C₂,...C_k.

- Let U be the set of n objects labelled p_1, p_2, \ldots, p_n .
- For every pair p_i and p_j , we have a distance $d(p_i, p_j)$.
- ▶ We require $d(p_i, p_i) = 0$, $d(p_i, p_j) > 0$, if $i \neq j$, and $d(p_i, p_j) = d(p_j, p_i)$
- ▶ Given a positive integer k, a k-clustering of U is a partition of U into k non-empty subsets or "clusters" C₁, C₂,...C_k.

Figure 4.14 An example of single-linkage clustering with k = 3 clusters. The clusters are formed by adding edges between points in order of increasing distance.

The spacing of a clustering is

- Let U be the set of n objects labelled p_1, p_2, \ldots, p_n .
- For every pair p_i and p_j , we have a distance $d(p_i, p_j)$.
- ▶ We require $d(p_i, p_i) = 0$, $d(p_i, p_j) > 0$, if $i \neq j$, and $d(p_i, p_j) = d(p_j, p_i)$
- ▶ Given a positive integer k, a k-clustering of U is a partition of U into k non-empty subsets or "clusters" C₁, C₂,...C_k.

Figure 4.14 An example of single-linkage clustering with k = 3 clusters. The clusters are formed by adding edges between points in order of increasing distance.

The spacing of a clustering is the smallest distance between objects in two different subsets:

 $\operatorname{spacing}(C_1, C_2, \dots C_k) = \min_{\substack{1 \le i, j \le k \\ i \ne j, \\ p \in C_i, q \in C_j}} d(p, q)$

The Clustering Problem

The spacing of a clustering is the smallest distance between objects in two different subsets:

spacing(
$$C_1, C_2, \dots, C_k$$
) = $\min_{\substack{1 \le i, j \le k \\ i \ne j, \\ p \in C_i, q \in C_j}} d(p, q)$
Cluster 1

The Clustering Problem

The spacing of a clustering is the smallest distance between objects in two different subsets:

spacing(
$$C_1, C_2, ..., C_k$$
) = $\min_{\substack{1 \le i, j \le k \\ i \ne j, \\ p \in C_i, q \in C_j}} d(p, q)$
CLUSTERING OF MAXIMUM
SPACING
INSTANCE: A set U of

objects, a distance function $d: U \times U \rightarrow \mathbb{R}^+$, and a positive integer k

SOLUTION: A *k*-clustering of *U* whose spacing is the largest over all possible *k*-clusterings.

Algorithm for Clustering of Maximum Spacing

Intuition: greedily cluster objects in increasing order of distance.

Algorithm for Clustering of Maximum Spacing

- ▶ Intuition: greedily cluster objects in increasing order of distance.
- Let C be a set of *n* clusters, with each object in *U* in its own cluster.
- Process pairs of objects in increasing order of distance.
 - Let (p,q) be the next pair with $p \in C_p$ and $q \in C_q$.
 - If $C_p \neq C_q$, add new cluster $C_p \cup C_q$ to C, delete C_p and C_q from C.
- Stop when there are k clusters in C.

Algorithm for Clustering of Maximum Spacing

- ▶ Intuition: greedily cluster objects in increasing order of distance.
- Let C be a set of *n* clusters, with each object in *U* in its own cluster.
- Process pairs of objects in increasing order of distance.
 - Let (p,q) be the next pair with $p \in C_p$ and $q \in C_q$.
 - If $C_p \neq C_q$, add new cluster $C_p \cup C_q$ to C, delete C_p and C_q from C.
- ▶ Stop when there are *k* clusters in *C*.
- Same as Kruskal's algorithm but do not add last k 1 edges in MST.

Why is the Algorithm Optimal?

- \blacktriangleright Let ${\mathcal C}$ be the clustering produced by the algorithm and let ${\mathcal C}'$ be any other clustering.
- ▶ What is spacing(C)?

Why is the Algorithm Optimal?

- \blacktriangleright Let ${\mathcal C}$ be the clustering produced by the algorithm and let ${\mathcal C}'$ be any other clustering.
- ▶ What is spacing(C)? It is the cost of the (k − 1)st most expensive edge in the MST. Let this cost be d*.
- We will prove that spacing $(\mathcal{C}') \leq d^*$.

► There must be two points p_i and p_j in U in the same cluster C_r in C but in different clusters in C':

► There must be two points p_i and p_j in U in the same cluster C_r in C but in different clusters in C': spacing(C') ≤ d(p_i, p_j).

- ► There must be two points p_i and p_j in U in the same cluster C_r in C but in different clusters in C': spacing(C') ≤ d(p_i, p_j). But d(p_i, p_j) could be > d*.
- Suppose $p_i \in C'_s$ and $p_j \in C'_t$ in C'.

- ▶ There must be two points p_i and p_j in U in the same cluster C_r in C but in different clusters in C': spacing $(C') \leq d(p_i, p_j)$. But $d(p_i, p_j)$ could be $> d^*$.
- Suppose $p_i \in C'_s$ and $p_j \in C'_t$ in C'.
- ▶ All edges in the path Q connecting p_i and p_j in the MST have length $\leq d^*$.
- ▶ In particular, there is a point $p \in C'_s$ and a point $p' \notin C'_s$ such that p and p' are adjacent in Q.
- ► $d(p, p') \le d* \Rightarrow \operatorname{spacing}(\mathcal{C}') \le d(p, p') \le d^*$.

Figure 4.15 An illustration of the proof of (4.26), showing that the spacing of any other clustering can be no larger than that of the clustering found by the single-linkage

September 28, 2009