
7-1

1

Control Structures

In Text: Chapter 8

Chapter 8: Control Structures 2

Outline

Control structures
Selection

One-way
Two-way
Multi-way

Iteration
Counter-controlled
Logically-controlled

Gotos
Guarded statements

7-2

Chapter 8: Control Structures 3

Levels of Control Flow

Within expressions
Among program statements
Among program units

Chapter 8: Control Structures 4

Control Structures

A control structure is a control statement
and the statements whose execution it controls

Overall Design Question:
What control statements should a language
have, beyond selection and pretest logical
loops?

Single entry/single exit are highly desirable
a lesson learned from structured programming

7-3

Chapter 8: Control Structures 5

Selection Statements

Design Issues:

What is the form and type of the control
expression?

What is the selectable segment form?
single statement, statement sequence, compound
statement

How should the meaning of nested selectors
be specified?

Chapter 8: Control Structures 6

Single-Way Selection

One-way “if” statement
FORTRAN IF:
IF (boolean_expr) statement

Problem: can select only a single statement; to
select more, a goto must be used
IF (.NOT. condition) GOTO 20

...

...

20 CONTINUE

7-4

Chapter 8: Control Structures 7

Two-Way Selection

“if-then-else” statement
ALGOL 60 if:
if (boolean_expr) then

statement

else

statement

The statements could be single or compound
begin…end

A block is a compound statement that can define a
new scope (with local variables)

Chapter 8: Control Structures 8

Nested Selectors

Pascal:
if ... then

if ... then

...

else ...

Which “then” gets the “else”?
Pascal's rule: else goes with the nearest then

7-5

Chapter 8: Control Structures 9

if ... then

begin

if ... then

...

end

else
...

ALGOL 60’s solution—disallows direct nesting

if ... then

begin

if ... then

...

else

...

end

Disallowing Direct Nesting

Chapter 8: Control Structures 10

if ... then
if ... then
…

end if
else

...
end if

Closing Reserved Words
FORTRAN 77, Ada, Modula-2 solution—closing special
words
In Ada:
if ... then
if ... then
...

else
...

end if
end if

Advantage: flexibility and readability

Modula-2 uses END for all control structures

This results in poor readability

7-6

Chapter 8: Control Structures 11

Multiple Selection Constructs

Design Issues:

What is the form and type of the control
expression?

What segments are selectable (single,
compound, sequential)?

Is the entire construct encapsulated?

Is execution flow through the structure
restricted to include just a single selectable
segment?

What about unrepresented expression values?

Chapter 8: Control Structures 12

Early Multiple Selectors:

FORTRAN arithmetic IF (a three-way selector)
IF (arithmetic expression) N1, N2, N3

Disadvantages:
Not encapsulated

selectable segments could be anywhere

FORTRAN computed GOTO
GO TO (L1, L2, ..., Ln), exp

goes to first label if exp=1, second if exp=2, etc.
if exp < 1 or exp > n, no effect
must still jump out of segment

7-7

Chapter 8: Control Structures 13

Modern Multiple Selectors

Pascal case
from Hoare's contribution to ALGOL W

case expression of

constant_list_1 : statement_1;

...

constant_list_n : statement_n

end

Chapter 8: Control Structures 14

Case: Pascal Design Choices

Expression is any ordinal type
int, boolean, char, enum

Segments can be single or compound

Construct is encapsulated

Only one segment can be executed per
execution of the construct

In Wirth's Pascal, result of an unrepresented
control expression value is undefined

Many dialects now have otherwise or else clause

7-8

Chapter 8: Control Structures 15

C/C++ Switch
switch (expression) {

constant_expression_1 : statement_1;
...

constant_expression_n : statement_n;

[default: statement_n+1]

}

Design Choices (for switch):
Control expression can be only an integer type
Selectable segments can be statement sequences or blocks
Construct is encapsulated
Any number of segments can be executed in one execution
of the construct (reliability vs. flexibility)
Default clause for unrepresented values

Chapter 8: Control Structures 16

Case: Ada Design Choices
case expression is

when constant_list_1 => statement_1;
...

when constant_list_n => statement_n;

end

Similar to Pascal, except …
Constant lists can include:

Subranges: 10..15
Multiple choices: 1..5 | 7 | 15..20

Lists of constants must be exhaustive (more reliable)
Often accomplished with others clause

7-9

Chapter 8: Control Structures 17

Multi-Way If Statements

Multiple selectors can appear as direct extensions to
two-way selectors, using else-if clauses

ALGOL 68, FORTRAN 77, Modula-2, Ada

Ada:
if ... then

...
elsif ... then

...
elsif ... then

...
else ...
end if

Far more readable than deeply nested if's
Allows a boolean gate on every selectable group

Chapter 8: Control Structures 18

Iterative Statements

The repeated execution of a statement or
compound statement is accomplished either by
iteration or recursion
Here we look at iteration, because recursion is
unit-level control
General design issues for iteration control
statements:

How is iteration controlled?
Where is the control mechanism in the loop?

Two common strategies: counter-controlled, and
logically-controlled

7-10

Chapter 8: Control Structures 19

Counter-Controlled Loops

Design Issues:

What is the type (ordinal vs. real) and scope of
the loop variable?

What is the value of the loop variable at loop
termination?

Should it be legal for the loop variable or loop
parameters to be changed in the loop body?

If so, does the change affect loop control?

Should the loop parameters be evaluated only
once, or once for every iteration?

Chapter 8: Control Structures 20

FORTRAN DO Loops

FORTRAN 77 and 90
Syntax:
DO label var = start, finish [, stepsize]

Stepsize can be any value but zero
Parameters can be expressions

Design choices:
Loop var can be INTEGER, REAL, or DOUBLE

Loop var always has its last value

Loop parameters are evaluated only once

The loop var cannot be changed in the loop, but the parameters
can; because they are evaluated only once, it does not affect
loop control

7-11

Chapter 8: Control Structures 21

FORTRAN 90’s Other DO

Syntax:
[name:] DO variable = initial, terminal [, stepsize]

...

END DO [name]

Loop var must be an INTEGER

Chapter 8: Control Structures 22

ALGOL 60 For Loop

Syntax:
for var := <list_of_stuff> do statement

where <list_of_stuff> can have:
list of expressions
expression step expression until expression
expression while boolean_expression

for index := 1 step 2 until 50, 60, 70,

80, index + 1 until 100 do

(index = 1, 3, 5, 7, ..., 49, 60, 70, 80, 81, 82, ..., 100)

7-12

Chapter 8: Control Structures 23

ALGOL 60 For Design Choices

Control expression can be int or real; its scope
is whatever it is declared to be

Control var has its last assigned value after
loop termination

The loop var cannot be changed in the loop,
but the parameters can, and when they are, it
affects loop control

Parameters are evaluated with every
iteration, making it very complex and difficult to
read

Chapter 8: Control Structures 24

Pascal For Loop

Syntax:
for var := initial (to | downto) final do

statement

Design Choices:
Loop var must be an ordinal type of usual scope
After normal termination, loop var is undefined
The loop var cannot be changed in the loop
The loop parameters can be changed, but they are
evaluated just once, so it does not affect loop control

7-13

Chapter 8: Control Structures 25

Ada For Loop

Syntax:
for var in [reverse] discrete_range loop

...
end loop

Design choices:
Type of the loop var is that of the discrete range (e.g.,
[1..100]); its scope is the loop body (it is implicitly
declared)
The loop var does not exist outside the loop
The loop var cannot be changed in the loop, but the
discrete range can; it does not affect loop control
The discrete range is evaluated just once

Chapter 8: Control Structures 26

C For Loop

Syntax:
for ([expr_1] ; [expr_2] ; [expr_3])

statement

The expressions can be whole statements, or
even statement sequences, with the statements
separated by commas

The value of a multiple-statement expression is
the value of the last statement in the expression

If the second expression is absent, it is an
infinite loop

7-14

Chapter 8: Control Structures 27

C For Loop Design Choices

There is no explicit loop variable

Everything can be changed in the loop

Pretest

The first expression is evaluated once, but the
other two are evaluated with each iteration

This loop statement is the most flexible

Chapter 8: Control Structures 28

C++ & Java For Loops

Differs from C in two ways:
The control expression can also be Boolean
The initial expression can include variable
definitions; scope is from the definition to the
end of the body of the loop

Java is the same, except the control expression
must be Boolean

7-15

Chapter 8: Control Structures 29

Logically-Controlled Loops

Design Issues:

Pretest or post-test?

Should this be a special case of the counting
loop statement, or a separate statement?

Chapter 8: Control Structures 30

Logic Loops: Examples

Pascal: separate pretest and posttest logical loop
statements
while-do and repeat-until

C and C++: also have both
while - do and do - while

Java: like C, except the control expression must be
Boolean (and the body can only be entered at the
beginning—Java has no goto)

Ada: a pretest version, but no post-test

FORTRAN 77 and 90: have neither

7-16

Chapter 8: Control Structures 31

User-Located Loop Controls

Statements like break or continue

Design issues:

Should the conditional be part of the exit?

Should the mechanism be allowed in logically-
or counter-controlled loops?

Should control be transferable out of more
than one loop?

Chapter 8: Control Structures 32

User-Located Controls: Ada

Can be conditional or unconditional; for any loop; any
number of levels

for ... loop

...

exit when ...

...

end loop;

LOOP1:
while ... loop

...
LOOP2:

for ... loop
...
exit LOOP1 when ..
...

end loop LOOP2;
...

end loop LOOP1;

7-17

Chapter 8: Control Structures 33

User-Loc. Controls: More Examples

C, C++, Java:
Break: unconditional; for any loop or switch;
one level only (except Java)
Continue: skips the remainder of this
iteration, but does not exit the loop

FORTRAN 90:
EXIT: Unconditional; for any loop, any
number of levels
CYCLE: same as C's continue

Chapter 8: Control Structures 34

Iteration Based on Data Structures

Lets user specify range of values over which
a loop iterates (CLU).

for (ptr = root; ptr == nul; traverse(ptr)) {
...

}

for i in `ls *` do

od

7-18

Chapter 8: Control Structures 35

Unconditional Branching (GOTO)

Problem: readability
Some languages do not have them: e.g.,
Modula-2 and Java
They require some kind of statement label
Label forms:

Unsigned int constants:
Pascal (with colon),
FORTRAN (no colon)

Identifiers with colons: ALGOL 60, C, C++
Identifiers in << ... >>: Ada

Chapter 8: Control Structures 36

Variables as labels: PL/I

Can store a label value in a variable

Can be assigned values and passed as
parameters

Highly flexible, but make programs impossible
to read and difficult to implement

7-19

Chapter 8: Control Structures 37

Guarded Commands (Dijkstra, 1975)

Purpose: to support a new programming
methodology

verification during program development

Also useful for concurrency

Two guarded forms:
Selection (guarded if)
Iteration (guarded while)

Chapter 8: Control Structures 38

Guarded Selection
if <boolean> -> <statement>

[] <boolean> -> <statement>
...

[] <boolean> -> <statement>

fi

Semantics: when this construct is reached,
Evaluate all boolean expressions
If more than one are true, choose one
nondeterministically
If none are true, it is a runtime error

Idea: if the order of evaluation is not important, the
program should not specify one
See book examples (p. 343)

7-20

Chapter 8: Control Structures 39

Guarded Iteration

do <boolean> -> <statement>

[] <boolean> -> <statement>

...

[] <boolean> -> <statement>

od

Semantics: For each iteration:
Evaluate all boolean expressions
If more than one are true, choose one
nondeterministically; then start loop again
If none are true, exit loop

See book example (p. 344)

Chapter 8: Control Structures 40

Choice of Control Statements

Beyond selection and logical pretest loops,
choice is a trade-off between:

Language size
Readability
Writability

