
6-1

1

Arithmetic Expressions

In Text: Chapter 7

Chapter 7: Arithmetic Expressions 2

Outline

Precedence
Associativity
Evaluation order/side effects
Conditional expressions
Type conversions and coercions
Assignment

6-2

Chapter 7: Arithmetic Expressions 3

Arithmetic Expressions

Arithmetic expressions consist of
operators, operands, parentheses, and function calls

Design issues for arithmetic expressions:
What are the operator precedence rules?
What are the operator associativity rules?
What is the order of operand evaluation?
Are there restrictions on operand evaluation side
effects?
Does the language allow user-defined operator
overloading?
What mode mixing is allowed in expressions?

Chapter 7: Arithmetic Expressions 4

Operators
A unary operator has one operand
A binary operator has two operands
A ternary operator has three operands

Functions can be viewed as unary operators with an operand of a
simple list
Argument lists (and parameter lists) treat separators (comma,
space) as “stacking” or “append”operators
keyword in a language statement as functions in which the
remainder of the statement is the operand

Operator precedence and operator
associativity are important considerations

6-3

Chapter 7: Arithmetic Expressions 5

Operator Precedence

The operator precedence rules for expression
evaluation define the order in which “adjacent”
operators of different precedence levels are
evaluated

Parenthetical groups (...)
Exponeniation **
Mult & Div * , /
Add & Sub + , -
Assignment :=

A * B + C ** D / E - F <=> ((A * B) + ((C ** D) / E) - F)

QUESTIONS:
(1) Where do functions come in the hierarchy?
(2) Where do unary operators lie?
(3) Where do logical and boolean operators lie?

Chapter 7: Arithmetic Expressions 6

Operator Associativity
The operator associativity rules for expression
evaluation define the order in which adjacent operators
with the same precedence level are evaluated:

Left associative * , / , + , -
Right associative **

B ** C ** D - E + F * G / H <=> (((B ** (C ** D)) - E) + ((F * G)/ H))

EFFECTIVELY
Most programming languages evaluate expressions from left to
right
LISP uses parentheses to enforce evaluation order
APL is strictly RIGHT to LEFT, taking note only of parenthetical
groups

6-4

Chapter 7: Arithmetic Expressions 7

Operand Evaluation Order

Order of evaluation is crucial

A = B + C
Get value for B, get value for C, add the values
Get value for C, Get value for B, add the values

Function references is when order of evaluation
is most crucial

Functional side-effects

Chapter 7: Arithmetic Expressions 8

Side Effects

Functional side effects — when a function
changes a two-way parameter (pass-by-
reference) or a non-local variable

The problem with functional side effects:
When a function referenced in an expression alters
another operand of the expression

Example, for a parameter passed by reference:
a = 10;

b = a + fun(&a);

/* Assume that fun changes its param */

6-5

Chapter 7: Arithmetic Expressions 9

Side Effects
(Non-Local Reference)

Procedure sub 1 (...);
var a : integer;

function fun (x : integer) : integer;
x := a + 2;
return (x)

end;
a := 7;
b := a + fun (a);
print (a , b);

end;

w/o SE: 7 , 16
w/ SE: 9 , 16 a , fun(a)
w/ SE: 9 , 18 fun(a) , a

Chapter 7: Arithmetic Expressions 10

Solutions for Side Effects

Two Possible Solutions to the Problem
1. Write the language definition to disallow

functional side effects
No two-way parameters in functions
No non-local references in functions
Advantage: it works!

Disadvantage: Programmers want the flexibility

2. Write the language definition to demand that
operand evaluation order be fixed

Disadvantage: limits some compiler optimizations

6-6

Chapter 7: Arithmetic Expressions 11

Operator Overloading

An operator or function is overloaded if its meaning
depends on the number or types of its arguments
+ (real, integer)
- (unary, binary)

Also called ad-hoc polymorphism

Some is common (e.g., + for int and float)

Some is potential trouble (e.g., & in C)
X = A & B bitwise logical AND
X = & B address

Loss of compiler error detection
omission of an operand should be a detectable error

Chapter 7: Arithmetic Expressions 12

Operator Overloading

C++ and Ada allow user-defined overloaded
operators

Potential problems:
Users can define nonsense operations
Readability may suffer

6-7

Chapter 7: Arithmetic Expressions 13

Implicit Type Conversions

A coercion is an implicit type conversion

var x: integer;
y, z: real;
...

y := x + z; /* x is automatically converted to “real” */

"mixed-mode" expression

Chapter 7: Arithmetic Expressions 14

Implicit Type Conversions

Implicit type conversion can be achieved by
narrowing or widening one or more operands

A narrowing conversion is one that converts an object
to a type that cannot include all of the values of the
original type

A widening conversion is one in which an object is
converted to a type that can include at least
approximations to all of the values of the original type

6-8

Chapter 7: Arithmetic Expressions 15

Widening vs Narrowing

complex
double
floating (E-notation)
real (fixed point)
integer
boolean (represented by {0,1}

A widening conversion sequence
is one in which NO information is
lost (the preferred sequence)

A narrowing conversion sequence
is one in which information is lost
at each step downward

Question: Should narrowing involve rounding or truncation?

Chapter 7: Arithmetic Expressions 16

Widening vs Narrowing
Given a choice it is better to widen if possible.

Suppose: x and y are integers; z is a float
want to evaluate x = y * z

(a) the order of evaluation is: (y * z) then (x := result)

(b) So widen (y * z) to ((real y) * z) so as to force
multiplication between two reals, yeilding a real result

(c) Narrow the assignment to (x := (int result))

Example: y := 3; z := 5.9

x <= 15 if y is narrowed; x <= 17 if y is widened

6-9

Chapter 7: Arithmetic Expressions 17

Comments on Implicit Coercions

They decrease the type error detection ability of
the compiler
In most languages, all numeric types are coerced
in expressions, using widening conversions
In Modula-2 and Ada, there are virtually no
coercions in expressions

Coercion is different from explicit type
conversion

Chapter 7: Arithmetic Expressions 18

Explicit Type Conversions

Often called casts

Ada example:
FLOAT(INDEX) -- INDEX is INTEGER type

C example:
(int) speed /* speed is float type */

6-10

Chapter 7: Arithmetic Expressions 19

Relational Operators and Boolean Expressions

Relational operators compare two operands and return
a boolean

= < > <= >= <>

Lower precedence than arithmetic operators
a + b < c + d ≡ (a + b) < (c + d)

Boolean values: true, false

Boolean operators: and, or, xor, not, =

True boolean values are helpful.
In C, use integers:

0 = false; other = false
implications: a > b > c is legal!

Chapter 7: Arithmetic Expressions 20

Precedence of All Operators
Pascal: not, unary -

*, /, div, mod, and
+, -, or
relops

Ada: **
*, /, mod, rem
unary -, not
+, -, &
relops
and, or, xor

C, C++, and Java have > 50 operators and 17 different
precedence levels

6-11

Chapter 7: Arithmetic Expressions 21

Short Circuit Evaluation

Stop evaluating operands of logical operators
once result is known

Get a result without evaluating entire
expression.

(x and y) ≡ if x then y else false
(x or y) ≡ if x then true else y

(x and y are arbitrary boolean expressions)

Chapter 7: Arithmetic Expressions 22

Short Circuit Evaluation

Problem 1:
Need to KNOW how the language works!
index := 1;

while (index <= length) and

(LIST[index] <> value) do

index := index + 1

Problem 2:
Short-circuit evaluation exposes the potential
problem of side effects in expressions

C Example: (a > b) || (b++ / 3)

6-12

Chapter 7: Arithmetic Expressions 23

Short Circuit Evaluation
C, C++, and Java:

use short-circuit evaluation for Boolean operators
(&& and ||)
also provide bitwise operators that are not short
circuit (& and |)

Ada: programmer can specify either
(x or else y)
(x and then y)

Chapter 7: Arithmetic Expressions 24

Assignment Statements

The operator symbol:

= FORTRAN, BASIC, PL/I, C, C++, Java

:= ALGOLs, Pascal, Modula-2, Ada

= can be bad if it is overloaded with the relational
operator for equality

(e.g. in PL/I, A = B = C;)

6-13

Chapter 7: Arithmetic Expressions 25

More Complicated Assignments

1. Multiple targets (PL/I)
A, B = 10

2. Conditional targets (C, C++, and Java)
(first == true) ? total : subtotal = 0

3. Compound assignment operators (C, C++, and Java)
sum += next;

4. Unary assignment operators (C, C++, and Java)
a++;

5. C, C++, and Java treat = as an arithmetic binary operator
a = b * (c = d * 2 + 1) + 1

This is inherited from ALGOL 68

Chapter 7: Arithmetic Expressions 26

Assignment as an Expression

In C, C++, and Java, the assignment statement
produces a result

So, they can be used as operands in expressions
while ((ch = getchar() != EOF) { ... }

(b * (c = d * 2 + 1) + 1)

Disadvantage: another kind of expression side
effect

6-14

Chapter 7: Arithmetic Expressions 27

Mixed-Mode Assignment

In FORTRAN, C, and C++, any numeric value
can be assigned to any numeric scalar variable;
whatever conversion is necessary is done

In Pascal, integers can be assigned to reals, but
reals cannot be assigned to integers

the programmer must specify whether the conversion
from real to integer is truncated or rounded

In Java, only widening assignment coercions are
done

In Ada, there is no assignment coercion

