
slide 1

Logic Programming Foundations:
Prolog

In Text: Chapter 16

slide 2

Logic Programming -- Mathematical Foundations:
Predicate Calculus

• Propositions
– statements or queries about the state of the “universe”

– simplest form: atomic proposition
form: functor (parameters)
examples: man (jake)

like (bob, redheads)

– can either assert truth (“jake is a man”) or query existing knowledge base (“is jake a
man?”)

– can contain variables, which can become bound
man (x)

• Compound Propositions
– contain two or more atomic propositions connected by various logical operators:

Name Symbol Example Meaning
negation ¬ ¬ a not a
conjunction ∩ a ∩ b a and b
disjunction ∪ a ∪ b a or b
equivalence ≡ a ≡ b a is equivalent to b
implication ⊃ a ⊃ b a implies b

⊂ a ⊂ b b implies a

slide 3

Logic Programming -- Basic Principles

• Logic programming languages are declarative languages.

– declarative semantics: essentially, there is a simple way to determine the
meaning of each statement, and it does not depend on how the statement
might be used to solve a problem

– much simpler than imperative semantics

• Logic programming languages are nonprocedural.

– Instead of specifying how a result is to be computed, we describe the
desired result and let the computer system figure out how to compute it.

– Example: Sort a list:
sort(old_list, new_list) ⊂ permute(old_list, new_list) ∩ sorted(new_list)

sorted(list) ⊂ ∀j such that 1 ≤ j < n, list(j) ≤ list(j+1)

• Prolog is an example of a logic programming language.

slide 4

Predicate Calculus

• Quantifiers -- used to bind variables in propositions
– universal quantifier: ∀

∀x.p -- means “for all x, P is true”

– existential quantifier: ∃
∃x.p -- means “there exists a value of x such that P is true”

– Examples:
∀x.(woman(x) ⊃ human(x))
∃x.(mother(mary,x)) ∩ male (x))

• A canonical form for propositions -- clausal form
B1 ∪ B2 ∪ ... ∪ Bn ⊂ A1 ∩ A2 ... ∩ Am

– means: if all of the A’s are true, at least one of the B’s must be true
right side is the antecedent; left side is the consequent

– Examples:
likes(bob, mary) ⊂ likes(bob, redheads) ∩ redhead(mary)
father(louis, al) ∪ father(louis, violet) ⊂ father(al, bob) ∩ mother(violet, bob) ∩ grandfather(louis,bob)

– A proposition with zero or one terms in the antecedent is called a “Horn clause”. If
there are no terms [e.g., “man(jake)”], it’s called a “Headless Horn clause”. If there’s
one term, it’s a “Headed Horn clause”.

slide 5

Predicate Calculus

• Resolution -- the process of computing inferred propositions from
given propositions

– Example:
if we know:

older(joanne, jake) ⊂ mother(joanne, jake)

wiser(joanne, jake) ⊂ older(joanne, jake)

we can infer the proposition:

wiser(joanne, jake) ⊂ mother(joanne, jake)

– There are several logic rules that can be applied in resolution. In practice,
the process can be quite complex.

slide 6

Prolog -- Basic Concepts

• Prolog maintains a database of known information about its “world”. This
can be in two forms:

– Fact statements -- corresponding to tailless Horn clauses, e.g.,
female(shelley).

male(bill).

father(bill, shelley).

– Rule statements -- corresponding to Headed Horn clauses, e.g.,
ancestor(mary, shelley) :- mother(mary,shelley).

grandparent(x,z) :- parent(x,y), parent(y,z).

• Prolog programs then can specify theorems or propositions that it wants
proved or disproved, e.g.,

grandfather(bill, mary).

– System uses a theorem-proving model to see if this proposition can be inferred from
the database.

“yes” result means it is true (according to the database)

“no” result means either that it was proven false or that the system was simply unable to prove or
disprove it

slide 7

PROLOG PROGRAMS

• Declare FACTS about OBJECTS and their INTER-RELATIONSHIPS

• Define RULES (“CLAUSES”) that inter-relate objects

• Ask QUESTIONS about objects and their inter-relationships

slide 8

FACTS

• FACTS ARE TRUE RELATIONS ON OBJECTS

– Michael is Cathy’s father

– Chuck is Michael’s and Julie’s father

– David is Chuck’s father

– Sam is Melody’s father

– Cathy is Melody’s mother

– Hazel is Michael’s and Julie’s mother

– Melody is Sandy’s mother

• facts need not make sense

– The moon is made of green cheese

slide 9

PROLOG FACTS

| ?- (assert (father (michael, cathy))).

| ?- (assert (father (chuck, michael))).

| ?- (assert (father (chuck, julie))).

| ?- (assert (father (david, chuck))).

| ?- (assert (father (sam, melody))).

| ?- (assert (mother (cathy, melody))).

| ?- (assert (mother (hazel, michael))).

| ?- (assert (mother (hazel, julie))).

| ?- (assert (mother (melody, sandy))).

| ?- (assert (made_of (moon, green_cheese))).

slide 10

RULES

• A person’s parent is their mother or father

• A person’s grand father is the father of one of their parents

• A person’s grand mother is the mother one of their parents

| ?- (assert ((parent(X, Y) :- father(X, Y); mother (X, Y)))).

| ?- (assert ((gradnfather(X,Y) :- father(X, A), parent(A, Y)))).

| ?- (assert ((grandmother(X, Y) :- mother(X, A), parent(A, Y)))).

slide 11

QUESTIONS

Who is father of cathy ?

– father(X, cathy).

Who is chuck the father of ?

– father(chuck, X).

Is chuck the parent of julie ?

– parent(chuck, julie).

Who is the grandmother of sandy ?

– grandmother(X, sandy).

Who is the grandfather of whom ?

– grandfather(X, Y).

slide 12

PROLOG NOTES

• atoms: Symbolic values of PROLOG

– father (bill, mike)

• Strings of letters, digits, and underscores starting with lower case letter

• Variable: unbound entity

– father (X, mike)

• Strings of letters, digits, and underscores starting with UPPER CASE
letter

• Variables are not bound to type by declaration

slide 13

PROLOG NOTES

• FACTS: UNCONDITIONAL ASSERTION

– assumed to be true

– contains no variables
(assert (mother(carol, jim))).

– stored in database

• RULES: ASSERTION from which conclusions can be drawn if given
conditions are true

assert ((parent (X, Y) :- father(X,
Y); mother (X, Y)))).

– contains variables for instantiation

– Also stored in database

slide 14

PROLOG NOTES

• INSTANTIATION: binding of a variable to value (and thus, a type)

(assert (color (apple, red))).
FACTS

(assert (color (banana, yellow))).

color (X, yellow). } question (goal)

X = apple color (apple, yellow)

instantiation no matching pattern

X = banana color (banana, yellow)

yes

X = banana results in match of goal with database item

slide 15

PROLOG NOTES

• UNIFICATION: Process of finding instantiation of variable for which
“match” is found in database of facts and rules

slide 16

PROLOG NOTES

| ?- (assert(color(banana, yellow))).

| ?- (assert(color(squash, yellow))).

| ?- (assert(color(apple, green))).

| ?- (assert(color(peas, green))).
FACTS

| ?- (assert(fruit(banana))).

| ?- (assert(fruit(apple))).

| ?- (assert(vegetable(squash))).

| ?- (assert(vegetable(peas))).

bob eats green colored vegetables

RULE | ?- (assert(eats(bob, X) :- color(X, green), vegetable(X)))).
bob eats X if

X is green and
X is a veggie

slide 17

PROLOG NOTES

(assert ((eats(bob, X) :-
color(X, green),
vegetable(X)))).

Does bob eat apples ?
| ?- eats(bob, apple).

color(apple, green) => match
vegetable(apple) => no

What does bob eat ?
| ?- eats(bob, X).

color(banana, green) => no
color(squash, green) => no
color(apple, green) => yes

vegetable(apple) => no
color(peas, green) => yes

vegetable(peas) => yes
Therefore

eats(bob, peas) true

X = peas

slide 18

PROLOG NOTES

• DISJUNCTIVE RULES: X if Y or Z

(assert ((parent(X, Y) :- father(X, Y); mother(X, Y)))).

• CONJUNCTIVE RULES: X if Y AND Z

(assert((father(X, Y) :- parent(X, Y), male(X)))).

• NEGATION RULES: X if Not Y

(assert((good(X) :- not(bad(X))))).

(assert mother(X, Y) :- parent(X, Y), not(male(X))))).

slide 19

PROLOG NOTES

• PROLOG is more than “LOGIC”

– MATH

– LIST manipulation
See documentation & Prolog books

slide 20

CONSULT FILE FORMAT
[x]. Or consult(x).

File x.pl:

husband(tommy, claudia).

husband(mike, effie).

mother(claudia,sannon).

mother(effie, jamie).

father(X, Y) :- mother(W, Y), husband(X, W).

parent(X, Y) :- father(X, Y); mother(X, Y).

slide 21

INPUT REDIRECTION FILE

(assert(husband(tommy, claudia))).
(assert (husband(mike, effie))).
(assert(mohter(claudia, shannon))).
(assert(mother(effie, jamie))).
% Note: (1) no blank after assert - syntax requirement
% (2) extra set of paren around rule - establish
% precedence of “:-”
% (3) blank line before and after each “assert”ion
% to establish independence

(assert((father(X, Y) :- mother(W, Y), husband(X, W)))).
(assert((parent(X, Y) :- father(X, Y); mother(X, Y)))).
listing.
% queries
parent(L, shannon).
parent(M, shannon).

% Note: use “;” to ask if another solution exists
parent(M, jamie).
;

halt.

slide 22

OUTPUT FILE REDIRECTION

• Yes
• Yes
• Yes
• Yes
• X = _G480
• Y = _G481
• W = _G483
• Yes
• X = _G474
• Y = _G475
• Yes

• :- dynamic mother/2.
• mother(effie, jamie).
• mother(claudia, shannon).

:- dynamic husband/2.
husband(tommy, claudia).
husband(mike, effie).

:- dynamic parent/2.
parent(A, B) :-

(father(A, B)
; mother(A, B)
).

:- dynamic father/2.
father(A, B) :-

mother(C, B),
husband(A, C).

Yes
L = tommy
L = tommy
Yes
M = mike
M = effie
Yes

slide 23

PROLOG - Issues/Limitations

• “Closed World” -- the only truth is that known to the system

• Efficiency -- theorem proving can be extremely time consuming

• Resolution order control

– Prolog always starts with left side of a goal, and always searches database
from the top. Have some control by choice of order in the propositions and
by structuring database.

– Prolog uses backward chaining (start with goal and attempt to find
sequence of propositions that leads to facts in the database). In some
cases forward chaining (start with facts in the database and attempt to find
a sequence of propositions that leads to the goal) can be more efficient.

– Prolog always searches depth-first, though breadth-first can work better in
some cases.

• The Negation Problem -- failure to prove is not equivalent to a logical
not

– not(not(some_goal)) is not equivalent to some_goal

slide 24

“Agatha Christie” Problem

Who was the killer?

Alice, her husband, son, daughter, and brother are involved in
a murder. One of the five killed one of the other four.

1. A man and a woman were together in the at the bar time of
the murder.

2. The victim and the killer were together on the beach at the
time of the murder.

3. One of the children was alone at the time of the murder.
4. Alice and her husband were not together at the time of the

murder.
5. The victim's twin was innocent.
6. The killer was younger than the victim.

slide 25

Prolog Solution— Facts

person(husband).
person(son).
person(daughter).
person(brother).

child(son).
child(daughter).

male(husband).
male(son).
male(brother).

female(alice).
female(daughter).

twin(alice,brother).
twin(brother,alice).
twin(son,daughter).
twin(daughter,son).

slide 26

Solution — Rules

istwin(X) :- twin(X,_).

older(alice,son).
older(alice,daughter).
older(husband,son).
older(husband,daughter).

inbar(M,N) :- person(M),person(N),
male(M),female(N).

together(S,T) :- S=alice,T=husband.
together(S,T) :- T=alice,S=husband.

alone(P) :- person(P),child(P).

slide 27

Solution — Goal statement

killed(X,Y):-person(X), person(Y),

/*The victim's twin was innocent.*/

istwin(Y), not(twin(Y,X)),

/*The killer was younger than the
victim.*/

not(older(X,Y)),

/*Alice and her husband were not
together at the time of the
murder.*/

not(together(X,Y)), X\=Y,

/*A man and a woman were together in
the bar at the time of the murder.*/

inbar(A,B), A\=X, B\=X, A\=Y, B\=Y,

/*Alice and her husband were not
together at the time of the murder.*/

not(together(A,B)),

/*One of the children was alone at the
time of the murder.*/

alone(C), C\=A, C\=B, C\=X, C\=Y.

	Logic Programming Foundations: Prolog
	Logic Programming -- Mathematical Foundations: Predicate Calculus
	Logic Programming -- Basic Principles
	Predicate Calculus
	Predicate Calculus
	Prolog -- Basic Concepts
	PROLOG PROGRAMS
	FACTS
	PROLOG FACTS
	RULES
	QUESTIONS
	PROLOG NOTES
	PROLOG NOTES
	PROLOG NOTES
	PROLOG NOTES
	PROLOG NOTES
	PROLOG NOTES
	PROLOG NOTES
	PROLOG NOTES
	CONSULT FILE FORMAT�[x]. Or consult(x).
	INPUT REDIRECTION FILE
	OUTPUT FILE REDIRECTION
	PROLOG - Issues/Limitations
	“Agatha Christie” Problem
	Prolog Solution— Facts
	Solution — Rules
	Solution — Goal statement

