FP Foundations, Scheme (2)

In Text: Chapter 15

Functional programming

« LISP: John McCarthy 1958 MIT
— List Processing => Symbolic Manipulation
 First functional programming language

— Every version after the first has
imperative features, but we will discuss the
functional subset

LISP Data Types

* There are only two types of data
objects in the original LISP

— Atoms: symbols, numbers, strings, ...
 E.g., a, 100, "foo"
— Lists: specified by delimiting elements with
parentheses

« Simple lists: elements are only atoms
—Eg..(ABCD)

* Nested lists: elements can be lists
—Eg.,(A(BC)D (E (F6)))

LISP Data Types

 Internadlly, lists are stored as single-
linked list structures

— Each node has two pointers: one to element,

the other to next node in the list

— Single atom: atf,m

— List of atoms: (a b ¢)

| —> | E—_—

a b

O

LISP Data Types

— List containing list (a (b ¢) d)

e e ——— e e ———

|
v

d

S

l

Scheme

« Scheme is a dialect of LISP, emerged
from MIT in 1975

« Characteristics
— simple syntax and semantics
—small size
— exclusive use of static scoping

— treating functions as first-class entities

« As first-class entities, Scheme functions can be
the values of expressions, elements of lists,
assigned to variables, and passed as parameters

Interpreter

* Most Scheme implementations employ an
intferpreter that runs a "read-eval-
print” loop
— The interpreter repeatedly reads an

expression from a standard input, evaluates

the expression, and prints the resulting
value

Primitive Numeric Functions

* Primitive functions for the
basic arithmetic operations:

- * / Expression | Value
t 42 42
—+ and * can have zero or more *
ath (* 3 6) 18
parameters. If * is given no (+123) ¢
. 1 if e
parameter, it returns 1; if + is (sqrt 16) 2

given no parameter, it returns O

— - and / can have two or more
parameters

— Prefix notation

Numeric Predicate Functions

 Predicate functions return Boolean
values (#T or #F): =, ©, >, <, >=, <=,

EVEN?, ODD?, ZERO?

Expression Value
(= 16 16) HT
(even? 29) HF

(>10 (* 2 4))

(zero? (-10(* 2 5)))

Type Checking

* Dynamic type checking

 Type predicate functions
(boolean? x) ; Is x a Boolean?
(char? x)
(string? x)
(symbol? x)
(number? x)
(pair? x)
(list? x)

Lambda Expression

 E.g., lambda(x) (* x x) is a nameless
function that returns the square of its
given numeric parameter

* Such functions can be applied in the
same ways as named functions
— E.g., ((lambda(x) (* x x)) 7) = 49

* It allows us to pass function definitions
as parameters

"define”

« To bind a name to the value of a variable:
(define symbol expression)
— E.g., (define pi 3.14159)
— E.g., (define two_pi (* 2 pi))
 To bind a function name to an expression:
(define (function_name parameters)
(expression)

)
— E.g., (define (square x) (* x x))

"define"”

« To bind a function name to a lambda
expression
(define function_name
(lambda_expression)
)

— E.g., (define square (lambda (x) (* x x)))

Control Flow

« Simple conditional expressions can be
written using if:
—~Eg.(f(x23)45)=>4
—Eg., (if #f23)=>3

Control Flow (cont'd)

Tt is modeled based on the evaluation
control used in mathematical functions:

(COND

(predicate_1 expression)
(predicate_2 expression)

(predicate_n expression)
[ELSE expression]

An Example

lif x=0
x*f(x-Dif x>0

-]

(define (factorial x)
(cond
((<x0)#f)
((=x0)1)
(#t (* x (factorial (- x 1)))) ; orelse (...)

Bindings & Scopes

* Names can be bound to values by
infroducing a nested scope

* let takes two or more arguments:

— The first argument is a list of pairs

* In each pair, the first element is the name, while
the second is the value/expression

— Remaining arguments are evaluated in order

— The value of the construct as a whole is the
value of the final argument

—E.g. (let ((a 3)) a)

let Examples

* E.g., (let ((a 3)
(b 4)
(square (lambda (x) (* x x)))
(plus +))
(sqrt (plus (square a) (square b))))
» The scope of the bindings produced by
let is its second and following
arguments

let Examples

* E.g., (let ((a 3))
(let ((a 4)

(b a))
(+ab)))=>?

* b takes the value of the outer q,
because the defined names are visible
“all at once" at the end of the
declaration list

let* Example

 let* makes sure that hames become
available "one at a time"

* Eg., (let*((x 1) (y (+ x 1)))
(+ X y)) =>?

Functions

* quote: identity function

— When the function is given a parameter, it
simply returns the parameter

—E.g., (Quote A) => A
(quote (ABC))=>(ABC)
* The common abbreviation of quote is
apostrophe (')
—Eqg,(A)=>A
((ABC)=>(ABC()

List Functions

» car: returns the first element of a given
list
—E.g.,(car' (ABC))=> A

(car '((A B)C D)) => (A B)

(car 'A) =>?

(car '(A)) =>?

(car '()) =>?

List Functions

* cdr: returns the remainder of a given list

after the first element has been removed
—E.g., (cdr'(ABC))=>(BC)

(cdr '((A B) C D)) => (C D)

(cdr'A) =>?

(cdr '(A)) =>?

(cdr'()) =>?

List Functions

e cons: concatenates an element with a list

» cons builds a list from its two arguments

— The first can be either an atom or a list

— The second is usually a list

—E.g., (cons 'A () => (A)
(cons'A'(BC))=>(ABC)
(cons'() '(A B)) =>?
(cons '(AB)'(CD))=>?

— How to compose a list (A B C) from A, B, and C?

List Functions

* Note that cons can take two atoms as
parameters, and return a dotted pair
—Eg., (cons'A'B) => (A . B)

— The dotted pair indicates that this cell
contains two atoms, instead of
an atom + a pointer
or
a pointer + a pointer

More Predicate Functions

» The following returns #t if the symbolic
atom is of the indicated type, and #f
otherwise
—E.g., (symbol? 'a) => #+

(symbol? ‘() => #f
— E.g., (humber? '55) => #+

(number? 55) => #+t

(number? '(a)) => #f
_E.g., (list? (@) => #t
—E.g., (null? () => #+

More Predicate Functions

* eq? returns true if two objects are
equal through pointer comparison
— Guaranteed to work on symbols
—E.g.,(eq? 'A'A) > #T
(eq? 'A'(A B)) => #F
» equal? recursively compares two objects
to determine if they are equal
— The objects can be atoms or lists

How do we implement equal?

(define (simple? atm) (define (equal? lis1 lis2)
(cond (cond
((list? atm) (null? atm)) ((simple? lis1) (eq? lisl lis2))
(else #T) ((simple? lis2) #F)
) ((equal? (car lis1) (car lis2))
) ((equal? (cdr lisl) (cdr lis2))
(else #F)
)

)

More Examples

(define (member? atm lis) (define (append lisl lis2)
(cond (cond
((null? lis) #F) ((null? lisl) lis2)
((eq? atm (car lis)) #T) (else (cons (car lisl)
(else (member? atm (cdr lis))) (append(cdr lisl) lis2)))
))
))
What is returned for the Is lis2 appended to lisl, or lisl
following function? prepended to lis2?

(member? 'b '(a (b ¢)))

An example: apply-to-all function

(define (mapcar fctn lis)
(cond

((null? lis) '())

(else (cons (fctn (car lis))
(mapcar fctn (cdr lis))))

Project 3: A Scheme Parsing Program

« Consider the grammar G=(S, N, T, P) where

S = (Program)
N = (statement list, statement, expr, symbol, op)
T = (if, bool, then, while, id, const, =, +, -, *,/)

P=(Program - statement_list
statement list = statement statement list
> statement
statement - if bool then statement list
> while bool statement list
> id = expr
expr - symbol op symbol
symbol - id
> const
31
op EAR I B

» Write a Scheme program that correctly
parses all valid programs in L(G). The
Scheme program will report (a) the total
number of statements in the program, and
(b) the maximum nested depth for a
program.

* E.g., given ((id = id - const)), your program
will output: (numberofstatements: 1
maximumdepth: O)

 You can assume that
— You will be given only valid programs.

— Each program will be provided as a
parenthesized list of statements, each of
which is included in its own parentheses.

— The nesting of parentheses is used to
indicate subordinate (or block)
statement(s).

Some Hints

 Define two functions to separately
count (1) the number of statements and
(2) the maximum nested depth

» When counting the number of
statements, the function should

— Check whether the input parameter is an
empty list

— If not, check whether the first element in
the list is an empty list

— If not, obtain the first element in the list,
check the statement type and proceed

accordingly. The recursive function calls may
be involved.

« When calculating the maximum nested
depth, the function should do similar
checks as what is mentioned above

— Notice that when an if-statement has both
then- and else-branches, you need to
compare the depth counts of both
branches, obtains the larger number as the
maximum nested depth at the current level

On Rlogin ...

You can use command "racket -i" to
launch the interactive mode of Racket,
and use "(exit)" to exit that mode

Please name your main function “parser”,
which function takes only one argument.

The program will be tested on Rlogin via
"plt-rbrs < filename"

The source file can be a .txt file

