Programming Languages
Lecture 3: Functional Languages

Benjamin J. Keller

Department of Computer Science
Virginia Tech
keller@cs.vt.edu

Lecture Outline

Motivation for FP

Commands vs. Expressions

History of Functional Languages

ML

Motivation

John Backus, 1978 Turing Award Lecture

Imperative programming languages too re-
strictive

Abstractions of von Neumann architecture

Antiquated way of thinking (from '50's)

Von Neumann Bottleneck

e Computer has
— CPU with accumulator and registers
— Memory
— Bus between memory and CPU (von Neu-
mann bottleneck)
e EXxecution of machine statement

— fetch — move instruction from memory
to CPU

— decode — break into parts

— execute — interpret

Example

e EXxecute instruction ADD 162
1. Fetch instruction from memory

2. Decode into operation (ADD) and address
(162)

3. Fetch contents from address 162
4. Add contents to accumulator

e Simple statements require many transfers
through bus

Imperative Languages

Program can be viewed as control state-
ments guiding execution of assignment state-
ments.

Assignments are accesses and stores to mem-
ory

Variable refers to memory location where
contents can change

Value of x+1 not same throughout program

Imperative Languages

e Order of execution important (hard to per-
form in parallel)

e Changing values makes reasoning about vari-
ables difficult

e Hard to reason about programs

Mathematical Perspective

Use of variables in mathematics

Variables are static

referential transparency — can replace an
expression anywhere that it occurs by its
value without changing result of program

Key idea: compute result once and then
reuse

Good for parallelism

Imperative languages not referentially trans-
parent (x+1)

Advantages of Functional

Programming

Referentially transparent — easier to rea-
son about, easer to parallelize

Order of execution need not be specified
— evaluate expressions when necessary

Higher-level — shorter, more understand-
able programs

Flexibility in combining old programs to
form new ones

“Lazy’” evaluation allows computing with
infinite data objects

Other Reasons for FP

e Useful in Al programming

e Useful in developing executable specifica-
tions and rapid prototyping

e Closely related to topics in theoretical CS
(recursive functions, denotational seman-

tics).

10

Commands/Imperative

Languages

Support for variables — represent memory
locations for storing updatable values

Assignment operation — computation de-
pends on changes to values stored in vari-
ables

Repetition — flow of control guided by
loops and conditional statements

11

Imperative Languages
Based on commands (statements)

Meaning of command is operation which
modifies the current contents of memory,
based on current contents of memory and
explicitly provided data

Results of one command communicated to
next command through changes to mem-
ory

Highly dependent upon computer architec-
ture

12

EXpressions

e Return a value, depending on state of com-
putation

e Examples
— Literals: 3, true, "a string", 42.323

— Aggregates: arrays, records, sets, lists,
. Ex. {1,3,5}

— Function calls: f(a,b), at+b*(c-d),
(if x>0 then sin else cos) ([[pill)

— Conditional expressions:
if x <> 0 then a/x else 1,
case (only in functional languages)

— Named constants and variables: pi, x

13

EXpressions

e Mathematical expressions better behaved
than commands

e Meaning of a (pure) expression is opera-
tion that returns a value based on current
contents of memory and explicit values

14

Referential Transparency

System is referentially transparent if in fixed
context the meaning of the whole system
can be determined by meaning of its parts.

Independent of surrounding expression

Once expression is evaluated in a particular
context its value in that context will not
change

Mathematical expressions referentially trans-
parent

Context: a=3,b=4,c=7, =2

Evaluating (2ax + b)(2axz + ¢) only requires
evaluating 2ax once

15

Ref. Trans. Examples

e Can determine meaning of £(g(x)) by know-
ing independent meaning of £, g and x

e If know that g’ is the same as g, then know
f(g(x)) is the same as f(g’ (x))

e Equivalences important for program trans-
formations used in optimization

16

Side Effects

Side effect — expression does more than
return value

Example £(x) returns a value but also in-
crements x by 1

LLose referential transparency if side effects
allowed

Can’'t count on £(x) + f(x) being the same
as 2xf (x)

Easier to prove a program correct if refer-
entially transparent

17

Imperative Languages and Ref.

Transparency

e L ose referential transparency with impera-
tive languages

e Consider x : x +y; y := 2 % x; and
y =2 % X; X ¢ X + Yy,
e Rationale:

— Each command changes underlying state
of computation

— Evaluation depends on state

— QOrdering critical

18

Issues with EXxpressions

e Order of evaluation

— EX. short-circuited evaluation of boolean
expressions

— if i >= 0 and A[i] <> 99 then .

— What if int A[100] and i = -17
e Side effects

e [reating expressions and commands iden-
tically (Algol 68, C)

— Artificial and loses referential transparency
—x=(y=x+1) +y + (x++)

— Compare 2x(x++) and (x++)+(x++)

19

Pure Functional Languages
Program is application of function to data
Pure expressions — no side effects

Expressions and functions are first class
(used as data)

No traditional notion of memory or assign-
ment

Promote reasoning about programs

Support parallel implementation

20

History of Functional

Languages

e [heoretical foundations:
— GOdel’s general recursive functions

— Use of lambda calculus by Church and
Kleene as model of computable func-
tions

— Church’s thesis
e LISP — John McCarthy (1958-60). Origi-
nally used for symbolic differentiation with

linked lists. Many dialects. Finally, Com-
mon LISP and Scheme.

21

History (cont)

Denotational semantics — meaning of pro-
grams as functions (1960's)

Backus' Turing award lecture, 1978. Lan-
guage called FP (now FL).

ML compiler, Robin Milner et al., 1977.
First standard 1986, second 1997.

Other languages SASL, KRC, Miranda (David
Turner), Haskell. Use lazy evaluation.

22

Schools of Functional

Languages

e LISP/Scheme
(dynamic typing, imperative)

e Strict (eager evaluation) — ML, Hope
(static typing, imperative, polymorphic func-
tions, type inference)

e Lazy (evaluation) — Miranda, Haskell
(static typing, polymorphic functions, type
inference)

23

