
Chapter 10, Slide 1

ABSTRACT DATA TYPES

Based on the fundamental concept of
ABSTRACTION:

process abstraction

data abstraction

Both provide:

information hiding

reliability

security

reuse



Chapter 10, Slide 2

ADT PROPERTIES

Defines a collection of objects, and

a Set of applicable operations

Representation of objects is hidden

Operations by outsiders is restricted to only those
operations that are visible



Chapter 10, Slide 3

COMMON FORMAT OF DESCRIPTION

SPECIFICATION

Defines type name and parameters

Names visible operations and results types

BODY

Describes syntax of type objects

Describes visible and hidden operations



Chapter 10, Slide 4

IMPLEMENTATIONS

SIMULA 67 - first to introduce classes,
retrospectively recognized to be ADTs

CLU - an experimental language that introduced
ADTs

Modula-2 - first generally accessible
implementations in a wdiely used language

Smalltalk - used ADTs as basis for objects

Ada - used ADTs in packages

C++ - added ADTs to C



Chapter 10, Slide 5

ENCAPSULATION and
INSTANTIATION

ENCAPSULATION

the syntax of the specification as a separate module

builds a “fire-wall” around the type

provides a reusable, portable object

the development of the idea of a type as an object

INSTANTIATION

the creation of an instance of the type

the operation of importing an ADT into another
program unit

may include initialization actions

scope may be limited to the lifetime of the user module
or may be specified



Chapter 10, Slide 6

Abstract Data Types -
details

Type representation and operations on that type are
defined together.

Representation is hidden from user of the type --
objects of type t can only be manipulated by
operations defined for t.

Advantages of user-defined ADTs

encapsulation

protection

extensibility

We’ll look at three languages:

Simula 67

Ada

Modula-2



Chapter 10, Slide 7

Simula 67:  Classes

  

A class consists of:

variable declarations

procedure declarations

code (for initialization)

If C is a class with variables x1...xn and procedures
p1...pk,  an instance of C is a dynamically created
object, say r.

ref (C) r;

...

r :- new C;

...

. . .r.xi . . .

. . .r. pj (y1 . . . ym ). . .



Chapter 10, Slide 8

Stack Example

initialization code

class stack;

begin

integer array a(1 . . 100);

integer top;

boolean procedure empty;

...

end;

procedure push (element);

...

end;

procedure pop;

...

end;

procedure look;

...

end;

top := 0;

end stack;



Chapter 10, Slide 9

Using the Stack Class

allowed, but
unsafe.

ref (stack) s1,s2;

. . .

s1 :- new stack;

s2 :- new stack;

s1.pop;         -- error

s1.push(5);

. . .

s1.look;          -- 5

. . .

s2.look ;         -- error

. . .

But no protection!

s2.a(4) := 1000;

s1.top := 0;



Chapter 10, Slide 10

Inheritance in Simula

If x is a subclass of y, then instances of x have all of
x's attributes plus all of y's attributes.

x inherits the attributes of y.

Example:  defining a heterogeneous stack

class stack_mem

begin ref(stack_mem) next_mem

next_mem :- none

end stack_mem;



Chapter 10, Slide 11

Example Continued: Define stack 

class stack;

begin

ref (stack_mem) first;

ref (stack_mem) procedure top

top :- first;

procedure pop;

if not(empty) then

first :- first.next_mem;

boolean procedure empty;

empty :- (first = = none);

procedure push(e);

ref(stack_mem) e;

begin

if first =/= none then

e.next_mem :- first;

first :- e;

end

first :- none;

end stack;



Chapter 10, Slide 12

Example Continued: Stackable Objects

Stackable objects must be instances of a subclass
of stack_mem:

stack_mem class complex(. . .)   -- declare complex as 
subclass of stack_mem

...

end complex

Another example:

class mammal;

mammal class dog;

mammal class cat;

dog class golden_retriever;



Chapter 10, Slide 13

Packages in Ada

Two parts:

specification:  provides interface, defines visibility.

body:  provides implementation

Important:

Support separate compilation so that if package p1
uses package p2, p1 can be compiled given only the
specification part of p2.



Chapter 10, Slide 14

Package Example

package stack is -- the specification

type stacktype;

function empty (s: in stacktype)

return boolean;

procedure push (e: in integer;

s: in out stacktype);

procedure pop (s: in out stacktype);

function top(s: in stacktype)

return integer;

end stack;

package body stack is -- the body

type stacktype is . . .

function empty (. . .) is . . .

...



Chapter 10, Slide 15

Package example (continued)

Does our separate compilation rule hold:

No!

Definition for stacktype must be in the interface too.

Problem:  We didn't want stacktype's definition to be
exported.

Solution:  Divide the specification into a public part
and a private part.



Chapter 10, Slide 16

New Specification for stack

package stack is -- the visible part

type stacktype is private;

function empty(. . .) . . .

procedure push . . .

...

private -- the private part

type list_type is array (1. .100) of int;

type stacktype is

record

list : list_type;

top : integer range 0. .100 := 0

end record;

end stack;



Chapter 10, Slide 17

Using Packages

with stack;

procedure p is

s : stack.stacktype;

begin

. ..

stack.push(4,s);

...stack.top(s)...;

...

end

OR...

with  stack; use stack;

procedure p is

s : stacktype;

begin

...

push(4,s);

...top(s)...;

...

end



Chapter 10, Slide 18

Ada Generic -- Abstract Package

generic
    -- A private generic type means assignment and equality must be
    -- defined on that type

type Elem is private ;
package List is
    type T is private ;
    -- Create operation is implicit. Lists created by declaration
    procedure Head  (L: T ; V: out Elem ; Err: out ERROR_INDICATOR) ;
    -- Length can’t fail so no need for error indicator
    function Length (L: T) return NATURAL ;
    procedure Tail (L: T ; LT: out T; Err: out ERROR_INDICATOR ) ;
    -- Cons can’t fail so no need for error indicator
    function Cons (L: T ; V: Elem ) return T ;
private
    -- an Ada access type corresponds to a Pascal pointer
    -- the entity referenced by the pointer is defined in the package body
    -- In this case, it would be a record with one field pointing to the next
    -- list element
    type LISTREC ;
    type T is access LISTREC ;
end List ;



Chapter 10, Slide 19

Modules in Modula-2

Very similar to Ada packages, but only pointer types
can be exported.

Definition module stack; -- public

type stacktype;

procedure empty . . .

...

end stack;

Implementation module stack; -- private

type stacktype = pointer to record

list : . . .

topsub: . . .



Chapter 10, Slide 20

Modula-2 Modules (continued)

What are the repercussions of this design decision?

separate compilation is easy (+)

module must supply a creation/initialization routine (-)

extra use of pointers (-)


