FP Foundations, Scheme

In Text: Chapter 15

Outline

« Mathematical foundations
* Functional programming

« A-calculus

« LISP

 Scheme

Imperative Languages

« We have been discussing imperative
languages
— C/C++, Java, and Pascal are imperative languages
— They follow the von Neumman architecture [1]

Central Processing Unit

Control Unit

Input Arithmetic/Logic Unit Output
Device Device

Memory Unit
3

Functional Programming

» A different way of looking at things
— It is based on mathematical functions

— It is supported by functional and
applicative programming languages
« LISP, ML, Haskell

Mathematical Foundations

» A mathematical function is a mapping of
members from one set to another set
— The "input” set is called the domain
— The “output” set is called the range

Mathematical Foundations

» The evaluation order of mapping
expressions is controlled by recursion
and conditional expressions, rather than
by the sequencing and iterative
repetition

* Functions do not have states
— They have no side effects

— They always produce the same output given
the same input parameters

Simple Functions

* Usual form:
function name + a list of parameters in
parentheses + mapping expression

* E.g., cube(x) = x * x * x, where

— both the domain and range sets are real
numbers, and

— X can represent any member of the domain set,
but it is fixed to represent one specific
element during the expression evaluation

N. Meng, S. Arthur 7

Function Application

» It is specified by paring the function
name with a particular element of the
domain set

* The range element is obtained by
evaluating the function-mapping
expression with the domain element
substituted for the particular element

—Cube(2.0)=20*20*20=80

Functional Forms

* A higher-order function, or functional
form, is one that either takes functions
as parameters, or yields a function as
Its result, or both

» Two common functional forms
— Function composition
— Apply-to-all

Function Composition

* Function composition has two functional
parameters and yields a function whose
value is the first function applied to the
result of the second

* It i1s written as an expression, using a °

operator (called “circle” or "round")
— Eg, h=f °g
|f f(X) =X+ 2’ and
g(x) =3 * x
then h(x) = f(g(x)) = (3% x)+2

Apply-to-all

 Apply-to-all takes a single function as a
parameter

* If applied to a list of arguments, apply-to-
all applies its functional parameter to each
element of the list, and then collects
results in a list or sequence

« Tt is denoted by

— E.g., h(x) = x * x, then
a(h, (2, 3,4)) = (4,9, 16)

Lambda expression

» Early theoretical work on functions
separated the task of defining a function
from that of naming the function

» Lambda notation, A, provides a method
for defining nameless functions

* A lambda expression is a function, which
specifies the parameters, and the
mapping expression
—E.g., \(x)x * x * x

Lambda-Calculus

e Tn the mid 1960s, Peter Landin
observed that a complex programming
language can be understood by
formulating it as a tiny core calculus
capturing the language's essential
mechanisms, together with a collection
of convenient derived forms whose
behavior is understood by ftranslating
them into the core

Lambda-Calculus

* The core language used by Landin was
the lambda-calculus, a formal system
invented in the 1920s by Alonzo Church
in which all computation is reduced to
the basic operations of function
definition and application

factorial Example

 factorial(n) =
if n=0 then1else n* factorial(n - 1)
» The corresponding A-calculs term is:
factorial(n) =
An. if n=0 then 1 else n* factorial(n - 1)
* Meaning

— For each nonnegative number n, instantiating
the function with the argument nyields the
factorial of n as a result

A-calculus

 Lambda-calculus embodies function
definition and application in the purest
possible form

* In the lambda-calculus, everything is a
function

— the arguments accepted by functions are
themselves functions, and

— the result returned by a function is
another function

Syntax of A-calculus

t = X (a variable)

Ax.t (a function)

Tt (function application)

* The syntax of lambda-calculus comprises
three sorts of terms

— Variable itself is a term

— The abstraction of a variable x from a term t
IS a term

— The application of term 1; to another term t,,
IS a term

Two conventions of writing lambda-
Terms

 Application is left associative
— Given s t u, the calculationis (s 1) u

apply
/\
apply u
N\

S t

Two Conventions

* The body of abstraction is extended to
right as much as possible

— Given AX. Ay. X y X, the calculation is Ax.

. ((xy) X) y
A

|
apply
—

apply X
N
X Y

Scope

 An occurrence of the variable x is said
to be bound when it occurs in the body t
of an abstraction Ax. t

* An occurrence of x is free if it appears
in a position where it is not bound by an
enclosing abstraction on x

—Inxy,and Ay. Xy, x is free
—In AX. x, and Az. Ax. Ay. x (y z), x is bound

Scope (cont'd)

A term with no free variable is said to
be closed

e Closed terms are also called
combinators

* The simplest combinator is called the
identity function:
id = AX. X

Operational Semantics

o (AX. T12)T2 -> (X12)112

— Evaluate the term t;, by replacing every
occurrence of x with t,

— What is the reduction result of (Ax. x)y ?
— What is the evaluation result of the term (Ax.
X (Ax. x))(ur)?

— All terms of the form (Ax. t:,)1, is called redex
(reducible expression)

— The operation of rewriting a redex according
to the above rule is called beta-reduction

An Example of Reduction

o (Ax. %) ((Ax. x)(Az. (Ax. x) 2))

-> (Ax. x)(Az. Ax. x) z)
-> AZ. (AX. X) z
-> \Z. Z

Programming in the Lambda-Calculus

* Multiple arguments

— Lambda-calculus provides no built-in
support for multi-argument functions

— But we can use higher-order functions to
achieve the same effect

Multiple Arguments

* Suppose

—s is a term involving two free variables x
and y

— We want to write a function f, such that
for each pair of arguments (v, w), f yields
the result of substituting v for x, and w for

Y
—f=AX. Ay. s

— Applying f o (v, w): fvw

Multiple Arguments

» The transformation of multi-argument
functions into higher-order functions is
called currying

