Subprograms

In Text: Chapter 9

Outline

m Definitions

m Referencing environments

m Parameter passing modes and mechanisms
m Advanced subprogram issues

B Chapter 9: Subprograms ®

8-1

Characteristics of Subprograms

m Fundamental characteristics:
m A subprogram has a single entry point

m The caller is suspended during execution of the
called subprogram

m Control always returns to the caller when the
called subprogram’s execution terminates

B Chapter 9: Subprograms ® 3

Actual/Formal Param Correspondence

m Two basic choices:
m Positional
m Keyword
Sort (List => A, Length => N);
m For Keyword association:
m Advantage: order is irrelevant

m Disadvantage: user must know the formal
parameter’s names

B Chapter 9: Subprograms ® 4

8-2

Default Parameter Values

m Example, in Ada:
procedure sort (list . List_Type;
length : Integer := 100);

sort (list => A);

B Chapter 9: Subprograms ®

Design Issues for Subprograms

m What parameter passing methods are provided?

m Are parameter types checked?

m Are local variables static or dynamic?

m What is the referencing environment of a passed
subprogram?

m Are parameter types in passed subprograms checked?

m Can subprogram definitions be nested?

m Can subprograms be overloaded?

m Are subprograms allowed to be generic?

m [s separate/independent compilation supported?

B Chapter 9: Subprograms ®

Local Referencing Environments

m If local variables are stack-dynamic:
m Advantages:
mSupport for recursion

mStorage for locals is shared among some
subprograms

m Disadvantages:
mAllocation/deallocation time
mIndirect addressing
mSubprograms cannot be history sensitive

m Static locals are the opposite

B Chapter 9: Subprograms ®

Local Variables in Example PLs

m FORTRAN 77 and 90—most are static, but can
have either (SAVE forces static)

m C—both; default is stack dynamic, but variables
declared to be static are not

m Pascal, Modula-2, and Ada—dynamic only

B Chapter 9: Subprograms ®

8-4

Parameters and Parameter Passing

m Semantic Models: in mode, out mode, inout mode

m Conceptual Models of Transfer:
m Physically move a value
®m Move an access path
m Implementation Models:
m Pass-by-value
m Pass-by-result
m Pass-by-value-result
m Pass-by-reference
m Pass-by-name

B Chapter 9: Subprograms ® 9

Pass-By-Value

®m in mode
m Either by physical move or access path
m Disadvantages of access path method:
m Must write-protect in the called subprogram
m Accesses cost more (indirect addressing)
m Disadvantages of physical move:
m Requires more storage
m Cost of the moves

B Chapter 9: Subprograms ® 10

8-5

Pass-By-Result

m out mode

m Local’s value is passed back to the caller

m Physical move is usually used

m Disadvantages:
m If value is moved, time and space
m In both cases, order dependence may be a problem
procedure subl(y: int, z: int);

subl(x, Xx);

m Value of x in the caller depends on order of assignments at
the return

B Chapter 9: Subprograms ® 11

Pass-By-Value-Result

®m inout mode
m Physical move, both ways
m Also called pass-by-copy
m Disadvantages:
m Those of pass-by-result
m Those of pass-by-value

B Chapter 9: Subprograms ® 12

Pass-By-Reference

®m inout mode
m Pass an access path
m Also called pass-by-sharing
m Advantage: passing process is efficient
m Disadvantages:
m Slower accesses

m Can allow aliasing:
m Actual parameter collisions: sub1(x, x);
m Array element collisions: subl(a[i], a[j]); /*ifi=j */
m Collision between formals and globals
m Root cause of all of these is: The called subprogram is
provided wider access to nonlocals than is necessary
m Pass-by-value-result does not allow these aliases (but has
other problems!)

B Chapter 9: Subprograms ® 13

Ex: value/result vs. reference

program foo;

var x : int;
procedure p(y : int);
begin
y:=y+1;
o=y ¥ yo Here, y is an
yeEy alias for x
end;
. value/result reference
begin Xy Xy
X = 2; (entry to p) 22 22
p(x); (aftery := y + 1) 23 33
print(x) (at p's return) 6 (6)* 9 (9)*
end * Actually NOT available after the return

B Chapter 9: Subprograms ® 14

Pass-By-Name

multiple modes
By textual substitution
Formals are bound to an access method at the time of the
call, but actual binding to a value or address takes place at
the time of a reference or assignment
Purpose: flexibility of late binding
Resulting semantics:
m If actual is a scalar variable, it is pass-by-reference
m If actual is a constant expression, it is pass-by-value
m If actual is an array element, it is like nothing else

m If actual is an expression with a reference to a variable that is also
accessible in the program, it is also like nothing else

B Chapter 9: Subprograms ® 15

Pass-By-Name Example 1

procedure subl(x: int; y: int);

begi n

X 1= 1; [= 1;

_ o)

y ;= 2; 4 a[i] := 2;

X 1= 2; [= 2

y 1= 3; afi] := 3;
end;
subl(i, af[i]);

B Chapter 9: Subprograms ® 16

Pass-By-Name Example 2

m Assume Kk is a global variable
procedure sub2(x: int; y: int; z: int);

begi n
k .= 1; k:= 1,
y 1= X j = k+1
k :=5; k 5;
z = X; 1= k+1;
end;
sub2(k+1, j, i);
B Chapter 9: Subprograms ® 17

Pass-by-Name (continued)

procedure p1;

var x:int;
begin _
procedure p2(y:int);
X =2 var x:int;
p2(x+1); begin
end; x:=05

glob:=x+y ==
X+ (x+1) = p2x+ (plx+ 1)
end;
Now: glob = 11 or 87

B Chapter 9: Subprograms ® 18

Disadvantages of Pass-By-Name

m Very inefficient references
m Too tricky; hard to read and understand

m re-evaluation of actuals

m need thunk = (code,env)

m Special implementation issue

B Chapter 9: Subprograms ® 19

THUNKS (aka Jensen’s Device)

m A Thunk is a parameterless* function, that exists in the calling
program that evaluates the argument

m A parameter reference in the called program compiles as a call to
the corresponding Thunk

proc BLOP (X)
cal BLOP (A+B: by name) —|

-

/
Thunk T x
to compute A+B (in local env) //'
\

return point \

CALLER

[return

B Chapter 9: Subprograms ® 20

8-10

Param Passing: Language Examples

m FORTRAN
m Before 77, pass-by-reference

m 77—scalar variables are often passed by value-
result

m ALGOL 60

m Pass-by-name is default; pass-by-value is
optional

m ALGOL W: Pass-by-value-result
m C: Pass-by-value

m Pascal and Modula-2: Default is pass-by-value;
pass-by-reference is optional

B Chapter 9: Subprograms ® 21

Param Passing: PL Examples (cont.)

m C++: Like C, but also allows reference type
parameters, which provide the efficiency of pass-
by-reference with in-mode semantics

m Ada
m All three semantic modes are available
m If out, it cannot be referenced
m If in, it cannot be assigned
m Java
m Like C++, except only references

B Chapter 9: Subprograms ® 22

8-11

Implementing Parameter Passing

m ALGOL 60 and most of its descendants use the run-time
stack

m Value—copy it to the stack; references are indirect to
the stack

B Result—same

m Reference—regardless of form, put the address in the
stack

® Name:

m Run-time resident code segments or subprograms evaluate the
address of the parameter

m Called for each reference to the formal
m These are called thunks
m Very expensive, compared to reference or value-result

B Chapter 9: Subprograms ® 23

Multidimensional Arrays as Params

m If a multidimensional array is passed to a
subprogram and the subprogram is separately
compiled, the compiler needs to know the
declared size of that array to build the storage
mapping function

m Cand C++

m Programmer is required to include the declared sizes of all
but the first subscript in the actual parameter

m This disallows writing flexible subprograms

m Solution: pass a pointer to the array and the sizes of the
dimensions as other parameters; the user must include the
storage mapping function, which is in terms of the size
parameters (See example, p. 351)

B Chapter 9: Subprograms ® 24

8-12

More Array Passing Designs

m Pascal

m Not a problem (declared size is part of the array’s type)
m Ada

m Constrained arrays—like Pascal

m Unconstrained arrays—declared size is part of the object
declaration (See book example p. 351)

m Pre-90 FORTRAN

m Formal parameter declarations for arrays can include passed
parameters

SUBPROGRAM SUB(MATRIX, ROWS, COLS, RESULT)
INTEGER ROWS, COLS
REAL MATRIX (ROWS, COLS), RESULT

END
B Chapter 9: Subprograms ® 25

Design Considerations for Parameter Passing

m Efficiency
m One-way or two-way
m These two are in conflict with one another!

m Good programming => limited access to variables,
which means one-way whenever possible

m Efficiency => pass by reference is fastest way to
pass structures of significant size

m Also, functions should not allow reference
parameters

B Chapter 9: Subprograms ® 26

8-13

Subprograms As Parameters: Issues

m Are parameter types checked?
m Early Pascal and FORTRAN 77 do not

m Later versions of Pascal, Modula-2, and
FORTRAN 90 do

m Ada does not allow subprogram parameters

m C and C++—pass pointers to functions;
parameters can be type checked

B Chapter 9: Subprograms ® 27

Subprogs as Params: Issues (cont.)

m What is the correct referencing environment for a
subprogram that was sent as a parameter?

m Possibilities:
m It is that of the subprogram that called it (shallow binding)
m [t is that of the subprogram that declared it (deep binding)

m It is that of the subprogram that passed it (ad hoc binding,
never been used)

m For static-scoped languages, deep binding is most

natural
m For dynamic-scoped languages, shallow binding is most
natural
B Chapter 9: Subprograms ® 28

8-14

Procedure and Function Arguments

program p123(); procedure p2();
procedure p1(p); var x : int;
/* p is a procedure parameter */ /* Note: p3 not normally visible to p1 */
var x: int; procedure p3();
begin {p1} begin {p3}
X:=1; /* X must be the x in p2,
/* the passed procedure is invoked */ not the x in p1! */
p(); ed print (x)
end; {p1} end; {p3}
begin {p2}
X:i=2;
p1(p3)
end {p2}

begin {main} p2(); end.{p123}
Note: This requires thunks for static scoping (“deep binding”).

B Chapter 9: Subprograms ® 29

Overloading

m An overloaded subprogram is one that has the
same name as another subprogram in the same
referencing environment

m C++ and Ada have overloaded subprograms built-in,
and users can write their own overloaded subprograms

m Signature used to determine which overloaded
subprogram is being referenced
m Parameter number
m Parameter types
m Return value

B Chapter 9: Subprograms ® 30

8-15

Generic Subprograms

m A generic or polymorphic subprogram is one that
takes parameters of different types on different
activations

m Overloaded subprograms provide ad hoc
polymorphism

m A subprogram that takes a generic parameter that
is used in a type expression that describes the

type of the parameters of the subprogram
provides parametric polymorphism

m See Ada generic and C++ template examples in
text

B Chapter 9: Subprograms ® 31

Functions

Design Issues:

m Are side effects allowed?
m Two-way parameters (Ada does not allow)
m Nonlocal reference (all allow)

m What types of return values are allowed?
m FORTRAN, Pascal, Modula-2: only simple types
m C: any type except functions and arrays
m Ada: any type (but subprograms are not types)

m C++ and Java: like C, but also allow classes to be
returned

B Chapter 9: Subprograms ® 32

8-16

Accessing Nonlocal Environments

m The nonlocal variables of a subprogram are
those that are visible but not declared in the
subprogram

m Global variables are those that may be visible in

all of the subprograms of a program

B Chapter 9: Subprograms ® 33

Methods for Accessing Nonlocals

m FORTRAN COMMON
m The only way in pre-90 FORTRANSs to access nonlocal variables
m Can be used to share data or share storage

m Static scoping—discussed in Chapter 4

m External declarations: C
m Subprograms are not nested

m Globals are created by external declarations (they are simply
defined outside any function)

m Access is by either implicit or explicit declaration

m Declarations (not definitions) give types to externally defined
variables (and say they are defined elsewhere)

m External modules: Ada and Modula-2: Sec Ch. 10
® Dynamic Scope: discussed in Ch. 4

B Chapter 9: Subprograms ® 34

8-17

User-Defined Overloaded Operators

m Nearly all programming languages have overloaded
operators

m Users can further overload operators in C++ and Ada (not
carried over into Java)

m Ada Example (where Vector_Type is an array of Integers):

function "*"(a, b : in Vector_Type) return Integer is
sum: Integer := 0O;
begi n

for index in a'range | oop
sum : = sum + a(i ndex) * b(index);

end | oop;
return sum
end n*n;

m Are user-defined overloaded operators good or bad?

B Chapter 9: Subprograms ® 35

Coroutines

m A coroutine is a subprogram that has multiple entries and
controls them itself

m Also called symmetric control
m A coroutine call is named a resume

m The first resume of a coroutine is to its beginning, but
subsequent calls enter at the point just after the last
executed statement in the coroutine

m Typically, coroutines repeatedly resume each other,
possibly forever

m Coroutines provide quasiconcurrent execution of program
units (the coroutines)

m Their execution is interleaved, but not overlapped

B Chapter 9: Subprograms ® 36

8-18

