} Prolog — Input/Output

m The output to a goal statement (query) can be:
m The truth value of the resulting evaluation, or
m The set of values that cause the goal to be true (instantiation)

m read(X).

m write(Y).
read(X), Y is (X + 1), read(X), Y = (X + 1),
write(Y). write(Y).
3. 6.
4 6+1
X=3 X=6
Y=4; Y=6+1;
no no
W Chapter 15: Prolog Programming ® 19
} Prolog Programs

m Declare facts about objects and their inter-
relationships

m Define rules (“clauses”) that capture object inter-
relationships

m Ask questions (goals) about objects and their
inter-relationships

 Chapter 15: Prolog Programming 20

} Facts

m facts are true relations on objects
m Michael is Cathy’s father father(michael, cathy).
m Chuck is Michael’s and Julies father father(chuck, michael).
father(chuck, julie).

m David is Chuck’s father father(david, chuck).
m Sam is Melody’s father father(sam, melody).
m Cathy is Melody’s mother mother(cathy, melody).

m Hazel is Michael’s and Julie’s mother mother(hazel, michael).
mother(hazel, julie).
m Melody is Sandy’s mother mother(melody, sandy).
m facts need not make sense

m The moon is made of green cheese
made_of(moon, green_cheese).

W Chapter 15: Prolog Programming ® 21

} Rules

m A person’s parent is their mother or father

m A person’s grandfather is the father of one of their
parents

m A person’s grandmother is the mother one of their
parents

parent(X, Y) :- father(X, Y).
parent(X, Y) :- mother(X, Y).
[* could also be:
parent(X, Y) :- father(X, Y); mother(X, Y). */
grandfather(X, Y) :- father(X, A), parent(A, Y).

grandmother(X, Y) :- her(X, A), parent(A, Y).

W Chapter 15: Prolog Programming ® 22

} Goals: Questions or Queries

Who is father of cathy ?
m ?- father(X, cathy).

Who is chuck the father of ?
m ?- father(chuck, X).

Is chuck the parent of julie ?
m ?- parent(chuck, julie).

Who is the grandmother of sandy ?
m ?- grandmother(X, sandy).

Who is the grandfather of whom ?
m ?- grandfather(X, Y).

 Chapter 15: Prolog Programming 23

} Prolog Names Revisited

m atoms: Symbolic values
u father(bill, mike).

m Strings of letters, digits, and underscores starting
with lower case letter

m Variable: unbound entity
m father(X, mike).

m Strings of letters, digits, and underscores starting
with UPPER CASE letter

m Variables are not bound to a type by declaration

W Chapter 15: Prolog Programming ® 24

} Prolog Facts & Rules

m Facts: unconditional assertion

m assumed to be true

m contain no variables

mmother(carol, jim).

m stored in database

m Rules: assertion from which conclusions can be
drawn if given conditions are true:
parent(X, Y) :-father(X, Y); mother (X, Y).
m Contain variables for instantiation
m Also stored in database

W Chapter 15: Prolog Programming ® 25

} Prolog Instantiation

m Instantiation: binding of a variable to value (and thus, a
type):
color (apple, red).
FACTS <

color (banana, yellow).

?- color (X, yellow). } question (goal)
w color (apple, yellow)
instantiation no matching pattern
X = banana color (banana, yellow)
yes
m Chapter 15: Prolog Programming m 26
} Prolog Unification

m Unification: Process of finding instantiation of
variable for which “match” is found in database of
facts and rules

m Developed by Alan Robinson about 1965, but not
applied until the 1970s to logic programming

m The key to Prolog

W Chapter 15: Prolog Programming ® 27

} Prolog Example

color(banana, yellow).
color(squash, yellow).
color(apple, green).
color(peas, green).
FACTS
fruit(banana).
fruit(apple).
vegetable(squash).
vegetable(peas).

bob eats green colored vegetables
RULE < eats(bob, X) :- color(X, green), vegetable(X).

bob eats X if
Xisgreenand Xis a veggie

W Chapter 15: Prolog Programming ® 28

} Does Bob Eat Apples?

m Bob eats green vegetables:
eats(bob, X) :-
color(X, green),
vegetable(X).

m Does bob eat apples ?
?- eats(bob, apple).

color(apple, green) => match
vegetable(apple) => no

 Chapter 15: Prolog Programming 29

} What Does Bob Eat?

?- eats(bob, X).
color(banana, green) => no
color(squash, green) => no
color(apple, green) => yes
vegetable(apple) => no
color(peas, green) => yes
vegetable(peas) => yes

Therefore:
eats(bob, peas) true

X = peas

W Chapter 15: Prolog Programming ® 30

} Prolog And/Or/Not

= Conjunctive rules: X if Y and Z
father(X, Y) :- parent(X, Y),
male(X).
m Disjunctive rules: XifYorzZ
parent(X, Y) :- mother(X, Y).
parent(X, Y) :- mother(X, Y). [* or ¥/
parent(X, Y) :- father(X, Y); mother(X, Y).
m Negation rules: X if not Y
good(X) :- \+ bad(X).
mother(X, Y) :- parent(X, Y), \+ male(X).
m Use Parentheses for grouping

W Chapter 15: Prolog Programming ® 31

} “Older” Example

older(george, john).

older(alice, george).

older(john, mary).

older(X, Z) :- older(X, Y), older(Y, Z).

m Now when we ask a query that will result in TRUE, we get
the right answer:
?- older(george, mary).
yes

m But a query that is FALSE goes into an endless loop:
?- older(mary, john).

m Left recursion: the last element in older is the predicate
that is repeatedly tried

 Chapter 15: Prolog Programming 32

} Solving Left Recursion Problems

m Remove the older rule and replace with:

is_older(X, Y) :- older(X, Y).
is_older(X, Z) :- older(X, Y), is_older(Y, Z).

m Now:

?- is_older(mary, john).
no

W Chapter 15: Prolog Programming ® 33

} Don‘t Care!

m Variables can also begin with an underscore

m Any such variable is one whose actual value
doesn't matter: you “don't care” what it is, so you
didn't give it a real name

m Used for aguments or parameters whose
instantiated value is of no consequence

?- is_older(george, _).

m Succeeds, Indicating that there does exist an
argument which will cause the query to be true,
but the value is not returned

W Chapter 15: Prolog Programming ® 34

} Prolog Lists

m Lists are represented by [...]

m An explicit list [a,b,c], or [A,B,C]

m As in LISP, we can identify the head and tail of a
list through the use of the punctuation symbol *|”
(vertical bar) in a list pattern:

m[H|T]or [_|T]

m There are no explicit functions to select the head

or tail (such as CAR and CDR)

m Instead, lists are broken down by using patterns
as formal arguments to a predicate

m Chapter 15: Prolog Programming ® 35
} Sample List Functions
I ——

/*Membership*/
member(H, [H| _]).
member(H, [| T]) :- member(H, T).

/*Concatenation of two lists*/
concat([], L, L).
concat([H | T], L, [H| U]) :- concat(T, L, U).

/*Reverse a list*/

reverse([], [1).
reverse([H | T], L) :-reverse(T, R), concat(R, [H], L).

/*Equality of Lists*/

equal_lists([], [1).
equal_lists([H1 | T1], [H2 | T2]) :- H1 = H2, equal_lists(T1, T2).

W Chapter 15: Prolog Programming ® 36

} A Logic Puzzle

m Three children, Anne, Brian, and Mary, live on
the same street

m Their last names are Brown, Green, and White

m Oneis7,oneis9, andoneis 10.

m We know:
1. Miss Brown is three years older than Mary.
2. The child whose name is White is nine years
old.

m What are the children's ages?

W Chapter 15: Prolog Programming ® 37

} State the Facts

W [*--—- Facts -----*/
m child(anne).
m child(brian).
m child(mary).

m age(7).
m age(9).
m age(10).

m house(brown).
m house(green).
m house(white).

m female(anne).
m female(mary).
® male(brian). Chapter 15: Prolog Programming 38

} Define the Rules

clue1(Child, Age, House, Marys_Age) :-
House \= brown;
House = brown, female(Child),
Marys_Age =:= Age - 3.

clue2(_Child, Age, House) :-
House \= white ; Age = 9.

are_unique(A, B, C) :-
A\=B,A\=C,B\=C.

W Chapter 15: Prolog Programming ® 39

} Guess A Solution

guess_child(Child, Age, House) :-
child(Child), age(Age), house(House).

solution(Annes_Age, Annes_House,

Brians_Age, Brians_House,
Marys_Age, Marys_House) :-
/* Guess an answer */
guess_child(anne, Annes_Age, Annes_House),
guess_child(brian, Brians_Age, Brians_House),
guess_child(mary, Marys_Age, Marys_House),
are_unique(Annes_Age, Brians_Age, Marys_Age),
are_unique(Annes_House, Brians_House, Marys_House),

W Chapter 15: Prolog Programming ® 40

} Test It For Veracity

Solution(...) :- ...
/* filter against clue 1 */
cluel(anne, Annes_Age, Annes_House,
Marys_Age),
cluel(brian, Brians_Age, Brians_House,
Marys_Age),
cluel(mary, Marys_Age, Marys_House,
Marys_Age),

/* filter against clue 2 */

clue2(anne, Annes_Age, Annes_House),
clue2(brian, Brians_Age, Brians_House),
clue2(mary, Marys_Age, Marys_House).

m Chapter 15: Prolog Programming ® 41
} Prolog Issues
m Efficiency—theorem proving can be extremely time

consuming

m Resolution order control
m Processing is always top to bottom, left to right.
m Indirect control by your choice of ordering

m Uses backward chaining; sometimes forward chaining is
better

m Prolog always searches depth-first, though sometimes
breadth-first can work better

W Chapter 15: Prolog Programming ® 42

} Prolog Limitations

m “Closed World™—the only truth is that recorded in
the database

m Negation Problem—failure to prove is not

equivalent to logically false
m not(not(some_goal)) is not equivalent to some_goal

W Chapter 15: Prolog Programming ® 43

