} Common LISP

m A combination of many of the features of the popular
dialects of LISP around in the early 1980s
m A large and complex language--the opposite of Scheme
m Includes:
m records
m arrays
m complex numbers
m character strings
m powerful i/o capabilities
m packages with access control
m imperative features like those of Scheme
m jterative control statements

® Chapter 14: FP Foundations, Scheme ® 31

} Standard ML

m Statically scoped, with syntax closer to Pascal than LISP

m Uses type declarations, but also does type inferencing to
determine the types of undeclared variables (See Ch. 4)

m Strongly typed (whereas Scheme has latent typing), no
type coercions

m Includes exception handling and a module facility for
implementing ADTs

m Includes lists and list operations

m The val statement binds a name to a value (similar to
DEFINE in Scheme)

m Chapter 14: FP Foundations, Scheme m 32

} SML Function Declarations

fun function_name (formal_parameters) =
function_body_expression;,

fun cube (x : int) = x * x * x;

m List-based operations can be polymorphic, using type
inferencing

m Functions that use arithmetic or relational operators cannot
be polymorphic

® Chapter 14: FP Foundations, Scheme ® 33




} Haskell

m Similar to ML
msyntax, statically scoped, strongly typed, type
inferencing
m Different from ML (and most other functional
languages) in that it is purely functional
mno variables, no assignment statements, and no
side effects of any kind
m Most Important Features
mLazy evaluation (evaluate no subexpression
until the value is needed)
m“List comprehensions” allow it to deal with
infinite lists

® Chapter 14: FP Foundations, Scheme ® 34




