Arithmetic Expressions

In Text: Chapter 7

Outline

m Precedence

m Associativity

m Evaluation order/side effects

m Conditional expressions

m Type conversions and coercions
m Assignment

W Chapter 7: Arithmetic Expressions ®

6-1

Arithmetic Expressions

m Arithmetic expressions consist of
operators, operands, parentheses, and function calls

m Design issues for arithmetic expressions:
m What are the operator precedence rules?
m What are the operator associativity rules?
m What is the order of operand evaluation?

m Are there restrictions on operand evaluation side
effects?

m Does the language allow user-defined operator
overloading?

® What mode mixing is allowed in expressions?

B Chapter 7: Arithmetic Expressions B

Operators

® A unary operator has one operand
m A binary operator has two operands
m A ternary operator has three operands

m Functions can be viewed as unary operators with an operand of a
simple list

m Argument lists (and parameter lists) treat separators (comma,
space) as “stacking” or “append”operators

m keyword in a language statement as functions in which the
remainder of the statement is the operand

m Operator precedence and operator
associativity are important considerations

W Chapter 7: Arithmetic Expressions ®

Operator Precedence

® The operator precedence rules for expression
evaluation define the order in which “adjacent”
operators of different precedence levels are
evaluated

Parenthetical groups (...)

Exponeniation *x
Mult & Div *
Add & Sub +, -
Assignment =

A*B+C** D/E-F <= ((A*B)+ ((C*D)/E)-F)

QUESTIONS:
(1) Where do functions come in the hierarchy?
(2) Where do unary operators lie?
(3) Where do logical and boolean operators lie?
B Chapter 7: Arithmetic Expressions B 5

Operator Associativity

® The operator associativity rules for expression
evaluation define the order in which adjacent operators
with the same precedence level are evaluated:

Left associative */,+, -
Right associative *x

B**C**D-E+ F*G/H <=> ((B**(C**D))-E)+ ((F*G)/H))

m EFFECTIVELY
m Most programming languages evaluate expressions from left to
right
m LISP uses parentheses to enforce evaluation order
m APL is strictly RIGHT to LEFT, taking note only of parenthetical
groups

W Chapter 7: Arithmetic Expressions ® 6

Operand Evaluation Order

m Order of evaluation is crucial

A=B+C
Get value for B, get value for C, add the values
Get value for C, Get value for B, add the values

m Function references is when order of evaluation
is most crucial

m Functional side-effects

B Chapter 7: Arithmetic Expressions B

Side Effects

m Functional side effects — when a function
changes a two-way parameter (pass-by-
reference) or a non-local variable

m The problem with functional side effects:

®m When a function referenced in an expression alters
another operand of the expression

m Example, for a parameter passed by reference:
a = 10;
b =a+ fun(&a);
/* Assunme that fun changes its param */

W Chapter 7: Arithmetic Expressions ®

6-4

Side Effects

(Non-Local Reference)

Procedure sub 1 (...);
var a : integer;
function fun (x : integer) : integer;

X:i= a+ 2;
return (x)
end;
a:=7;
b:=a+fun(a);
! w/o SE: 7,16
print(a,b); —— |w sE 9,16 a, fun(a)
end; w/ SE: 9,18 fun(a),a
W Chapter 7: Arithmetic Expressions m 9

Solutions for Side Effects

Two Possible Solutions to the Problem

1. Write the language definition to disallow
functional side effects

m No two-way parameters in functions
m No non-local references in functions
m Advantage: it works!

m Disadvantage: Programmers want the flexibility

2. Write the language definition to demand that
operand evaluation order be fixed

m Disadvantage: limits some compiler optimizations

W Chapter 7: Arithmetic Expressions ® 10

Operator Overloading

m An operator or function is overloaded if its meaning
depends on the number or types of its arguments
+ (real, integer)
- (unary, binary)
Also called ad-hoc polymorphism

® Some is common (e.g., + for int and float)

m Some is potential trouble (e.g., & in C)
mX=A&B bitwise logical AND
mX=&B address

Loss of compiler error detection
m omission of an operand should be a detectable error

B Chapter 7: Arithmetic Expressions B

11

Operator Overloading

m C++ and Ada allow user-defined overloaded
operators

m Potential problems:
m Users can define nonsense operations
m Readability may suffer

W Chapter 7: Arithmetic Expressions ®

12

Implicit Type Conversions

m A coercion is an implicit type conversion

var X: integer;
y, z: real;

y:=X+ 2z /*xisautomatically converted to “real” */

"mixed-mode" expression

B Chapter 7: Arithmetic Expressions B 13

Implicit Type Conversions

m Implicit type conversion can be achieved by
narrowing or widening one or more operands

® A narrowing conversion is one that converts an object
to a type that cannot include all of the values of the

original type

m A widening conversion is one in which an object is
converted to a type that can include at least
approximations to all of the values of the original type

W Chapter 7: Arithmetic Expressions ® 14

Widening vs Narrowing

complex

double

floating (E-notation)

real (fixed point)

integer

boolean (represented by {0,1}

A widening conversion sequence A narrowing conversion sequence
isonein which NO information is isonein which information islost
lost (the preferred sequence) at each step downward

Question: Should narrowing involve rounding or truncation?

B Chapter 7: Arithmetic Expressions B 15

Widening vs Narrowing

m Given a choice it is better to widen if possible.

Suppose: x and y are integers; zis a float
want to evaluate x =y * z

(a) the order of evaluation is: (y * z) then (x := result)

(b) So widen (y * z) to ((real y) * z) so as to force
multiplication between two reals, yeilding a real result

(c) Narrow the assignment to (x := (int result))
Example: y:=3; z:=5.9
x <=15ifyis narrowed; x<=17ifyiswidened

W Chapter 7: Arithmetic Expressions ® 16

Comments on Implicit Coercions

m They decrease the type error detection ability of
the compiler

m In most languages, all numeric types are coerced
in expressions, using widening conversions

m In Modula-2 and Ada, there are virtually no
coercions in expressions

m Coercion is different from explicit type
conversion

B Chapter 7: Arithmetic Expressions B 17

Explicit Type Conversions

m Often called casts

m Ada example:
FLOAT(INDEX) -- INDEX is | NTEGER type

m C example:
(int) speed /* speed is float type */

B Chapter 7: Arithmetic Expressions B 18

6-9

Relational Operators and Boolean Expressions

m Relational operators compare two operands and return
a boolean
= < > <= >= <>

m Lower precedence than arithmetic operators
ma+b<c+d = (@a+b)<(c+d)

m Boolean values: true, false
m Boolean operators: and, or, xor, not, =

®m True boolean values are helpful.
m In C, use integers:
m 0 = false; other = false
implications: a > b > cis legal!

B Chapter 7: Arithmetic Expressions B 19

Precedence of All Operators

m Pascal: not, unary -
*, /, div, mod, and
+, -, or
relops

m Ada: **
* [, mod, rem
unary -, not
+I T &
relops
and, or, xor

m C, C++, and Java have > 50 operators and 17 different
precedence levels

W Chapter 7: Arithmetic Expressions ® 20

6-10

Short Circuit Evaluation

m Stop evaluating operands of logical operators
once result is known

m Get a result without evaluating entire
expression.
(x and y)

(x ory)
(x and y are arbitrary boolean expressions)

if x then y else false
if x then true else y

B Chapter 7: Arithmetic Expressions B 21

Short Circuit Evaluation

m Problem 1:
m Need to KNOW how the language works!
i ndex := 1,
while (index <= length) and
(LI ST[i ndex] <> value) do
index := index + 1

m Problem 2:

m Short-circuit evaluation exposes the potential
problem of side effects in expressions

CExample: (a > b) || (b++ / 3)

W Chapter 7: Arithmetic Expressions ® 22

6-11

Short Circuit Evaluation

m C, C++, and Java:

m use short-circuit evaluation for Boolean operators
(& and ||)

m also provide bitwise operators that are not short
circuit (& and |)

m Ada: programmer can specify either
m(xorelsey)
m(xandtheny)

B Chapter 7: Arithmetic Expressions B

23

Assignment Statements

m The operator symbol:
= FORTRAN, BASIC, PL/I, C, C++, Java
:= ALGOLs, Pascal, Modula-2, Ada

= can be bad if it is overloaded with the relational
operator for equality
(e.g.inPL/I, A=B=C;)

W Chapter 7: Arithmetic Expressions ®

24

6-12

More Complicated Assignments

1. Multiple targets (PL/I)

m A B=10
2. Conditional targets (C, C++, and Java)
m (first == true) ? total : subtotal =0

3. Compound assignment operators (C, C++, and Java)
B sum += next;

4. Unary assignment operators (C, C++, and Java)
m at++;

5. C, C++, and Java treat = as an arithmetic binary operator
ma=b*(c=d*2+1 +1
m This is inherited from ALGOL 68

B Chapter 7: Arithmetic Expressions B 25

Assignment as an Expression

m In C, C++, and Java, the assignment statement
produces a result

m So, they can be used as operands in expressions
mwhile ((ch = getchar() '= EOF) { ... }
m(b* (c=d*2+1) +1)

m Disadvantage: another kind of expression side
effect

W Chapter 7: Arithmetic Expressions ® 26

6-13

Mixed-Mode Assignment

m In FORTRAN, C, and C++, any numeric value
can be assigned to any numeric scalar variable;
whatever conversion is necessary is done

m In Pascal, integers can be assigned to reals, but
reals cannot be assigned to integers

m the programmer must specify whether the conversion
from real to integer is truncated or rounded

m In Java, only widening assignment coercions are
done

m In Ada, there is no assignment coercion

B Chapter 7: Arithmetic Expressions B 27

6-14

