T. M. Murali

September 2, 7, 9 2009

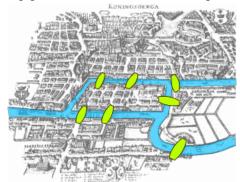
▶ Model pairwise relationships (edges) between objects (nodes).

- Model pairwise relationships (edges) between objects (nodes).
- Useful in a large number of applications:

- Model pairwise relationships (edges) between objects (nodes).
- Useful in a large number of applications: computer networks, the World Wide Web, ecology (food webs), social networks, software systems, job scheduling, VLSI circuits, cellular networks, . . .
- ► Other examples: gene and protein networks, our bodies (nervous, circulatory systems), buildings, transportation networks, ...

- Model pairwise relationships (edges) between objects (nodes).
- ▶ Useful in a large number of applications: computer networks, the World Wide Web, ecology (food webs), social networks, software systems, job scheduling, VLSI circuits, cellular networks, . . .
- ► Other examples: gene and protein networks, our bodies (nervous, circulatory systems), buildings, transportation networks, . . .
- Problems involving graphs have a rich history dating back to Euler.

- Model pairwise relationships (edges) between objects (nodes).
- Useful in a large number of applications: computer networks, the World Wide Web, ecology (food webs), social networks, software systems, job scheduling, VLSI circuits, cellular networks, . . .
- ▶ Other examples: gene and protein networks, our bodies (nervous, circulatory systems), buildings, transportation networks, . . .
- Problems involving graphs have a rich history dating back to Euler.



- ▶ Undirected graph G = (V, E): set V of nodes and set E of edges, where $E \subseteq V \times V$. Elements of E are unordered pairs.
 - Abuse of notation: write an edge e between nodes u and v as e = (u, v) and not as $e = \{u, v\}$.
 - ► Say that edge e is incident on u and on v.

- ▶ Undirected graph G = (V, E): set V of nodes and set E of edges, where $E \subseteq V \times V$. Elements of E are unordered pairs.
 - Abuse of notation: write an edge e between nodes u and v as e = (u, v) and not as $e = \{u, v\}$.
 - \triangleright Say that edge e is incident on u and on v.
- ▶ Directed graph G = (V, E): set V of nodes and set E of edges, where $E \subset V \times V$. Elements of E are ordered pairs.

- ▶ Undirected graph G = (V, E): set V of nodes and set E of edges, where $E \subseteq V \times V$. Elements of E are unordered pairs.
 - Abuse of notation: write an edge e between nodes u and v as e = (u, v) and not as $e = \{u, v\}$.
 - \triangleright Say that edge e is incident on u and on v.
- ▶ Directed graph G = (V, E): set V of nodes and set E of edges, where $E \subset V \times V$. Elements of E are ordered pairs.
 - e = (u, v): u is the head of the edge e, v is its tail; e leaves node u and enters node v

- ▶ Undirected graph G = (V, E): set V of nodes and set E of edges, where $E \subseteq V \times V$. Elements of E are unordered pairs.
 - Abuse of notation: write an edge e between nodes u and v as e = (u, v) and not as $e = \{u, v\}$.
 - ► Say that edge e is incident on u and on v.
- ▶ Directed graph G = (V, E): set V of nodes and set E of edges, where $E \subset V \times V$. Elements of E are ordered pairs.
 - e = (u, v): u is the head of the edge e, v is its tail; e leaves node u and enters node v.
- ▶ By default, "graph" will mean an "undirected graph".

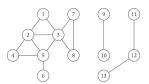
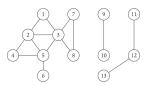


Figure 3.2 In this graph, node 1 has paths to nodes 2 through 8, but not to nodes 9 through 13.

Figure 3.1 Two drawings of the same tree. On the right, the tree is rooted at node 1.

- ▶ Path in an undirected graph G = (V, E) is a sequence P of nodes $v_1, v_2, \ldots, v_{k-1}, v_k \in V$ such that every consecutive pair of nodes $v_i, v_{i+1}, 1 \le i < k$ is connected by an edge in E.
 - ▶ P is called a path from v_1 to v_K or a v_1 - v_k path.
- ▶ A path is *simple* if all its nodes are distinct.
- ▶ A cycle is a path where k > 2, the first i 1 nodes are distinct, and $v_1 = v_k$.



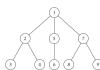
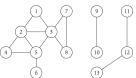


Figure 3.2 In this graph, node 1 has paths to nodes 2 through 8, but not to nodes 9 through 13.

Figure 3.1 Two drawings of the same tree. On the right, the tree is rooted at node 1.

- ▶ Path in an undirected graph G = (V, E) is a sequence P of nodes $v_1, v_2, \ldots, v_{k-1}, v_k \in V$ such that every consecutive pair of nodes $v_i, v_{i+1}, 1 \le i < k$ is connected by an edge in E.
 - ▶ P is called a path from v_1 to v_K or a v_1 - v_k path.
- ▶ A path is *simple* if all its nodes are distinct.
- A cycle is a path where k > 2, the first i 1 nodes are distinct, and $v_1 = v_k$.
 - ► All definitions carry over to directed graphs as well.



through 13.

(6) (13)

Figure 3.2 In this graph, node 1 has paths to nodes 2 through 8, but not to nodes 9

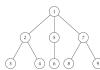


Figure 3.1 Two drawings of the same tree. On the right, the tree is rooted at node 1.

- ▶ Path in an undirected graph G = (V, E) is a sequence P of nodes $v_1, v_2, \ldots, v_{k-1}, v_k \in V$ such that every consecutive pair of nodes $v_i, v_{i+1}, 1 \leq i < k$ is connected by an edge in E.
 - ▶ P is called a path from v_1 to v_K or a v_1 - v_k path.
- ▶ A path is *simple* if all its nodes are distinct.
- A cycle is a path where k > 2, the first i 1 nodes are distinct, and $v_1 = v_k$.
 - ► All definitions carry over to directed graphs as well.
- ▶ An undirected graph G is *connected* if for every pair of nodes $u, v \in V$, there is a path from u to v in G.
 - Directed graphs have the notion of "strong connectivity."

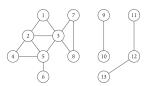


Figure 3.2 In this graph, node 1 has paths to nodes 2 through 8, but not to nodes 9 through 13.

Figure 3.1 Two drawings of the same tree. On the right, the tree is rooted at node 1.

- ▶ Path in an undirected graph G = (V, E) is a sequence P of nodes $v_1, v_2, \ldots, v_{k-1}, v_k \in V$ such that every consecutive pair of nodes $v_i, v_{i+1}, 1 \leq i < k$ is connected by an edge in E.
 - ▶ P is called a path from v_1 to v_K or a v_1 - v_k path.
- ► A path is *simple* if all its nodes are distinct.
- ▶ A *cycle* is a path where k > 2, the first i 1 nodes are distinct, and $v_1 = v_k$.
 - ► All definitions carry over to directed graphs as well.
- An undirected graph G is *connected* if for every pair of nodes $u, v \in V$, there is a path from u to v in G.
 - Directed graphs have the notion of "strong connectivity."
- ► The *distance* between two nodes *u* and *v* is the minimum number of edges in a *u*-*v* path.

Figure 3.1 Two drawings of the same tree. On the right, the tree is rooted at node 1.

▶ An undirected graph is a *tree* if it is connected and does not contain a cycle.

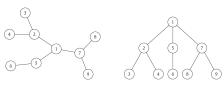


Figure 3.1 Two drawings of the same tree. On the right, the tree is rooted at node 1.

► An undirected graph is a *tree* if it is connected and does not contain a cycle. For any pair of nodes in a tree, there is a unique path connecting them.



Figure 3.1 Two drawings of the same tree. On the right, the tree is rooted at node 1.

- An undirected graph is a *tree* if it is connected and does not contain a cycle. For any pair of nodes in a tree, there is a unique path connecting them.
- ▶ Rooting a tree T: pick some node r in the tree and orient each edge of T "away" from r, i.e., for each node $v \neq r$, define parent of v to be the node u that directly precedes v on the path from r to v.

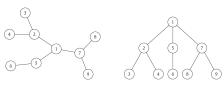


Figure 3.1 Two drawings of the same tree. On the right, the tree is rooted at node 1.

- An undirected graph is a *tree* if it is connected and does not contain a cycle. For any pair of nodes in a tree, there is a unique path connecting them.
- ▶ Rooting a tree T: pick some node r in the tree and orient each edge of T "away" from r, i.e., for each node $v \neq r$, define parent of v to be the node u that directly precedes v on the path from r to v.
 - Node w is a *child* of node v if v is a parent of w.
 - Node w is a descendant of node v (or v is an ancestor of w) if v lies on the r-w path.
 - Node x is a leaf if it has no descendants.



Figure 3.1 Two drawings of the same tree. On the right, the tree is rooted at node 1.

- An undirected graph is a *tree* if it is connected and does not contain a cycle. For any pair of nodes in a tree, there is a unique path connecting them.
- ▶ Rooting a tree T: pick some node r in the tree and orient each edge of T "away" from r, i.e., for each node $v \neq r$, define parent of v to be the node u that directly precedes v on the path from r to v.
 - ▶ Node w is a *child* of node v if v is a parent of w.
 - Node w is a descendant of node v (or v is an ancestor of w) if v lies on the r-w path.
 - ▶ Node x is a *leaf* if it has no descendants.
- Examples of (rooted) trees:

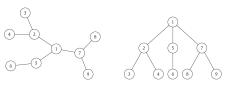


Figure 3.1 Two drawings of the same tree. On the right, the tree is rooted at node 1.

- An undirected graph is a *tree* if it is connected and does not contain a cycle. For any pair of nodes in a tree, there is a unique path connecting them.
- ▶ Rooting a tree T: pick some node r in the tree and orient each edge of T "away" from r, i.e., for each node $v \neq r$, define parent of v to be the node u that directly precedes v on the path from r to v.
 - Node w is a *child* of node v if v is a parent of w.
 - Node w is a descendant of node v (or v is an ancestor of w) if v lies on the r-w path.
 - ► Node x is a *leaf* if it has no descendants.
- Examples of (rooted) trees: organisational hierarchy, a department's web pages, class hierarchies in object-oriented languages.

► Claim: every *n*-node tree has

edges.

- ▶ Claim: every n-node tree has exactly n-1 edges.
- ▶ Proof: Root the tree. Each node other than the root has a unique parent. Each edge connects a parent to a child. Therefore, the tree has n-1 edges.

- ▶ Claim: every *n*-node tree has exactly n-1 edges.
- ▶ Proof: Root the tree. Each node other than the root has a unique parent. Each edge connects a parent to a child. Therefore, the tree has n-1 edges.
- ▶ Stronger claim: Let *G* be an undirected graph on *n* nodes. Any two of the following statements implies the third:
 - 1. *G* is connected.
 - 2. G does not contain a cycle.
 - 3. G contains n-1 edges.

- ▶ Claim: every *n*-node tree has exactly n-1 edges.
- ▶ Proof: Root the tree. Each node other than the root has a unique parent. Each edge connects a parent to a child. Therefore, the tree has n-1 edges.
- ▶ Stronger claim: Let *G* be an undirected graph on *n* nodes. Any two of the following statements implies the third:
 - 1. G is connected.
 - 2. G does not contain a cycle.
 - 3. G contains n-1 edges.
 - ▶ 1 and 2 ⇒ 3:

- ▶ Claim: every *n*-node tree has exactly n-1 edges.
- ▶ Proof: Root the tree. Each node other than the root has a unique parent. Each edge connects a parent to a child. Therefore, the tree has n-1 edges.
- ▶ Stronger claim: Let *G* be an undirected graph on *n* nodes. Any two of the following statements implies the third:
 - 1. G is connected.
 - 2. G does not contain a cycle.
 - 3. G contains n-1 edges.
 - ▶ 1 and 2 \Rightarrow 3: just proved.
 - ▶ 2 and 3 ⇒ 1:

- ▶ Claim: every *n*-node tree has exactly n-1 edges.
- ▶ Proof: Root the tree. Each node other than the root has a unique parent. Each edge connects a parent to a child. Therefore, the tree has n-1 edges.
- ▶ Stronger claim: Let *G* be an undirected graph on *n* nodes. Any two of the following statements implies the third:
 - 1. *G* is connected.
 - 2. G does not contain a cycle.
 - 3. G contains n-1 edges.
 - ▶ 1 and 2 \Rightarrow 3: just proved.
 - ▶ 2 and 3 \Rightarrow 1: prove by contradiction.
 - ▶ 3 and $1 \Rightarrow 2$: prove yourself.

s-t Connectivity

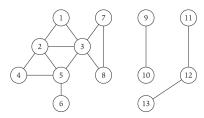


Figure 3.2 In this graph, node 1 has paths to nodes 2 through 8, but not to nodes 9 through 13.

s-t Connectivity

INSTANCE: An undirected graph G = (V, E) and two nodes $s, t \in V$.

QUESTION: Is there an s-t path in G?

s-t Connectivity

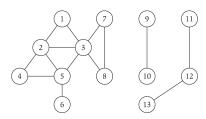


Figure 3.2 In this graph, node 1 has paths to nodes 2 through 8, but not to nodes 9 through 13.

s-t Connectivity

INSTANCE: An undirected graph G = (V, E) and two nodes $s, t \in V$. **QUESTION**: Is there an s-t path in G?

► The connected component of G containing s is the set of all nodes u such that there is an s-u path in G.

s-t Connectivity

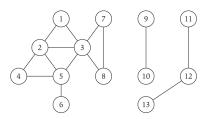


Figure 3.2 In this graph, node 1 has paths to nodes 2 through 8, but not to nodes 9 through 13.

s-t Connectivity

INSTANCE: An undirected graph G = (V, E) and two nodes $s, t \in V$. **QUESTION**: Is there an s-t path in G?

- ► The connected component of G containing s is the set of all nodes u such that there is an s-u path in G.
- Algorithm for the s-t Connectivity problem: compute the connected component of G that contains s and check if t is in that component.

▶ "Explore" *G* starting from *s* and maintain set *R* of visited nodes.

```
R will consist of nodes to which s has a path Initially R = \{s\} While there is an edge (u,v) where u \in R and v \notin R Add v to R Endwhile
```

T. M. Murali September 2, 7, 9 2009 CS4104: Graphs

▶ "Explore" G starting from s and maintain set R of visited nodes.

```
R will consist of nodes to which s has a path Initially R = \{s\} While there is an edge (u,v) where u \in R and v \notin R Add v to R Endwhile
```

► How do we implement the while loop?

▶ "Explore" G starting from s and maintain set R of visited nodes.

```
R will consist of nodes to which s has a path Initially R = \{s\} While there is an edge (u,v) where u \in R and v \notin R Add v to R Endwhile
```

▶ How do we implement the while loop? Examine each edge in E.

▶ "Explore" G starting from s and maintain set R of visited nodes.

```
R will consist of nodes to which s has a path Initially R = \{s\} While there is an edge (u,v) where u \in R and v \notin R Add v to R Endwhile
```

- How do we implement the while loop? Examine each edge in E.
- Issues to consider:
 - Why does the algorithm terminate?
 - ▶ Does the algorithm truly compute connected component of G containing s?
 - ► What is the running time of the algorithm?

T. M. Murali September 2, 7, 9 2009 CS4104: Graphs

Termination of the Connected Components Algorithm

```
R will consist of nodes to which s has a path Initially R = \{s\} While there is an edge (u,v) where u \in R and v \notin R Add v to R Endwhile
```

▶ How many nodes does each iteration of the while loop add to R?

T. M. Murali September 2, 7, 9 2009 CS4104: Graphs

Termination of the Connected Components Algorithm

```
R will consist of nodes to which s has a path Initially R = \{s\} While there is an edge (u,v) where u \in R and v \notin R Add v to R Endwhile
```

- ▶ How many nodes does each iteration of the while loop add to R? Exactly 1.
- How many times is the while loop executed?

Termination of the Connected Components Algorithm

```
Initially R = \{s\} While there is an edge (u,v) where u \in R and v \notin R Add v to R Endwhile
```

- ▶ How many nodes does each iteration of the while loop add to R? Exactly 1.
- ▶ How many times is the while loop executed? At most *n* times:

R will consist of nodes to which s has a path

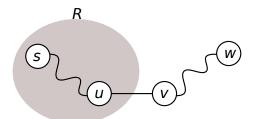
ightharpoonup either R=V at the end or

Basic Definitions

▶ in the last iteration, every edge either has both nodes in R or both nodes not in R

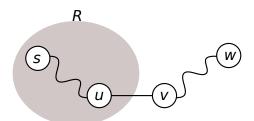
T. M. Murali September 2, 7, 9 2009 CS4104: Graphs

Correctness of the Connected Components Algorithm



► Claim: at the end of the algorithm, the set *R* is exactly the connected component of *G* containing *s*.

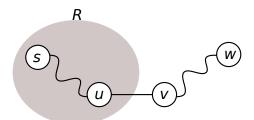
Correctness of the Connected Components Algorithm



- ► Claim: at the end of the algorithm, the set *R* is exactly the connected component of *G* containing *s*.
- ▶ Proof: Suppose $w \notin R$ but there is an s-w path P in G.
 - ▶ Consider first node v in P not in R ($v \neq s$).
 - Let u be the predecessor of v in P:

Basic Definitions

Correctness of the Connected Components Algorithm



- ► Claim: at the end of the algorithm, the set *R* is exactly the connected component of *G* containing *s*.
- ▶ Proof: Suppose $w \notin R$ but there is an s-w path P in G.
 - ▶ Consider first node v in P not in R ($v \neq s$).

Basic Definitions

- ▶ Let *u* be the predecessor of *v* in *P*: *u* is in *R*.
- (u, v) is an edge with $u \in R$ but $v \notin R$, contradicting the stopping rule.

```
R will consist of nodes to which s has a path Initially R = \{s\} While there is an edge (u,v) where u \in R and v \notin R Add v to R Endwhile
```

▶ Given a node $t \in R$, how do we recover the s-t path?

R will consist of nodes to which s has a path Initially $R = \{s\}$ While there is an edge (u,v) where $u \in R$ and $v \notin R$ Add v to R Endwhile

- ▶ Given a node $t \in R$, how do we recover the s-t path?
- ▶ When adding node v to R, record the edge (u, v).
- What type of graph is formed by these edges?

R will consist of nodes to which s has a path Initially $R = \{s\}$ While there is an edge (u,v) where $u \in R$ and $v \notin R$ Add v to R Endwhile

- ▶ Given a node $t \in R$, how do we recover the s-t path?
- \triangleright When adding node v to R, record the edge (u, v).
- What type of graph is formed by these edges? It is a tree! Why?

R will consist of nodes to which s has a path Initially $R = \{s\}$ While there is an edge (u,v) where $u \in R$ and $v \notin R$ Add v to R Endwhile

- ▶ Given a node $t \in R$, how do we recover the s-t path?
- \triangleright When adding node v to R, record the edge (u, v).
- ▶ What type of graph is formed by these edges? It is a tree! Why?
- \blacktriangleright To recover the s-t path, trace these edges backwards from t until we reach s.

T. M. Murali September 2, 7, 9 2009 CS4104: Graphs

R will consist of nodes to which s has a path Initially $R=\{s\}$ While there is an edge (u,v) where $u\in R$ and $v\not\in R$ Add v to R Endwhile

```
R will consist of nodes to which s has a path Initially R = \{s\}
```

While there is an edge (u, v) where $u \in R$ and $v \notin R$ Add v to R

- ► Analyse algorithm in terms of two parameters: the number of nodes *n* and the number of edges *m*.
- ► Implement the while loop by examining each edge in E. Running time of each loop is

```
R will consist of nodes to which s has a path Initially R = \{s\}
```

While there is an edge (u, v) where $u \in R$ and $v \notin R$ Add v to R

- Analyse algorithm in terms of two parameters: the number of nodes n and the number of edges m.
- ▶ Implement the while loop by examining each edge in E. Running time of each loop is O(m).
- How many while loops does the algorithm execute?

```
R will consist of nodes to which s has a path Initially R = \{s\}
```

While there is an edge (u, v) where $u \in R$ and $v \notin R$ Add v to R

- Analyse algorithm in terms of two parameters: the number of nodes n and the number of edges m.
- ▶ Implement the while loop by examining each edge in E. Running time of each loop is O(m).
- ► How many while loops does the algorithm execute? At most n.
- The running time is

```
R will consist of nodes to which s has a path Initially R = \{s\}
```

While there is an edge (u, v) where $u \in R$ and $v \notin R$ Add v to R

- Analyse algorithm in terms of two parameters: the number of nodes n and the number of edges m.
- ▶ Implement the while loop by examining each edge in E. Running time of each loop is O(m).
- ► How many while loops does the algorithm execute? At most n.
- ▶ The running time is O(mn).

```
R will consist of nodes to which s has a path Initially R = \{s\}
```

While there is an edge (u, v) where $u \in R$ and $v \notin R$ Add v to R

- Analyse algorithm in terms of two parameters: the number of nodes n and the number of edges m.
- ► Implement the while loop by examining each edge in E. Running time of each loop is O(m).
- ▶ How many while loops does the algorithm execute? At most n.
- ▶ The running time is O(mn).
- ► Can we improve the running time by processing edges more carefully?

Breadth-First Search (BFS)

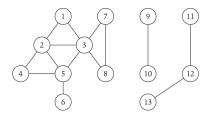


Figure 3.2 In this graph, node 1 has paths to nodes 2 through 8, but not to nodes 9 through 13.

▶ Idea: explore *G* starting at *s* and going "outward" in all directions, adding nodes one layer at a time.

Breadth-First Search (BFS)

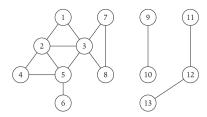


Figure 3.2 In this graph, node 1 has paths to nodes 2 through 8, but not to nodes 9 through 13.

- ▶ Idea: explore G starting at s and going "outward" in all directions, adding nodes one layer at a time.
- ▶ Layer L₀ contains only s.
- Layer L₁ contains all neighbours of s.
- ▶ Given layers L_0, L_1, \ldots, L_i , layer L_{i+1} contains all nodes that
 - 1. do not belong to an earlier layer and
 - 2. are connected by an edge to a node in layer L_i .

▶ Claim: For each $j \ge 1$, layer L_i consists of all nodes

▶ Claim: For each $j \ge 1$, layer L_j consists of all nodes exactly at distance j from S. Proof

- ▶ Claim: For each $j \ge 1$, layer L_j consists of all nodes exactly at distance j from S. Proof by induction on j.
- ► Claim: There is a path from s to t if and only if t is a member of some layer.

from S. Proof by induction on j.

▶ Claim: For each $j \ge 1$, layer L_i consists of all nodes exactly at distance j

- ightharpoonup Claim: There is a path from s to t if and only if t is a member of some layer.
- Let v be a node in layer L_{j+1} and u be the "first" node in L_j such that (u, v) is an edge in G. Consider the graph T formed by all such edges, directed from u to v

from S. Proof by induction on j.

▶ Claim: For each $j \ge 1$, layer L_i consists of all nodes exactly at distance j

- ightharpoonup Claim: There is a path from s to t if and only if t is a member of some layer.
- Let v be a node in layer L_{j+1} and u be the "first" node in L_j such that (u, v) is an edge in G. Consider the graph T formed by all such edges, directed from u to v.
 - \triangleright Why is T a tree?

- ▶ Claim: For each $j \ge 1$, layer L_j consists of all nodes exactly at distance j from S. Proof by induction on j.
- ightharpoonup Claim: There is a path from s to t if and only if t is a member of some layer.
- Let v be a node in layer L_{j+1} and u be the "first" node in L_j such that (u, v) is an edge in G. Consider the graph T formed by all such edges, directed from u to v.
 - ▶ Why is *T* a tree? It is connected. The number of edges in *T* is the number of nodes in all the layers minus 1.
 - T is called the breadth-first search tree.

BFS Trees

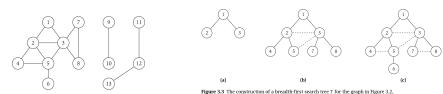


Figure 3.2 In this graph, node 1 has paths to nodes 2 through 8, but not to nodes 9 through 13.

with (a), (b), and (c) depicting the successive layers that are added. The solid edges are the edges of T; the dotted edges are in the connected component of G containing node 1, but do not belong to T.

- \blacktriangleright Non-tree edge: an edge of G that does not belong to the BFS tree T.
- ▶ Claim: Let T be a BFS tree, let x and y be nodes in T belonging to layers L_i and L_i , respectively, and let (x, y) be an edge of G. Then |i j| < 1.

BFS Trees

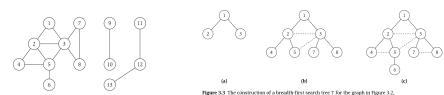


Figure 3.2 In this graph, node 1 has paths to nodes 2 through 8, but not to nodes 9 through 13.

with (a), (b), and (c) depicting the successive layers that are added. The solid edges are the edges of T; the dotted edges are in the connected component of G containing node 1, but do not belong to T.

- \triangleright Non-tree edge: an edge of G that does not belong to the BFS tree T.
- ▶ Claim: Let T be a BFS tree, let x and y be nodes in T belonging to layers L_i and L_i , respectively, and let (x, y) be an edge of G. Then $|i j| \le 1$.
- ▶ Proof by contradiction: Suppose i < j 1. Node $x \in L_i \Rightarrow$ all nodes adjacent to x are in layers $L_1, L_2, \ldots L_{i+1}$. Hence y must be in layer L_{i+1} or earlier.

BFS Trees

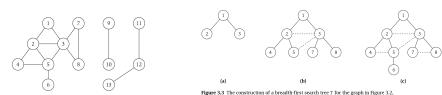


Figure 3.2 In this graph, node 1 has paths to nodes 2 through 8, but not to nodes 9 through 13.

with (a), (b), and (c) depicting the successive layers that are added. The solid edges are the edges of $\mathcal T$; the dotted edges are in the connected component of $\mathcal G$ containing node $\mathcal I$, but do not belong to $\mathcal T$.

- \blacktriangleright Non-tree edge: an edge of G that does not belong to the BFS tree T.
- ▶ Claim: Let T be a BFS tree, let x and y be nodes in T belonging to layers L_i and L_i , respectively, and let (x, y) be an edge of G. Then $|i j| \le 1$.
- ▶ Proof by contradiction: Suppose i < j-1. Node $x \in L_i \Rightarrow$ all nodes adjacent to x are in layers $L_1, L_2, \ldots L_{i+1}$. Hence y must be in layer L_{i+1} or earlier.
- ▶ Still unresolved: an efficient implementation of BFS.

Depth-First Search (DFS)

Explore G as if it were a maze: start from s, traverse first edge out (to node v), traverse first edge out of v, ..., reach a dead-end, backtrack,

Depth-First Search (DFS)

- Explore G as if it were a maze: start from s, traverse first edge out (to node v), traverse first edge out of v, ..., reach a dead-end, backtrack,
- 1. Mark all nodes as "Unexplored".
- 2. Invoke DFS(s).

```
DFS(u):
   Mark u as "Explored" and add u to R
For each edge (u, v) incident to u
   If v is not marked "Explored" then
      Recursively invoke DFS(v)
   Endif
Endfor
```

T. M. Murali September 2, 7, 9 2009 CS4104: Graphs

Depth-First Search (DFS)

- Explore G as if it were a maze: start from s, traverse first edge out (to node v), traverse first edge out of v, ..., reach a dead-end, backtrack,
- 1. Mark all nodes as "Unexplored".
- 2. Invoke DFS(s).

Endfor

```
DFS(u):

Mark u as "Explored" and add u to R

For each edge (u,v) incident to u

If v is not marked "Explored" then

Recursively invoke DFS(v)

Endif
```

▶ Depth-first search tree is a tree T: when DFS(v) is invoked directly during the call to DFS(v), add edge (u, v) to T.

Example of DFS

Figure 3.2 In this graph, node 1 has paths to nodes 2 through 8, but not to nodes 9 through 13.

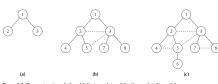


Figure 3.3 The construction of a breadth-first search tree T for the graph in Figure 3.2, with (a), (b), and (c) depicting the successive layers that are added. The solid edges are the edges of T; the dotted edges are in the connected component of G containing node 1. but do not belong to T.

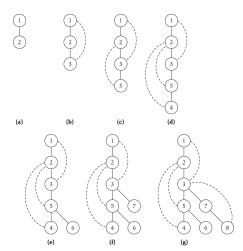


Figure 3.5 The construction of a depth-first search tree T for the graph in Figure 3.2, with (a) through (g) depicting the nodes as they are discovered in sequence. The solid edges are the edges of T: the dotted edges are deges of G that do not belong to T.

BFS vs. DFS

- ▶ Both visit the same set of nodes but in a different order
- Both traverse all the edges in the connected component but in a different order.
 BES trees have root-to-leaf paths that look as short as possible while paths in
- BFS trees have root-to-leaf paths that look as short as possible while paths in DFS trees tend to be long and deep.
- Non-tree edges in BFS are within the same level or between adjacent levels.
 IN DFS, non-tree edges

BFS vs. DFS

- ▶ Both visit the same set of nodes but in a different order
- Both traverse all the edges in the connected component but in a different order.
 BES trees have root-to-leaf paths that look as short as possible while paths in
- BFS trees have root-to-leaf paths that look as short as possible while paths in DFS trees tend to be long and deep.
- Non-tree edges in BFS are within the same level or between adjacent levels. IN DFS, non-tree edges connect ancestors to descendants.

Properties of DFS Trees

Observation: For a given recursive call DFS(u), all nodes marked as "Explored" between the invocation and the end of this invocation are descendants of u in the DFS tree T.

Properties of DFS Trees

- ▶ Observation: For a given recursive call DFS(u), all nodes marked as "Explored" between the invocation and the end of this invocation are descendants of u in the DFS tree T.
- ► Claim: Let x and y be nodes in a DFS tree T such that (x, y) is an edge of G but not of T. Then one of x or y is an ancestor of the other in T.

Properties of DFS Trees

"Explored" between the invocation and the end of this invocation are descendants of u in the DFS tree ${\cal T}$.

▶ Observation: For a given recursive call DFS(u), all nodes marked as

- Claim: Let x and y be nodes in a DFS tree T such that (x, y) is an edge of G but not of T. Then one of x or y is an ancestor of the other in T.
 Proof: Assume, without loss of generality that the DFS algorithm reached x
- Proof: Assume, without loss of generality that the DFS algorithm reached x first.
 - ▶ Since (x, y) is an edge in G, it is examined during DFS(x).
 - Since $(x, y) \notin T$, y must be marked as "Explored" during DFS(x) but before (x, y) is examined.
 - Since y was not marked as "Explored" before DFS(x) was invoked, it must be marked as "Explored" between the invocation of DFS(x), and the end of this recursive call.
 - \triangleright Therefore, y must be a descendant of x in T.

All Connected Components

- ▶ We have discussed the component containing a particular node s.
- Each node belongs to a component.
- ▶ What is the relationship between all these components?

All Connected Components

- \triangleright We have discussed the component containing a particular node s.
- Each node belongs to a component.
- ▶ What is the relationship between all these components?
 - ▶ If v is in u's component, is u in v's component?
 - ▶ If v is not in u's component, can u be in v's component?

All Connected Components

- \triangleright We have discussed the component containing a particular node s.
- Each node belongs to a component.
- ▶ What is the relationship between all these components?
 - ▶ If v is in u's component, is u in v's component?
 - ▶ If v is not in u's component, can u be in v's component?
- ► Claim: For any two nodes s and t in a graph, their connected components are either equal or disjoint.

All Connected Components

- \triangleright We have discussed the component containing a particular node s.
- Each node belongs to a component.
- ▶ What is the relationship between all these components?
 - ▶ If v is in u's component, is u in v's component?
 - ▶ If v is not in u's component, can u be in v's component?
- ► Claim: For any two nodes s and t in a graph, their connected components are either equal or disjoint.
- Proof in two parts (sketch):
 - 1. If G has an s-t path, then the connected components of s and t are the same.

All Connected Components

- ▶ We have discussed the component containing a particular node s.
- Each node belongs to a component.
- ▶ What is the relationship between all these components?
 - ▶ If v is in u's component, is u in v's component?
 - ▶ If v is not in u's component, can u be in v's component?
- ► Claim: For any two nodes s and t in a graph, their connected components are either equal or disjoint.
- Proof in two parts (sketch):
 - 1. If G has an s-t path, then the connected components of s and t are the same.
 - If G has no s-t path, then there cannot be a node v that is in both connected components.

Computing All Connected Components

- 1. Pick an arbitrary node s in G.
- 2. Compute its connected component using BFS (or DFS).
- 3. Find a node (say ν , not already visited) and repeat the BFS from ν .
- 4. Repeat this process until all nodes are visited.

- ▶ Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - Size of the graph is defined to be m + n.
 - Strive for algorithms whose running time is linear in graph size, i.e., O(m+n).

- ▶ Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - ▶ Size of the graph is defined to be m + n.
 - ▶ Strive for algorithms whose running time is linear in graph size, i.e., O(m+n).
- Assume $V = \{1, 2, ..., n-1, n\}$.
- ▶ Adjacency matrix representation: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i,j).
 - Space used is

- ▶ Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - ▶ Size of the graph is defined to be m + n.
 - ▶ Strive for algorithms whose running time is linear in graph size, i.e., O(m+n).
- Assume $V = \{1, 2, ..., n-1, n\}$.
- Adjacency matrix representation: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
 - ▶ Space used is $\Theta(n^2)$, which is optimal in the worst case.
 - ► Check if there is an edge between node i and node i in

- ▶ Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - ▶ Size of the graph is defined to be m + n.
 - ▶ Strive for algorithms whose running time is linear in graph size, i.e., O(m+n).
- Assume $V = \{1, 2, ..., n-1, n\}$.
- ▶ Adjacency matrix representation: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i,j).
 - ▶ Space used is $\Theta(n^2)$, which is optimal in the worst case.
 - ▶ Check if there is an edge between node i and node j in O(1) time.
 - ▶ Iterate over all the edges incident on node *i* in

- ▶ Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - ▶ Size of the graph is defined to be m + n.
 - ▶ Strive for algorithms whose running time is linear in graph size, i.e., O(m+n).
- Assume $V = \{1, 2, ..., n-1, n\}$.
- ▶ Adjacency matrix representation: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i,j).
 - ▶ Space used is $\Theta(n^2)$, which is optimal in the worst case.
 - ▶ Check if there is an edge between node i and node j in O(1) time.
 - ▶ Iterate over all the edges incident on node i in $\Theta(n)$ time.

- ▶ Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - ▶ Size of the graph is defined to be m + n.
 - ▶ Strive for algorithms whose running time is linear in graph size, i.e., O(m+n).
- Assume $V = \{1, 2, ..., n-1, n\}$.
- ▶ Adjacency matrix representation: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i,j).
 - ▶ Space used is $\Theta(n^2)$, which is optimal in the worst case.
 - ▶ Check if there is an edge between node i and node j in O(1) time.
 - ▶ Iterate over all the edges incident on node i in $\Theta(n)$ time.
- Adjacency list representation: array Adj, where Adj[v] stores the list of all nodes adjacent to v.
 - ▶ An edge e = (u, v) appears twice: in Adj[u] and Adj[v].

- ▶ Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - ▶ Size of the graph is defined to be m + n.
 - ▶ Strive for algorithms whose running time is linear in graph size, i.e., O(m+n).
- Assume $V = \{1, 2, ..., n-1, n\}$.
- ▶ Adjacency matrix representation: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i,j).
 - ▶ Space used is $\Theta(n^2)$, which is optimal in the worst case.
 - ▶ Check if there is an edge between node i and node j in O(1) time.
 - ▶ Iterate over all the edges incident on node i in $\Theta(n)$ time.
- Adjacency list representation: array Adj, where Adj[v] stores the list of all nodes adjacent to v.
 - ▶ An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
 - $rac{1}{2} n_{\nu} = the number of neighbours of node <math>v$.
 - Space used is

- ▶ Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - ▶ Size of the graph is defined to be m + n.
 - ▶ Strive for algorithms whose running time is linear in graph size, i.e., O(m+n).
- Assume $V = \{1, 2, ..., n-1, n\}$.
- ▶ Adjacency matrix representation: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i,j).
 - ▶ Space used is $\Theta(n^2)$, which is optimal in the worst case.
 - ▶ Check if there is an edge between node i and node j in O(1) time.
 - ▶ Iterate over all the edges incident on node i in $\Theta(n)$ time.
- Adjacency list representation: array Adj, where Adj[v] stores the list of all nodes adjacent to v.
 - ▶ An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
 - $n_v =$ the number of neighbours of node v.
 - Space used is $O(n + \sum_{v \in G} n_v) =$

- ▶ Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - ▶ Size of the graph is defined to be m + n.
 - ▶ Strive for algorithms whose running time is linear in graph size, i.e., O(m+n).
- Assume $V = \{1, 2, ..., n-1, n\}$.
- ▶ Adjacency matrix representation: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i,j).
 - ▶ Space used is $\Theta(n^2)$, which is optimal in the worst case.
 - ▶ Check if there is an edge between node i and node j in O(1) time.
 - ▶ Iterate over all the edges incident on node i in $\Theta(n)$ time.
- ► Adjacency list representation: array Adj, where Adj[v] stores the list of all nodes adjacent to v.
 - ▶ An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
 - $n_v =$ the number of neighbours of node v.
 - ▶ Space used is $O(n + \sum_{v \in G} n_v) = O(n + m)$, which is optimal for every graph.
 - \triangleright Check if there is an edge between node u and node v in

- ▶ Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - ▶ Size of the graph is defined to be m + n.
 - ▶ Strive for algorithms whose running time is linear in graph size, i.e., O(m+n).
- Assume $V = \{1, 2, ..., n-1, n\}$.
- ▶ Adjacency matrix representation: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i,j).
 - ▶ Space used is $\Theta(n^2)$, which is optimal in the worst case.
 - ▶ Check if there is an edge between node i and node j in O(1) time.
 - ▶ Iterate over all the edges incident on node i in $\Theta(n)$ time.
- Adjacency list representation: array Adj, where Adj[v] stores the list of all nodes adjacent to v.
 - ▶ An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
 - $n_v =$ the number of neighbours of node v.
 - ▶ Space used is $O(n + \sum_{v \in G} n_v) = O(n + m)$, which is optimal for every graph.
 - ▶ Check if there is an edge between node u and node v in $O(n_u)$ time.
 - ▶ Iterate over all the edges incident on node u in

- ▶ Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - Size of the graph is defined to be m + n.
 - ▶ Strive for algorithms whose running time is linear in graph size, i.e., O(m+n).
- Assume $V = \{1, 2, ..., n-1, n\}$.
- ▶ Adjacency matrix representation: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i,j).
 - ▶ Space used is $\Theta(n^2)$, which is optimal in the worst case.
 - ▶ Check if there is an edge between node i and node j in O(1) time.
 - ▶ Iterate over all the edges incident on node i in $\Theta(n)$ time.
- Adjacency list representation: array Adj, where Adj[v] stores the list of all nodes adjacent to v.
 - ▶ An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
 - $n_v =$ the number of neighbours of node v.
 - ▶ Space used is $O(n + \sum_{v \in G} n_v) = O(n + m)$, which is optimal for every graph.
 - ▶ Check if there is an edge between node u and node v in $O(n_u)$ time.
 - ▶ Iterate over all the edges incident on node u in $\Theta(n_u)$ time.

Data Structures for Implementation

structures so that we can obtain provably efficient times.

"Implementation" of BFS and DFS: fully specify the algorithms and data

- Inner loop of both BFS and DFS: process the set of edges incident on a given node and the set of visited nodes.
- ► How do we store the set of visited nodes? Order in which we process the nodes is crucial.

Data Structures for Implementation

structures so that we can obtain provably efficient times.

"Implementation" of BFS and DFS: fully specify the algorithms and data

- Inner loop of both BFS and DFS: process the set of edges incident on a given node and the set of visited nodes.
- How do we store the set of visited nodes? Order in which we process the nodes is crucial.
 - ▶ BFS: store visited nodes in a queue (first-in, first-out).
 - ▶ DFS: store visited nodes in a stack (last-in, first-out)

Implementing BFS

Maintain an array Discovered and set Discovered[v] = true as soon as the algorithm sees v.

```
BFS(s):
  Set Discovered[s] = true and Discovered[v] = false for all other v
  Initialize L[0] to consist of the single element s
  Set the layer counter i=0
  Set the current BFS tree T = \emptyset
  While L[i] is not empty
    Initialize an empty list L[i+1]
    For each node u \in L[i]
      Consider each edge (u, v) incident to u
      If Discovered[v] = false then
        Set Discovered[v] = true
        Add edge (u, v) to the tree T
        Add v to the list L[i+1]
      Endif
    Endfor
    Increment the layer counter i by one
  Endwhile
```

Using a Queue in BFS

▶ Instead of storing each layer in a different list, maintain all the layers in a single queue *L*.

```
BFS(s):
  Set Discovered[s] = true and Discovered[v] = false for all other v
  Initialize L[0] to consist of the single element s
  Set the layer counter i=0
  Set the current BFS tree T = \emptyset
  While L[i] is not empty
    Initialize an empty list L[i+1]
    For each node u \in L[i]
      Consider each edge (u, v) incident to u
      If Discovered[v] = false then
        Set Discovered[v] = true
        Add edge (u, v) to the tree T
        Add v to the list L[i+1]
      Endif
    Endfor
    Increment the layer counter i by one
  Endwhile
```

```
BFS(s):
 Set Discovered[s] = true and Discovered[v] = false for all other v
  Initialize L[0] to consist of the single element s
 Set the layer counter i=0
 Set the current BFS tree T = \emptyset
 While L[i] is not empty
    Initialize an empty list L[i+1]
    For each node u \in L[i]
      Consider each edge (u, v) incident to u
      If Discovered(v) = false then
        Set Discovered[v] = true
        Add edge (u, v) to the tree T
        Add v to the list L[i+1]
      Endif
    Endfor
    Increment the laver counter i by one
  Endwhile
```

► Naive bound on running time is

```
BFS(s):
 Set Discovered[s] = true and Discovered[v] = false for all other v
  Initialize L[0] to consist of the single element s
 Set the layer counter i=0
 Set the current BFS tree T = \emptyset
 While L[i] is not empty
    Initialize an empty list L[i+1]
    For each node u \in L[i]
      Consider each edge (u, v) incident to u
      If Discovered(v) = false then
        Set Discovered[v] = true
        Add edge (u, v) to the tree T
        Add v to the list L[i+1]
      Endif
    Endfor
    Increment the laver counter i by one
  Endwhile
```

- Naive bound on running time is $O(n^2)$.
- Improved bound:
 - Maintaining layers:

```
BFS(s):
 Set Discovered[s] = true and Discovered[v] = false for all other v
  Initialize L[0] to consist of the single element s
 Set the layer counter i=0
 Set the current BFS tree T = \emptyset
 While L[i] is not empty
    Initialize an empty list L[i+1]
    For each node u \in L[i]
      Consider each edge (u, v) incident to u
      If Discovered(v) = false then
        Set Discovered[v] = true
        Add edge (u, v) to the tree T
        Add v to the list L[i+1]
      Endif
    Endfor
    Increment the laver counter i by one
  Endwhile
```

- Naive bound on running time is $O(n^2)$.
- Improved bound:
 - ▶ Maintaining layers: O(n) time.
 - ▶ for loop for a node *u*:

```
BFS(s):
 Set Discovered[s] = true and Discovered[v] = false for all other v
  Initialize L[0] to consist of the single element s
 Set the layer counter i=0
 Set the current BFS tree T = \emptyset
 While L[i] is not empty
    Initialize an empty list L[i+1]
    For each node u \in L[i]
      Consider each edge (u, v) incident to u
      If Discovered(v) = false then
        Set Discovered[v] = true
        Add edge (u, v) to the tree T
        Add v to the list L[i+1]
      Endif
    Endfor
    Increment the laver counter i by one
  Endwhile
```

- Naive bound on running time is $O(n^2)$.
- Improved bound:
 - ▶ Maintaining layers: O(n) time.
 - for loop for a node u: $O(n_u)$ time.
 - ▶ Total time for all for loops: $\sum_{u \in G} O(n_u) = O(m)$ time.
 - ▶ Total time is O(n+m).

Recursive DFS

```
	ext{DFS}(u):

Mark u as "Explored" and add u to R

For each edge (u,v) incident to u

If v is not marked "Explored" then

Recursively invoke 	ext{DFS}(v)

Endif

Endfor
```

▶ Procedure has "tail recursion": recursive call is the last step.

Recursive DFS

```
DFS(u):
   Mark u as "Explored" and add u to R
For each edge (u, v) incident to u
   If v is not marked "Explored" then
      Recursively invoke DFS(v)
   Endif
Endfor
```

- ▶ Procedure has "tail recursion": recursive call is the last step.
- Can replace the recursion by an iteration: use a stack to explicitly implement the recursion.

T. M. Murali September 2, 7, 9 2009 CS4104: Graphs

Implementing DFS

- ▶ Maintain a stack *S* to store nodes to be explored.
- Maintain an array Explored and set Explored[v] = true when the algorithm pops v from the stack.
- Read textbook on how to construct the DFS tree.

```
DFS(s):
  Initialize S to be a stack with one element s
  While S is not empty
    Take a node u from S
    If Explored[u] = false then
       Set Explored[u] = true
       For each edge (u, v) incident to u
         Add v to the stack S
       Endfor
    Endif
  Endwhile
```

Comparing Recursion and Iteration

Basic Definitions

```
DFS(u):
  Mark u as "Explored" and add u to R
  For each edge (u, v) incident to u
    If v is not marked "Explored" then
      Recursively invoke DFS(v)
    Endif
  Endfor
DFS(s):
  Initialize S to be a stack with one element s
  While S is not empty
    Take a node u from S
    If Explored[u] = false then
       Set Explored[u] = true
       For each edge (u, v) incident to u
         Add v to the stack S
       Endfor
    Endif
  Endwhile
```

```
DFS(s):
    Initialize S to be a stack with one element s
While S is not empty
    Take a node u from S
    If Explored[u] = false then
        Set Explored[u] = true
        For each edge (u, v) incident to u
        Add v to the stack S
        Endfor
    Endif
Endwhile
```

How many times is a node's adjacency list scanned?

```
DFS(s):
    Initialize S to be a stack with one element s
While S is not empty
    Take a node u from S
    If Explored[u] = false then
        Set Explored[u] = true
        For each edge (u, v) incident to u
        Add v to the stack S
        Endfor
    Endif
Endwhile
```

► How many times is a node's adjacency list scanned? Exactly once.

```
DFS(s):
    Initialize S to be a stack with one element s
While S is not empty
    Take a node u from S
    If Explored[u] = false then
        Set Explored[u] = true
        For each edge (u, v) incident to u
        Add v to the stack S
        Endfor
    Endif
Endwhile
```

- How many times is a node's adjacency list scanned? Exactly once.
- ▶ The total amount of time to process edges incident on node u's is

```
DFS(s):
    Initialize S to be a stack with one element s
While S is not empty
    Take a node u from S
    If Explored[u] = false then
        Set Explored[u] = true
        For each edge (u, v) incident to u
        Add v to the stack S
        Endfor
    Endif
Endwhile
```

- ▶ How many times is a node's adjacency list scanned? Exactly once.
- ▶ The total amount of time to process edges incident on node u's is $O(n_u)$.
- ▶ The total running time of the algorithm is O(n+m).