
8-1

1

Subprograms

In Text: Chapter 9

Chapter 9: Subprograms 2

Outline

Definitions
Referencing environments
Parameter passing modes and mechanisms
Advanced subprogram issues

8-2

Chapter 9: Subprograms 3

Characteristics of Subprograms

Fundamental characteristics:
A subprogram has a single entry point
The caller is suspended during execution of the
called subprogram
Control always returns to the caller when the
called subprogram’s execution terminates

Chapter 9: Subprograms 4

Actual/Formal Param Correspondence

Two basic choices:
Positional
Keyword
Sort (List => A, Length => N);

For Keyword association:
Advantage: order is irrelevant
Disadvantage: user must know the formal
parameter’s names

8-3

Chapter 9: Subprograms 5

Default Parameter Values

Example, in Ada:
procedure sort (list : List_Type;

length : Integer := 100);

...

sort (list => A);

Chapter 9: Subprograms 6

Design Issues for Subprograms

What parameter passing methods are provided?
Are parameter types checked?
Are local variables static or dynamic?
What is the referencing environment of a passed
subprogram?
Are parameter types in passed subprograms checked?
Can subprogram definitions be nested?
Can subprograms be overloaded?
Are subprograms allowed to be generic?
Is separate/independent compilation supported?

8-4

Chapter 9: Subprograms 7

Local Referencing Environments

If local variables are stack-dynamic:
Advantages:

Support for recursion
Storage for locals is shared among some
subprograms

Disadvantages:
Allocation/deallocation time
Indirect addressing
Subprograms cannot be history sensitive

Static locals are the opposite

Chapter 9: Subprograms 8

Local Variables in Example PLs

FORTRAN 77 and 90—most are static, but can
have either (SAVE forces static)
C—both; default is stack dynamic, but variables
declared to be static are not
Pascal, Modula-2, and Ada—dynamic only

8-5

Chapter 9: Subprograms 9

Parameters and Parameter Passing

Semantic Models: in mode, out mode, inout mode
Conceptual Models of Transfer:

Physically move a value
Move an access path

Implementation Models:
Pass-by-value
Pass-by-result
Pass-by-value-result
Pass-by-reference
Pass-by-name

Chapter 9: Subprograms 10

Pass-By-Value

in mode
Either by physical move or access path
Disadvantages of access path method:

Must write-protect in the called subprogram
Accesses cost more (indirect addressing)

Disadvantages of physical move:
Requires more storage
Cost of the moves

8-6

Chapter 9: Subprograms 11

Pass-By-Result

out mode
Local’s value is passed back to the caller
Physical move is usually used
Disadvantages:

If value is moved, time and space
In both cases, order dependence may be a problem

procedure sub1(y: int, z: int);

...

sub1(x, x);

Value of x in the caller depends on order of assignments at
the return

Chapter 9: Subprograms 12

Pass-By-Value-Result

inout mode
Physical move, both ways
Also called pass-by-copy
Disadvantages:

Those of pass-by-result
Those of pass-by-value

8-7

Chapter 9: Subprograms 13

Pass-By-Reference
inout mode
Pass an access path
Also called pass-by-sharing
Advantage: passing process is efficient
Disadvantages:

Slower accesses
Can allow aliasing:

Actual parameter collisions: sub1(x, x);
Array element collisions: sub1(a[i], a[j]); /* if i = j */
Collision between formals and globals

Root cause of all of these is: The called subprogram is
provided wider access to nonlocals than is necessary
Pass-by-value-result does not allow these aliases (but has
other problems!)

Chapter 9: Subprograms 14

Ex: value/result vs. reference

program foo;
var x : int;

procedure p(y : int);
begin

y := y + 1;
y := y * x;

end;
begin

x := 2;
p(x);
print(x)

end.

Here, y is an
alias for x

value/result reference
x y x y

(entry to p) 2 2 2 2
(after y := y + 1) 2 3 3 3
(at p's return) 6 (6)* 9 (9)*
* Actually NOT available after the return

8-8

Chapter 9: Subprograms 15

Pass-By-Name

multiple modes
By textual substitution
Formals are bound to an access method at the time of the
call, but actual binding to a value or address takes place at
the time of a reference or assignment
Purpose: flexibility of late binding
Resulting semantics:

If actual is a scalar variable, it is pass-by-reference
If actual is a constant expression, it is pass-by-value
If actual is an array element, it is like nothing else
If actual is an expression with a reference to a variable that is also
accessible in the program, it is also like nothing else

Chapter 9: Subprograms 16

Pass-By-Name Example 1

procedure sub1(x: int; y: int);

begin

x := 1;

y := 2;

x := 2;

y := 3;

end;

sub1(i, a[i]);

i := 1;

a[i] := 2;

i := 2;

a[i] := 3;

8-9

Chapter 9: Subprograms 17

Pass-By-Name Example 2

Assume k is a global variable
procedure sub2(x: int; y: int; z: int);

begin

k := 1;

y := x;

k := 5;

z := x;

end;

sub2(k+1, j, i);

k:= 1;

j:= k+1;

k:= 5;

i:= k+1;

Chapter 9: Subprograms 18

Pass-by-Name (continued)

procedure p1;

var x:int;

begin

x := 2;

p2(x+1);

end;

===>

procedure p2(y:int);

var x:int;

begin

x := 5;

glob := x + y

x + (x + 1) => p2.x + (p1.x + 1)

end;

Now: glob = 11 or 8?

8-10

Chapter 9: Subprograms 19

Disadvantages of Pass-By-Name

Very inefficient references
Too tricky; hard to read and understand

re-evaluation of actuals

need thunk = (code,env)

Special implementation issue

Chapter 9: Subprograms 20

THUNKS (aka Jensen’s Device)

A Thunk is a parameterless* function, that exists in the calling
program that evaluates the argument
A parameter reference in the called program compiles as a call to
the corresponding Thunk

call BLOP (A+B: by name)

Thunk
to compute A+B (in local env)

proc BLOP (X)

ref X

return point

CALLER return

8-11

Chapter 9: Subprograms 21

Param Passing: Language Examples

FORTRAN
Before 77, pass-by-reference
77—scalar variables are often passed by value-
result

ALGOL 60
Pass-by-name is default; pass-by-value is
optional

ALGOL W: Pass-by-value-result
C: Pass-by-value
Pascal and Modula-2: Default is pass-by-value;
pass-by-reference is optional

Chapter 9: Subprograms 22

Param Passing: PL Examples (cont.)

C++: Like C, but also allows reference type
parameters, which provide the efficiency of pass-
by-reference with in-mode semantics
Ada

All three semantic modes are available
If out, it cannot be referenced
If in, it cannot be assigned

Java
Like C++, except only references

8-12

Chapter 9: Subprograms 23

Implementing Parameter Passing

ALGOL 60 and most of its descendants use the run-time
stack
Value—copy it to the stack; references are indirect to
the stack
Result—same
Reference—regardless of form, put the address in the
stack
Name:

Run-time resident code segments or subprograms evaluate the
address of the parameter
Called for each reference to the formal
These are called thunks
Very expensive, compared to reference or value-result

Chapter 9: Subprograms 24

Multidimensional Arrays as Params

If a multidimensional array is passed to a
subprogram and the subprogram is separately
compiled, the compiler needs to know the
declared size of that array to build the storage
mapping function
C and C++

Programmer is required to include the declared sizes of all
but the first subscript in the actual parameter
This disallows writing flexible subprograms
Solution: pass a pointer to the array and the sizes of the
dimensions as other parameters; the user must include the
storage mapping function, which is in terms of the size
parameters (See example, p. 351)

8-13

Chapter 9: Subprograms 25

More Array Passing Designs

Pascal
Not a problem (declared size is part of the array’s type)

Ada
Constrained arrays—like Pascal
Unconstrained arrays—declared size is part of the object
declaration (See book example p. 351)

Pre-90 FORTRAN
Formal parameter declarations for arrays can include passed
parameters

SUBPROGRAM SUB(MATRIX, ROWS, COLS, RESULT)
INTEGER ROWS, COLS
REAL MATRIX (ROWS, COLS), RESULT

...
END

Chapter 9: Subprograms 26

Design Considerations for Parameter Passing

Efficiency
One-way or two-way
These two are in conflict with one another!
Good programming => limited access to variables,
which means one-way whenever possible
Efficiency => pass by reference is fastest way to
pass structures of significant size
Also, functions should not allow reference
parameters

8-14

Chapter 9: Subprograms 27

Subprograms As Parameters: Issues

Are parameter types checked?
Early Pascal and FORTRAN 77 do not
Later versions of Pascal, Modula-2, and
FORTRAN 90 do
Ada does not allow subprogram parameters
C and C++—pass pointers to functions;
parameters can be type checked

Chapter 9: Subprograms 28

Subprogs as Params: Issues (cont.)

What is the correct referencing environment for a
subprogram that was sent as a parameter?

Possibilities:
It is that of the subprogram that called it (shallow binding)
It is that of the subprogram that declared it (deep binding)
It is that of the subprogram that passed it (ad hoc binding,
never been used)

For static-scoped languages, deep binding is most
natural
For dynamic-scoped languages, shallow binding is most
natural

8-15

Chapter 9: Subprograms 29

Procedure and Function Arguments

program p123();

procedure p1(p);

/* p is a procedure parameter */

var x: int;

begin {p1}

x := 1;

/* the passed procedure is invoked */

p(); ed

end; {p1}

procedure p2();
var x : int;

/* Note: p3 not normally visible to p1 */
procedure p3();
begin {p3}

/* X must be the x in p2,

not the x in p1! */

print (x)
end; {p3}

begin {p2}

x := 2;
p1(p3)

end {p2}

begin {main} p2(); end. {p123}
Note: This requires thunks for static scoping (“deep binding”).

Chapter 9: Subprograms 30

Overloading

An overloaded subprogram is one that has the
same name as another subprogram in the same
referencing environment

C++ and Ada have overloaded subprograms built-in,
and users can write their own overloaded subprograms

Signature used to determine which overloaded
subprogram is being referenced

Parameter number
Parameter types
Return value

8-16

Chapter 9: Subprograms 31

Generic Subprograms

A generic or polymorphic subprogram is one that
takes parameters of different types on different
activations
Overloaded subprograms provide ad hoc
polymorphism
A subprogram that takes a generic parameter that
is used in a type expression that describes the
type of the parameters of the subprogram
provides parametric polymorphism
See Ada generic and C++ template examples in
text

Chapter 9: Subprograms 32

Functions

Design Issues:
Are side effects allowed?

Two-way parameters (Ada does not allow)
Nonlocal reference (all allow)

What types of return values are allowed?
FORTRAN, Pascal, Modula-2: only simple types
C: any type except functions and arrays
Ada: any type (but subprograms are not types)
C++ and Java: like C, but also allow classes to be
returned

8-17

Chapter 9: Subprograms 33

Accessing Nonlocal Environments

The nonlocal variables of a subprogram are
those that are visible but not declared in the
subprogram
Global variables are those that may be visible in
all of the subprograms of a program

Chapter 9: Subprograms 34

Methods for Accessing Nonlocals

FORTRAN COMMON
The only way in pre-90 FORTRANs to access nonlocal variables
Can be used to share data or share storage

Static scoping—discussed in Chapter 4
External declarations: C

Subprograms are not nested
Globals are created by external declarations (they are simply
defined outside any function)
Access is by either implicit or explicit declaration
Declarations (not definitions) give types to externally defined
variables (and say they are defined elsewhere)

External modules: Ada and Modula-2: Sec Ch. 10
Dynamic Scope: discussed in Ch. 4

8-18

Chapter 9: Subprograms 35

User-Defined Overloaded Operators

Nearly all programming languages have overloaded
operators
Users can further overload operators in C++ and Ada (not
carried over into Java)
Ada Example (where Vector_Type is an array of Integers):

function "*"(a, b : in Vector_Type) return Integer is
sum : Integer := 0;

begin
for index in a'range loop

sum := sum + a(index) * b(index);
end loop;
return sum;

end "*";

Are user-defined overloaded operators good or bad?

Chapter 9: Subprograms 36

Coroutines

A coroutine is a subprogram that has multiple entries and
controls them itself
Also called symmetric control
A coroutine call is named a resume
The first resume of a coroutine is to its beginning, but
subsequent calls enter at the point just after the last
executed statement in the coroutine
Typically, coroutines repeatedly resume each other,
possibly forever
Coroutines provide quasiconcurrent execution of program
units (the coroutines)
Their execution is interleaved, but not overlapped

