CS3414. Homework problem set II. **10 points per problem**, unless otherwise stated. Do not submit any codes, but be prepared to email one at TA/instructor’s request.

C&K = *Cheney and Kincaid* textbook. You can write your codes in C or C++. Do not submit the code unless asked for. Instead, outline your solution by showing the key steps in the algorithm used.

2. C&K 10, page 32.
3. Use Taylor series to show that the *truncation* error involved in calculating of the derivative \(f'(x) \approx (f(x+h/2) - f(x-h/2))/h \) is of order \(h^2 \), i.e. (truncation) error \(= A \times h^2 \).

3a. Use the above result, and the *round-off error* estimate discussed in class, to derive an expression for the *total* error involved in calculating \(f'(x) \). For simplicity, assume \(f'(x) \sim 1 \), along with its derivatives.

Find an estimate of the optimal step \(h \) that minimizes that error as a function of \(\epsilon_{mach} \). For your laptop (double precision), what is \(h \) and the associated total error? How does it compare with the optimal \(h \) and the error for the formula discussed in class, \(f'(x) \approx (f(x+h) - f(x))/h \)?

4. C&K 1, page 63

5. Write an efficient code that computes \(\exp(x) \) for any \(-25 < x < 25\) to within 3 decimal points. Provide printouts for \(x = 0.1, +20, -20 \). Clearly indicate which algorithms are used for different values of \(x \).

6. Write a code that produces accurate (within machine precision) values of \(f(x) = \frac{x - \sin(x)}{x^3} \) for \(0 < x < 1 \). Print out results for \(x = 0.5, 10^{-16} \). Clearly indicate which algorithms are used for the two different values of \(x \). In this problem, you can use \(\sin(x) \) function supplied by standard libraries.

7. Use *Series* command in *Mathematica* to find first 6 terms in the Taylor series expansion of \(\cos(x) \). Given that, how would you compute \(\cos(10.0) \)? (10 rad).