Arithmetic Expressions

In Text: Chapter 6

} Outline

m What is a type?
m Primitives

m Strings

m Ordinals

u Arrays

m Records

m Sets

m Pointers

m Chapter 6: Arithmetic Expressions 2

} Arithmetic Expressions

m Their evaluation was one of the motivations for the
development of the first programming languages

m Arithmetic expressions consist of operators, operands,
parentheses, and function calls

m Design issues for arithmetic expressions:

m What are the operator precedence rules?

m What are the operator associativity rules?

m What is the order of operand evaluation?

m Are there restrictions on operand evaluation side effects?

m Does the language allow user-defined operator
overloading?

m What mode mixing is allowed in expressions?

® Chapter 6: Arithmetic Expressions & 3

} Operators

= A unary operator has one operand
m A binary operator has two operands
m A ternary operator has three operands

m Operator precedence and operator associativity
are important considerations

® Chapter 6: Arithmetic Expressions & 4

} Operator Precedence

m The operator precedence rules for expression
evaluation define the order in which “adjacent” operators
of different precedence levels are evaluated (“adjacent”
means they are separated by at most one operand)

m Typical precedence levels
1. parentheses
2. unary operators
3. ** (if the language supports it)
4. %,/
5.4, -
m Can be overridden with parentheses

m Chapter 6: Arithmetic Expressions 5

} Operator Associativity

= The operator associativity rules for expression
evaluation define the order in which adjacent
operators with the same precedence level are
evaluated

m Typical associativity rules:
m Left to right, except **, which is right to left

m Sometimes unary operators associate right to left (e.g.,
FORTRAN)

m APL is different; all operators have equal
precedence and all operators associate right to left
m Can be overridden with parentheses

® Chapter 6: Arithmetic Expressions & 6

} Operand Evaluation Order

m The process:
1. Variables: just fetch the value

2. Constants: sometimes a fetch from memory;
sometimes the constant is in the machine language
instruction

3. Parenthesized expressions: evaluate all operands and
operators first

4. Function references: The case of most interest!
m Order of evaluation is crucial

® Chapter 6: Arithmetic Expressions & 7

} Side Effects

m Functional side effects - when a function changes
a two-way parameter or a non-local variable

m The problem with functional side effects:

m When a function referenced in an expression alters
another operand of the expression

m Example, for a parameter change:
a = 10;
b =a+ fun(&);

/* Assume that fun changes its
param */

m Chapter 6: Arithmetic Expressions 8

} Solutions for Side Effects

m Two Possible Solutions to the Problem:
1. Write the language definition to disallow
functional side effects

m No two-way parameters in functions

= No non-local references in functions

m Advantage: it works!

m Disadvantage: Programmers want the flexibility of two-
way parameters (what about C?) and non-local
references

2. Write the language definition to demand that
operand evaluation order be fixed

m Disadvantage: limits some compiler optimizations

® Chapter 6: Arithmetic Expressions & 9

} Conditional Expressions

m C, C++, and Java (?:)

average = (count == 0) ? 0 : sum /
count;
® Chapter 6: Arithmetic Expressions & 10
} Operator Overloading

®m Some is common (e.g., + for int and float)
m Some is potential trouble (e.g., * in Cand C++)

m Loss of compiler error detection (omission of an
operand should be a detectable error)

m Can be avoided by introduction of new symbols
(e.g., Pascal’s div)

= C++ and Ada allow user-defined overloaded
operators

m Potential problems:
m Users can define nonsense operations
m Readability may suffer

m Chapter 6: Arithmetic Expressions 11

} Implicit Type Conversions

= A narrowing conversion is one that converts an
object to a type that cannot include all of the
values of the original type

m A widening conversion is one in which an
object is converted to a type that can include at
least approximations to all of the values of the
original type

= A mixed-mode expression is one that has
operands of different types

m A coercion is an implicit type conversion

® Chapter 6: Arithmetic Expressions & 12

} Disadvantages of Coercions

m They decrease the type error detection ability of
the compiler

m In most languages, all numeric types are coerced
in expressions, using widening conversions

m In Modula-2 and Ada, there are virtually no
coercions in expressions

® Chapter 6: Arithmetic Expressions & 13

} Explicit Type Conversions
m Often called casts
m Ada example:
FLOAT(INDEX) -- INDEX is INTEGER
type
m C example:
(int) speed /* speed is float
type */
m Chapter 6: Arithmetic Expressions ® 14
} Errors in Expressions
m Caused by:

m Inherent limitations of arithmetic (e.g. division by zero)
m Limitations of computer arithmetic (e.g., overflow)
m Such errors are often ignored by the run-time
system

® Chapter 6: Arithmetic Expressions & 15

} Relational Expressions

m Use relational operators and operands of various
types
m Evaluate to some boolean representation

m Operator symbols used vary somewhat among
languages (!=, /=, .NE., <>, #)

® Chapter 6: Arithmetic Expressions & 16

} Boolean Expressions

m Operands are boolean and the result is boolean

® Operators: [EGRTRAN 77 | FORTRAN 90 | C | Ada
AND. and 8& | and

.OR. or Il or

NOT. not ! not

Xor

m C has no boolean type—it uses int, where 0 is false and
nonzero is true

m One odd characteristic of C's expressions: a < b < ¢ is
legal, but the result is not what you might expect

m Chapter 6: Arithmetic Expressions 17

} Precedence of All Operators

m Pascal: not, unary -
*, [, div, mod, and
+, -, 0r
relops

m Ada: **
*, [, mod, rem
unary -, not
+, -, &
relops
and, or, xor

m C, C++, and Java have > 50 operators and 17 different
precedence levels

® Chapter 6: Arithmetic Expressions & 18

} Short Circuit Evaluation

m Stop evaluating operands of logical operators once
result is known

m Pascal: does not use short-circuit evaluation
m Problem:
index := 1;
while (index <= length) and
(LIST[index] <> value) do
index := index + 1

® Chapter 6: Arithmetic Expressions & 19

} Short Circuit Evaluation (cont.)

m C, C++, and Java: use short-circuit evaluation for the
usual Boolean operators (&& and ||), but also provide
bitwise operators that are not short circuit (& and |)

m Ada: programmer can specify either (short-circuit is
specified with and then and or else)

m FORTRAN 77: short circuit, but any side-affected place
must be set to undefined

m Short-circuit evaluation exposes the potential
m problem of side effects in expressions
m CExample: (a > b) || (b++ / 3)

m Chapter 6: Arithmetic Expressions 20

} Assignment Statements

m The operator symbol:
m = FORTRAN, BASIC, PL/1, C, C++, Java
m .= ALGOLs, Pascal, Modula-2, Ada

m = can be bad if it is overloaded for the relational
operator for equality (e.g. in PL/I, A=B=C;)
m Note difference from C

® Chapter 6: Arithmetic Expressions & 21

} More Complicated Assignments

1. Multiple targets (PL/I)

mA, B=10

2. Conditional targets (C, C++, and Java)

m (first = true) ? total : subtotal = 0
3. Compound assignment operators (C, C++, and Java)
B sum += nhext;

4. Unary assignment operators (C, C++, and Java)

W a++;

m C, C++, and Java treat = as an arithmetic binary operator
ma=b* (c=d*2+1 +1

m This is inherited from ALGOL 68

® Chapter 6: Arithmetic Expressions & 22

} Assignment as an Expression

m In C, C++, and Java, the assignment statement
produces a result

m So, they can be used as operands in expressions

while ((ch = getchar() != EOF) { ... }
m Disadvantage: another kind of expression side
effect

m Chapter 6: Arithmetic Expressions 23

} Mixed-Mode Assignment

m In FORTRAN, C, and C++, any numeric value can
be assigned to any numeric scalar variable;
whatever conversion is necessary is done

m In Pascal, integers can be assigned to reals, but
reals cannot be assigned to integers (the
programmer must specify whether the conversion
from real to integer is truncated or rounded)

m In Java, only widening assignment coercions are
done

m In Ada, there is no assignment coercion

® Chapter 6: Arithmetic Expressions & 24

