
Lambda Expressions in Java

Group 9
Labiba Labanya, Tahmid Muttaki, Sean Copenhaver, Matt Withrow Capone, Danny
Chhour

A lambda expression:
● A short block of code which takes in parameters and returns a value
● Similar to methods; but they do not need method name and can be implemented

in the body of a method; usually passed as parameter to a function
● Expression cannot contain variables, assignments or statements such as if or for
● Using code blocks, complex operations can be done using lambda expressions
● Replaces anonymous inner class syntax with simpler and shorter version of code

Syntax
Lambda expression has 3 elements:

● Parameter
● Token/symbol
● Logic

General Expression:

(parameter, anotherParameter) -> {return anotherParameter + parameter};

2 cases:

Single parameter: parameter -> {return “Hello”;};

No parameter: () -> {return 10;};

Logic execution
● Single line logic: don’t need return statement and braces

(a, b) -> a + b;

● Void return:

With logic: can’t use keyword return

 Expression: () -> {System.out.println(“ ”)}

Without logic: () -> {};

Functional Interfaces
● A functional interface is an interface with just one abstract method
● Examples of functional interfaces include: Comparable, Runnable, Comparator
● Used to pass code to a function

Functional Interfaces & Lambda Expressions
● Lambda expressions can be written in place of functional interfaces

Functional Interface

Functional Interface with Lambda Expression

Variable Capture
Java lambda expressions are capable of accessing variables declared outside the
lambda function body under certain circumstances.

Java lambdas can capture the following types of variables:

● Local variables
● Instance variables
● Static variables

Variable Capture

Local Variable Capture

Instance Variable Capture

Static Variable Capture

Advantages of lambda expressions
● Readability:

○ Need fewer lines of code
○ Readable without interpretation

List<String> colors = Arrays.asList("red", "yellow", "green");

colors.forEach(color -> System.out.println(color));

● Higher efficiency:
○ Sequential and parallel execution support by passing behavior as an argument in methods using Stream

API
○ Higher efficiency (parallel) can be achieved in case of bulk operations on collection

Stream<Dog> dogStream = Stream.of(dogArray);

Stream<Dog> sortedDogStream = dogStream.sorted((Dog m, Dog n) -> Integer.compare(m.getHeight(),
n.getHeight()));

Advantages of lambda expressions
● Compact:

○ No need to create inner class
○ Every inner class creates a .class file, lambda expression eliminates that and reduces deployment

artifacts.
○ Reduces the size of jar file

● Essence of functional programming:
○ Passing a lambda expression to another function allows us to pass not only values but also behaviors
○ Raises the level of abstraction and allows to build more generic, flexible and reusable API.

Common Use - Android Application
● Android applications are now written in Kotlin

○ Similar to Java

● Application needs to know when an event has occurred and how to react to that
change
○ What to do when they swipe left?
○ What to do when the touch an icon?

Without Lambda Expressions

With Lambda Expressions

Discussion Questions
1. What other uses of lambda expressions can you think of besides click

events in mobile development?
2. When are inner classes more appropriate than lambda expressions?

