

CS 3824

Homework Assignment 1

Given: August 17, 2014

Due: September 13, 2014

General directions. The point value of each problem is shown in []. Each solution must include all details and an explanation of why the given solution is correct. In particular, write complete sentences. A correct answer without an explanation is worth no credit. The completed assignment must be turned in as a PDF through Scholar by 5:00 PM on September 13, 2014. **No late homework will be accepted.**

Digital preparation of your solutions is mandatory. Use of L^AT_EX is optional, but encouraged. No matter how you prepare your homework, **please include your name.**

Use of L^AT_EX (optional, but encouraged).

- Retrieve this L^AT_EX source file, named `homework1.tex`, from the course web site.
- Rename the file `<Your VT PID>_solvehw1.tex`, For example, for the instructor, the file name would be `heath_solvehw1.tex`.
- Use a **text editor** (such as `vi`, `emacs`, or `pico`) to accomplish the next three steps.
- Uncomment the line
`% \setboolean{solutions}{True}`
in the document preamble by deleting the `%`.
- Find the line
`\renewcommand{\author}{Lenwood S. Heath}`
and replace the instructor's name with your name.
- Enter your solutions where you find the L^AT_EX comments
`% PUT YOUR SOLUTION HERE`
- Convert your solutions to PDF and submit your solutions through Scholar by 5:00 PM on September 13, 2014.

[50] 1. Jones and Pevzner problem 4.4.

Note that the problem is to generate m -element multisets that are subsets of a multiset S having n elements. To be concrete, you may assume that a multiset is represented as an (unordered) list of integers. Give your algorithm in pseudocode. Then, implement the algorithm in a programming language of your choice. Test your implementation on input

$$\begin{aligned}m &= 3 \\S &= \{4, 9, 16, 1, 4, 7\}.\end{aligned}$$

Include the source of your implementation in your solution document. Also, include the solution you get for the test input. Remember to determine a O bound on the worst-case time complexity of your algorithm as a function of n and m .

[25] 2. Jones and Pevzner problem 4.12.

Give pseudocode for your algorithm, along with an English explanation of how it works. Determine a O bound on its worst-case time complexity as a function of the lengths of T and s . (Use $|T|$ and $|s|$ for these lengths.)

[25] 3. Jones and Pevzner problem 4.13.

Give pseudocode for your algorithm, along with an English explanation of how it works. Determine a O bound on its worst-case time complexity as a function of the lengths of T and s and of k .
