Functional Programming

In Text: Chapter 14

Outline

m Functional programming (FP) basics

m A bit of LISP

m Mathematical functions, functional forms

m Scheme language overview

m Brief mention of Common LISP, ML, Haskell
m Common Applications

m Chapter 14: Functional Programming ® 2

The Basis for FP

m Imperative language design is based directly on
the von Neumann architecture

m Efficiency is often of primary concern, rather than
suitability for software development

m The design of functional languages is based on
mathematical functions:
m A solid theoretical basis
m Closer to the user
m Relatively unconcerned with the machine architecture

m Chapter 14: Functional Programming m 3




Fundamentals of FP Languages

m The objective: mimic mathematical functions to the
greatest extent possible

m The basic process of computation is fundamentally
different than in an imperative language
m In an imperative language:
m Operations are done, results are stored in variables for
later use
m Mgmt. of variables is a constant concern, source of
complexity
m In an FPL:

m Variables are not necessary, as is the case in
mathematics

m a function always produces the same result given the
same parameters (referential transparency)

m Chapter 14: Functional Programming m

A Bit of LISP

m The first functional programming language

m Originally a typeless language

m Only two data types: atom and list

m LISP lists are stored internally as single-linked lists
m Lambda notation is used to specify functions

m The first LISP interpreter intended to show
computational capabilities

m Chapter 14: Functional Programming ® 5

A Bit of Scheme

m A mid-1970s dialect of LISP, designed to be
cleaner, more modern, and simpler version than
the contemporary dialects of LISP

m Uses only static scoping
m Functions are first-class entities

m They can be the values of expressions and
elements of lists

m They can be assigned to variables and passed as
parameters

m Chapter 14: Functional Programming m 6




Program < Data

® Function definitions, function applications, and
data all have the same form

m Consider this S-expression:
(AB QO

m As data: it is a simple list of three atoms: A, B,
and C

m As a function application: it means that the
function named A is applied to the two
parameters, B and C

m It would be a function definition if the first
element were the atom “define” instead of “"A”

m Chapter 14: Functional Programming m

pplications of Functional Languages:

I ——
m APL is used for throw-away programs
m LISP is used for artificial intelligence
m Knowledge representation
m Machine learning
m Natural language processing
m Modeling of speech and vision
m Scheme is used to teach introductory

programming at a significant number of
universities

m Chapter 14: Functional Programming ®

Comparing Functional and Imperative

%
m Imperative Languages:

m Efficient execution

m Complex semantics

m Complex syntax

m Concurrency is programmer designed
m Functional Languages:

m Simple semantics

m Simple syntax

u Inefficient execution

m Programs can automatically be made concurrent

m Chapter 14: Functional Programming m




