Control Structures

In Text: Chapter 8

Outline

m Control structures
m Selection
m One-way
m Two-way
m Multi-way
m Iteration
m Counter-controlled
m Logically-controlled
m Gotos

m Guarded statements

W Chapter 8: Control Structures m

7-1

Levels of Control Flow

m Within expressions
m Among program statements
® Among program units

B Chapter 8: Control Structures ®

Control Structures

m A control structure is a control statement
and the statements whose execution it controls

m Overall Design Question:

m What control statements should a language
have, beyond selection and pretest logical
loops?

m Single entry/single exit are highly desirable
m a lesson learned from structured programming

W Chapter 8: Control Structures m

7-2

Selection Statements

m Design Issues:

m What is the form and type of the control
expression?

m What is the selectable segment form?

msingle statement, statement sequence, compound
statement

m How should the meaning of nested selectors
be specified?

B Chapter 8: Control Structures ®

Single-Way Selection

m One-way “if” statement

v

m FORTRAN IF: ?E
O
v

| F (bool ean_expr) statenent

m Problem: can select only a single statement; to
select more, a goto must be used
| F (. NOT. condition) GOTO 20

20 CONTI NUE

W Chapter 8: Control Structures m

7-3

Two-Way Selection

m “if-then-else” statement

m ALGOL 60 if: '*5"‘ '
i f (bool ean_expr) then L e
st at ermrent ?
el se
st at enent

m The statements could be single or compound
m begi n..end

m A block is a compound statement that can define a
new scope (with local variables)

B Chapter 8: Control Structures ®

Nested Selectors

m Pascal:
if ... then
if ... then

el se ...

m Which “then” gets the “else"?
m Pascal's rule: else goes with the nearest then

W Chapter 8: Control Structures m

Disallowing Direct Nesting

m ALGOL 60's solution—disallows direct nesting

if ... then if ... then
begi n begi n
if ... then if ... then
el se ______:} end
el se
end
B Chapter 8: Control Structures ® 9

Closing Reserved Words

m FORTRAN 77, Ada, Modula-2 solution—closing special
words

m In Ada:
if ... then if ... then
if ... then if ... then
else-——————:] I end if
e el se
end if ..
end if end if

m Advantage: flexibility and readability
® Modula-2 uses END for all control structures
m This results in poor readability

W Chapter 8: Control Structures m 10

7-5

Multiple Selection Constructs

m Design Issues:

m What is the form and type of the control
expression?

m What segments are selectable (single,
compound, sequential)?

m [s the entire construct encapsulated?

m [s execution flow through the structure
restricted to include just a single selectable
segment?

m What about unrepresented expression values?

B Chapter 8: Control Structures ® 11

Early Multiple Selectors:

m FORTRAN arithmetic IF (a three-way selector)
| F (arithmetic expression) N1, N2, N3
m Disadvantages:
mNot encapsulated
= selectable segments could be anywhere

m FORTRAN computed GOTO
& TO (L1, L2, ..., Ln), exp

goes to first label if exp=1, second if exp=2, etc.
if exp < 1 or exp > n, no effect
must still jump out of segment

W Chapter 8: Control Structures m 12

7-6

Modern Multiple Selectors

m Pascal case
m from Hoare's contribution to ALGOL W

case expression of
constant |ist_ 1 : statenment 1;

constant _|list_n : statenment_n
end

B Chapter 8: Control Structures ®

13

Case: Pascal Design Choices

m Expression is any ordinal type
m int, boolean, char, enum

® Segments can be single or compound
m Construct is encapsulated

m Only one segment can be executed per
execution of the construct

m In Wirth's Pascal, result of an unrepresented
control expression value is undefined

m Many dialects now have otherwise or else clause

W Chapter 8: Control Structures m

14

-7

C/C++ Switch

switch (expression) {
constant _expression_1 : statenent 1;

const ant _expression_n : statenent_n;
[defaul t: statenent_n+1]

}

m Design Choices (for switch):
m Control expression can be only an integer type
m Selectable segments can be statement sequences or blocks
m Construct is encapsulated

m Any number of segments can be executed in one execution
of the construct (reliability vs. flexibility)

m Default clause for unrepresented values

m Chapter 8: Control Structures m 15

Case: Ada Design Choices

case expression is
when constant _|ist_1 => statenent_1,

when constant _|ist_n => statenent _n;
end

m Similar to Pascal, except ...

m Constant lists can include:
Subranges: 10..15
Multiple choices: 1..5] 7| 15..20

m Lists of constants must be exhaustive (more reliable)
m Often accomplished with others clause

W Chapter 8: Control Structures m 16

7-8

Multi-Way If Statements

m Multiple selectors can appear as direct extensions to
two-way selectors, using else-if clauses
m ALGOL 68, FORTRAN 77, Modula-2, Ada

m Ada:
if ... then
elsif.:.. t hen
eIsil.‘.:.. t hen
else.::.
end if

®m Far more readable than deeply nested if's
m Allows a boolean gate on every selectable group

B Chapter 8: Control Structures ® 17

Iterative Statements

m The repeated execution of a statement or
compound statement is accomplished either by
iteration or recursion

m Here we look at iteration, because recursion is
unit-level control

m General design issues for iteration control
statements:
m How is iteration controlled?
®m Where is the control mechanism in the loop?

m Two common strategies: counter-controlled, and
logically-controlled

B Chapter 8: Control Structures m 18

7-9

Counter-Controlled Loops

m Design Issues:

m What is the type (ordinal vs. real) and scope of
the loop variable?

m What is the value of the loop variable at loop
termination?

m Should it be legal for the loop variable or loop
parameters to be changed in the loop body?

m If so, does the change affect loop control?

m Should the loop parameters be evaluated only
once, or once for every iteration?

B Chapter 8: Control Structures ® 19

FORTRAN DO Loops

m FORTRAN 77 and 90
m Syntax:
DO | abel var = start, finish [, stepsize]
m Stepsize can be any value but zero
m Parameters can be expressions

m Design choices:
m Loop var can be INTEGER, REAL, or DOUBLE
m Loop var always has its last value
m Loop parameters are evaluated only once

m The loop var cannot be changed in the loop, but the parameters
can; because they are evaluated only once, it does not affect
loop control

W Chapter 8: Control Structures m 20

7-10

FORTRAN 90’s Other DO

m Syntax:
[name:] DO variable = initial, ternmnal [, stepsize]

END DO [nane]

m Loop var must be an INTEGER

B Chapter 8: Control Structures ® 21

ALGOL 60 For Loop

m Syntax:

for var := <list_of _stuff> do statenent
m where <list_of_stuff> can have:

m list of expressions

B expression step expression until expression

m expression while boolean_expression
for index := 1 step 2 until 50, 60, 70,

80, index + 1 until 100 do

m (index =1, 3,5, 7, ..., 49, 60, 70, 80, 81, 82, ..., 100)

W Chapter 8: Control Structures m 22

7-11

ALGOL 60 For Design Choices

m Control expression can be int or real; its scope
is whatever it is declared to be

m Control var has its last assigned value after
loop termination

m The loop var cannot be changed in the loop,
but the parameters can, and when they are, it
affects loop control

m Parameters are evaluated with every
iteration, making it very complex and difficult to

read
B Chapter 8: Control Structures ® 23
Pascal For Loop
B Syntax:
for var :=initial (to | downto) final do
st at enment

m Design Choices:
m Loop var must be an ordinal type of usual scope
m After normal termination, loop var is undefined
m The loop var cannot be changed in the loop

®m The loop parameters can be changed, but they are
evaluated just once, so it does not affect loop control

W Chapter 8: Control Structures m 24

7-12

Ada For Loop

B Syntax:
for var in [reverse] discrete_range |oop

end | oop
m Design choices:

m Type of the loop var is that of the discrete range (e.g.,
[1..100]); its scope is the loop body (it is implicitly
declared)

m The loop var does not exist outside the loop

m The loop var cannot be changed in the loop, but the
discrete range can; it does not affect loop control

m The discrete range is evaluated just once

B Chapter 8: Control Structures ® 25
C For Loop
m Syntax:
for ([expr_1] ; [expr_2] ; [expr_3])
st at enent

m The expressions can be whole statements, or
even statement sequences, with the statements
separated by commas

m The value of a multiple-statement expression is
the value of the last statement in the expression

m If the second expression is absent, it is an
infinite loop

W Chapter 8: Control Structures m 26

7-13

C For Loop Design Choices

m There is no explicit loop variable
m Everything can be changed in the loop
m Pretest

m The first expression is evaluated once, but the
other two are evaluated with each iteration

m This loop statement is the most flexible

B Chapter 8: Control Structures ® 27

C++ & Java For Loops

m Differs from C in two ways:
m The control expression can also be Boolean

m The initial expression can include variable
definitions; scope is from the definition to the
end of the body of the loop

m Java is the same, except the control expression
must be Boolean

B Chapter 8: Control Structures m 28

7-14

Logically-Controlled Loops

m Design Issues:
m Pretest or post-test?

m Should this be a special case of the counting
loop statement, or a separate statement?

B Chapter 8: Control Structures ® 29

Logic Loops: Examples

m Pascal: separate pretest and posttest logical loop
statements

while-do and repeat-until
m C and C++: also have both
while - do and do - while

m Java: like C, except the control expression must be
Boolean (and the body can only be entered at the
beginning—Java has no goto)

m Ada: a pretest version, but no post-test

m FORTRAN 77 and 90: have neither

W Chapter 8: Control Structures m 30

7-15

User-Located Loop Controls

m Statements like br eak or cont i nue

m Design issues:
m Should the conditional be part of the exit?

m Should the mechanism be allowed in logically-
or counter-controlled loops?

m Should control be transferable out of more
than one loop?

B Chapter 8: Control Structures ® 31

User-Located Controls: Ada

m Can be conditional or unconditional; for any loop; any
number of levels

for ... loop LOOP1:
while ... loop
exit when ... LOOP2:
for ... loop
end | oop; exit LOOPL when ..

end. I 6op LOOP2;

end. I bop LOOPL;

W Chapter 8: Control Structures m 32

7-16

User-Loc. Controls: More Examples

m C, C++, Java:

m Break: unconditional; for any loop or switch;

one level only (except Java)

m Continue: skips the remainder of this
iteration, but does not exit the loop

m FORTRAN 90:

m EXIT: Unconditional; for any loop, any
number of levels

m CYCLE: same as C's continue

B Chapter 8: Control Structures ®

33

Iteration Based on Data Structures

m Lets user specify range of values over which
a loop iterates (CLU).

m for (ptr = root; ptr == nul; traverse(ptr)) {

b
m foriin 'Is* do
od

W Chapter 8: Control Structures m

34

7-17

Unconditional Branching (GOTO)

m Problem: readability

m Some languages do not have them: e.g.,
Modula-2 and Java

m They require some kind of statement label
m Label forms:

m Unsigned int constants:
mPascal (with colon),
mFORTRAN (no colon)

m Identifiers with colons: ALGOL 60, C, C++
m Identifiers in << ... >>: Ada

B Chapter 8: Control Structures ® 35

Variables as labels: PL/I

m Can store a label value in a variable

m Can be assigned values and passed as
parameters

m Highly flexible, but make programs impossible
to read and difficult to implement

W Chapter 8: Control Structures m 36

7-18

Guarded Commands (Dijkstra, 1975)

m Purpose: to support a new programming
methodology

m verification during program development

m Also useful for concurrency

m Two guarded forms:
m Selection (guarded if)
m [teration (guarded while)

B Chapter 8: Control Structures ® 37

Guarded Selection

i f <bool ean> -> <st at enent >
[] <bool ean> -> <stat enent >

[] <bool ean> -> <stat enent >

fi

® Semantics: when this construct is reached,
m Evaluate all boolean expressions

m If more than one are true, choose one
nondeterministically

m If none are true, it is a runtime error

m Idea: if the order of evaluation is not important, the
program should not specify one

m See book examples (p. 343)

B Chapter 8: Control Structures m 38

7-19

Guarded Iteration

do <bool ean> -> <st atenent >
[] <bool ean> -> <stat enent >

[] <boolean> -> <statenent>
od

m Semantics: For each iteration:

m Evaluate all boolean expressions

m If more than one are true, choose one
nondeterministically; then start loop again

m If none are true, exit loop
m See book example (p. 344)

B Chapter 8: Control Structures ® 39

Choice of Control Statements

m Beyond selection and logical pretest loops,
choice is a trade-off between:
m Language size
m Readability
m Writability

W Chapter 8: Control Structures m 40

7-20

