
CS3214 Spring 2021 Project 1 - “Customizable Shell”

Due Date: See website for due date (Late days may be used.)

This project must be done in groups of 2 students. Use Discourse, Discord, and/or the
grouper app to find a partner (URL).

1 Introduction

This assignment introduces you to the principles of process management and job control
in a Unix-like operating system. In this project, you will develop a simple job control
shell.

This is an open-ended assignment. In addition to implementing the required functional-
ity, we encourage you to define the scope of this project yourself.

2 Base Functionality

A shell receives line-by-line input from a terminal. If the user inputs a built-in command,
the shell will execute this command. Otherwise, the shell will interpret the input as the
name of a program to be executed, along with arguments to be passed to it. In this case,
the shell will fork a new child process and execute the program in the context of the
child. Normally, the shell will wait for a command to complete before reading the next
command from the user. However, if the user appends an ampersand ‘&’ to a command,
the command is started and the shell will return to the prompt immediately. In this case,
we refer to the running command as a “background job,” whereas commands the shell
waits for before processing new input are called “foreground jobs.”

The shell provides job control. A user may interrupt foreground jobs, send foreground
jobs into the background, and vice versa. Thus at a given point in time, a shell may run
zero or more background jobs and zero or one foreground jobs. If there is a foreground
job, the shell waits for it to complete before printing another prompt and reading the
next command. In addition, the shell informs the user about status changes of the jobs
it manages. For instance, jobs may exit, or terminate due to a signal, or be stopped for
several reasons.

At a minimum, we expect that your shell has the ability to start foreground and back-
ground jobs and implements the built-in commands ‘jobs,’ ‘fg,’ ‘bg,’ ‘kill,’ ’exit,’ and
‘stop.’ The semantics of these commands should match the semantics of the same-named
commands in bash. The ability to correctly respond to ˆC (SIGINT) and ˆZ (SIGTSTP)
is expected, as are informative messages about the status of the children managed. Like
bash, you should use consecutively numbered small integers to enumerate your jobs.

For the minimum functionality, the shell need not support pipes (|), I/O redirection
(< > >>), nor the ability to run programs that require exclusive access to the terminal
(e.g., vim).

Created by G. Back (gback@cs.vt.edu) 1 February 3, 2021

https://courses.cs.vt.edu/cs3214/spring2021/#!/grouper

CS3214 Spring 2021 Project 1 - “Customizable Shell”

We expect most students to implement pipes, I/O redirection, and managing the control-
ling terminal to ensure that jobs that require exclusive access to the terminal obtain such
access (see Section 3.3). Beyond that, cush’s customizability, described in Section 5 should
allow for plenty of creative freedom.

3 Strategy

You will need to use fork(), a variant of exec*(), and the waitpid() system calls.

3.1 Handling SIGCHLD To Process Status Changes

At a given point in time, a user may have multiple jobs running, each executing arbitrary
programs chosen by the user. Because the shell cannot and does not know what these
programs do, it has to rely on a notification facility from the OS to be informed when
these jobs encounter events the shell needs to know about. We refer to such events as
“changing status,” where “status” means whether the job is running, has been stopped,
has exited, or has been terminated with a signal (for instance, crashed).

This notification facility involves a protocol in which the OS kernel sends an asynchronous
signal (SIGCHLD) to the shell, and in which the shell then follows up by executing a sys-
tem call (a variant of wait(), specifically waitpid(), as shown in the provided starter
code).1 2

Thus, you will need to catch the SIGCHLD signal to learn about when the shell’s child
processes change status. Since child processes execute concurrently with respect to the
parent shell, and since the shell has no knowledge of what these processes are doing,
it is impossible to predict when a child will exit (or terminate with a signal), and thus
it is impossible to predict when this signal will arrive. In the worst case, a child may
have terminated by the time the parent returns from fork()! You also should not make
any assumptions about how a child process might change state: for instance, even if the
user issues a kill built-in command to terminate a process, the processes might not
immediately terminate (or may not terminate at all), so the shell should not assume that
a status change occurred unless and until it has first-hand information from the OS that
it did.

Because of the asynchronous nature of signal delivery, you will need to block handling
of the signal in those sections of your code where you access data structures that are also
needed by the handler that is executed when this signal arrives. For example, consider
the data structure used to maintain the current set of jobs. A new job is added after a

1 Such protocols are widely used in systems programming - for instance, an operating system kernel
interacts with devices in a very similar way through interrupts.

2 So far, we have equated jobs and child processes in our discussion. It turns out, however, that jobs may
include multiple child processes, which is discussed in Section 3.2

Created by G. Back (gback@cs.vt.edu) 2 February 3, 2021

CS3214 Spring 2021 Project 1 - “Customizable Shell”

child process has been forked; a job may need to be removed when SIGCHLD is received.
To avoid a situation where the job has not yet been added when SIGCHLD arrives, or -
worse - a situation in which SIGCHLD arrives while the shell is adding the job, the parent
should block SIGCHLD until after it completed adding the job to the list. If the SIGCHLD
signal is delivered to the shell while the shell blocks this signal, it is marked pending and
will be received as soon as the shell unblocks this signal.

Use the provided helper functions in signal support.c to block and unblock sig-
nals, which in turn rely on sigprocmask(2). To set up signal handlers, they use the
sigaction(2) system call with sa flags set to SA RESTART. The mask of blocked
signals is inherited when fork() is called. Consequently, the child will need to unblock
any signals the parent had blocked before calling fork().

3.2 Process Groups

User jobs may involve multiple processes. For instance, the command line input ls |
grep filename requires that the shell start two processes, one to execute the ls and
the other to execute the grep command. To help manage this scenario, Unix introduced
a way to group processes that makes it simpler for the shell and for the user to address
them as one unit.

Each process in Unix is part of a group. Process groups are treated as an ensemble for the
purpose of signal delivery and when waiting for processes. Specifically, the kill(2),
killpg(2), and waitpid(2) system calls support the naming of process groups as
possible targets3. In this way, if a user wants to terminate a job, it is possible for the shell
to send a termination signal to a process group that contains all processes that are part
of this job. To facilitate this mechanism the shell must arrange for process groups to be
created and for processes to be assigned to these groups.

Each process group has a designated leader, which is one of the processes in the group.
To create a new group with itself as the leader, a process simply calls setpgid(0, 0). The
process group id of a process group is equal to the process id of the leader. Child processes
inherit the process group of their parent process initially. They can then form their own
group if desired, or their parent process can place them into a different process group via
setpgid(). The shell must create a new process group for each job and make sure that all
processes that will be created for this job become members of this group.

In addition to signals and waitpid, process groups are used to manage access to the ter-
minal, as described next.

3Note the idiosynchracies of the API: kill(-pid, sig) does the same as killpg(pid, sig). Make sure to use
the correct call.

Created by G. Back (gback@cs.vt.edu) 3 February 3, 2021

CS3214 Spring 2021 Project 1 - “Customizable Shell”

3.3 Managing Access To The Terminal

Running multiple processes on the same terminal creates a sharing issue: if multiple pro-
cesses attempt to read from the terminal, which process should receive the input? Sim-
ilarly, some programs - such as vi - output to the terminal in a way that does not allow
them to share the terminal with others. 4

To solve this problem, Unix introduced the concept of a foreground process group. Each
terminal maintains such a group. If a process in a process group that is not the foreground
process group attempts to perform an operation that would require exclusive access to a
terminal, it is sent a signal: SIGTTOU or SIGTTIN, depending on whether the use was for
output or input. The default action taken in response to these signals is to suspend the
process. If that happens, the process’s parent (i.e., your shell) can learn about this status
change by calling waitpid(). WIFSTOPPED(status) will be true in this case. To allow
this process to continue, its process group must be made the foreground process group
of the controlling terminal via a call to tcsetpgrp(), and then the process must be sent
a SIGCONT signal. The shell will typically take this action in response to a ’fg’ command
issued by the user.

Signals that are sent as a result of user input, such as SIGINT or SIGTSTP, are also sent
to a terminal’s foreground process group. Note that this sending of signals occurs auto-
matically by the operating system, it is not an action the shell takes. Delivering this signal
to an entire process group makes it so that when a user hits ctrl-c to terminate a job such
as ls | grep filename both the process running ls and the process running grep
will receive the SIGINT signal, informing them of the user’s desire to terminate them. To
ensure that such signals are delivered to the correct process group, the shell must arrange
for these process groups to exist and be populated with the correct processes, and it must
inform the OS which process group the user intends to run in the foreground at a given
point in time.

3.4 Managing The Terminal’s State

Many years ago, most Unix terminals were actual devices that had a console and a key-
board and that were connected to the main computer with some kind of serial interface
such as RS-232. To control those devices, the OS device drivers would need to control a
set of input and output flags collectively known as the terminal state. In modern systems,
the most commonly used terminal type is a pseudo-terminal (pty) connected to an ssh
network connection, yet this model still exists. You can type stty -a to see what those
flags are, though you probably won’t care about their details.

Some processes change the state of the terminal in a certain way. For instance, vim puts
the terminal in so-called “raw” mode where it receives keystrokes as they are typed (as
opposed to “cooked” which requires the user to end a line with the enter key before it

4Note that regular output via write(2) does not require exclusive access, unless the terminal’s ’tostop’
flag is set. The terminal will simply interleave such output.

Created by G. Back (gback@cs.vt.edu) 4 February 3, 2021

CS3214 Spring 2021 Project 1 - “Customizable Shell”

is received by a program). So does bash and in fact, your shell, which uses the readline
library, does this too while reading user input.

This raises a management issue when the user switches between the shell’s command line
and foreground process jobs. For instance, a user may start vim, then use ctrl-z to stop it,
run some other job in the foreground, then stop it, resume vim, exit vim, and resume the
second job.

In this case, it is necessary to restore the terminal state whenever the vim process is re-
sumed to what it was before vim was stopped. Interestingly, it is possible for a process to
perform such restoration itself (in fact, vim does this by handling the SIGCONT signal).

However, if the shell performed such saving and restoration transparently, then any pro-
gram that manipulates its terminal state could be run under a job control regime. Specif-
ically, your shell should save the state of the terminal when a job process is suspended
and restore it when the job is continued in the foreground by the user.5

When the shell returns to the prompt, it must make itself the foreground process group of
the terminal. In this case, it should also restore a known good terminal state. Your shell
should sample this known good terminal state when it starts. You may find the functions
provided in termstate management.c useful, which already handle most of the logic.

This known good state is also the state that the terminal will be in if a new job is started
by the user. Therefore, programs that are agnostic with respect to the state of the terminal
will continue to work. However, if the shell always restored the same good terminal state
it sampled when the shell itself was started, then the stty command would not work
- while it could change the terminal state, any such changes would be undone once the
shell learns that the stty command has exited and returns to the prompt. To avoid that,
shells sample the terminal state when a job has exited and replace their known good state
with the sampled state. Your shell should do the same.

3.5 Pipes and I/O Redirection

A pipeline of commands is considered one job. All processes that form part of a pipeline
should thus be part of the same process group, as already discussed in Section 3.3. Note
that all processes that are part of a pipeline are children of the shell, e.g., if a user runs
a | b then the process executing b is not a child process of the process executing the
program a.

To implement the pipes itself, use the pipe(2) system call. A pipe must be set up by the
parent shell process before a child is forked. Forking a child will inherit the file descriptors
that are part of the pipe. The child must then redirect its standard file descriptors to the
pipe’s input or output end as needed using the dup2(2) system call. If the user used the

5 This is a recommendation (not a requirement though) spelled out in the POSIX standard. Unfortu-
nately, only the Korn shell (ksh) actually does that in practice, other widely used shells (bash, zsh, dash) do
not. Under those shells, job-control unaware programs would fail.

Created by G. Back (gback@cs.vt.edu) 5 February 3, 2021

CS3214 Spring 2021 Project 1 - “Customizable Shell”

|& instead of the | symbol, both standard output and standard error should be redirected
to the pipe.

Although the parent shell process creates pipes for each pair of communicating children
before they are forked, it will not itself write to the pipes or read from the pipes it creates.
Therefore, you must make sure that the parent shell process closes the file descriptors
referring to the pipe’s ends after each child was forked. This is necessary for two reasons:
first, in order to avoid leaking file descriptors. Second, to ensure the proper behavior of
programs such as /bin/cat if the user asks the shell to execute them. To see why, we
must first discuss what happens to file descriptors on fork(), close(), and exit().

Each file descriptor represents a reference to an underlying kernel object. fork() makes
a shallow copy of these descriptors. After fork(), both the child and the parent process
have access to any object the parent process may have created (i.e., open files or other
kernel objects). Closing a file descriptor in the (parent) shell process affects only the cur-
rent process’s access to the underlying object. Hence when the parent shell closes the file
descriptor referring to the pipe it created, the child processes will still be able to access
the pipe’s ends, allowing it to communicate with the other commands in the pipeline.

The actual object (such as a pipe or file) is closed only when the last process that has an
open file descriptor referring to the object closes that file descriptor. If you fail to close the
pipe’s file descriptors in the parent process (your shell), you compromise the correct func-
tioning of programs that rely on taking action when their standard input stream signals
the end of file condition. For instance, the /bin/cat program will exit if its standard in-
put stream reaches EOF, which in the case of a pipe happened iff all descriptors pointing
to the pipe’s output end are closed. So if cat’s standard input stream is connected to a
pipe for which the shell still has an open file descriptor, cat will never “see” EOF for its
standard input stream and appear stuck.

Lastly, note that when a process exits for whatever reason, including a signal, all file de-
scriptors it had open are closed by the kernel as if the process had called close() before
exiting. This means that you do not need to worry about making sure that file descriptors
you open for the shell’s child processes are closed after these child processes exit. How-
ever, since the shell is a long running program that does not exit between user commands,
the shell must close its copies of these file descriptors to avoid above-mentioned leakage.
If it did not, it would eventually run out of file descriptors because the OS imposes a
per-process limit on their number.

Although the processes that are part of pipeline typically interact with each other through
the pipe that connects their standard streams, they are still independent processes. This
means they can exit, or terminate abnormally, independently and separately. When your
shell calls waitpid() to learn about these processes’ status changes, it will learn about
each one separately. You will need to map the information you learn about one process
to the job to which it belongs, using a suitable data structure you define in your shell.

Additional information can be found in the GNU C library manual, available at http://
www.gnu.org/s/libc/manual/html_node/index.html. Read, in particular, the
sections on Signal Handling and Job Control.

Created by G. Back (gback@cs.vt.edu) 6 February 3, 2021

http://www.gnu.org/s/libc/manual/html_node/index.html
http://www.gnu.org/s/libc/manual/html_node/index.html
http://www.gnu.org/s/libc/manual/html_node/Signal-Handling.html#Signal-Handling
http://www.gnu.org/s/libc/manual/html_node/Job-Control.html#Job-Control

CS3214 Spring 2021 Project 1 - “Customizable Shell”

4 Use of Git

You will use Git for managing your source code. Git is a distributed version control
system in which every working directory contains a full repository, and thus the system
can be used independently of a (centralized) repository server. Developers can commit
changes to their local repository. However, in order to share their code with others, they
must then push those commits to a remote repository. Your remote repository will be
hosted on git.cs.vt.edu, which provides a facility to share this repository among
group members. For further information on git in general you may browse the official
Git documentation: http://git-scm.com/documentation, but feel free to ask ques-
tions on the forum as well! The use of git (or any distributed source code control system)
may be new to a fair number of students, but it is a prerequisite skill for most program-
ming related internships or jobs.

You will use a departmental instance of Gitlab for this class. You can access the instance
with your SLO credentials at https://git.cs.vt.edu/.

The provided base code for the project is available on Gitlab at https://git.cs.vt.edu/cs3214-
staff/cs3214-cush,

One team member should fork this repository by viewing this page and clicking the fork
link. This will create a new repository for you with a copy of the contents. From there
you must view your repository settings, and set the visibility level to private. On the
settings page you may also invite your other team member to the project so that they can
view and contribute.

Group members may then make a local copy of the repository by issuing a git clone
<repository> command. The repository reference can be found on the project page
such as git@git.cs.vt.edu:teammemberwhoclonedit/cs3214-cush.git To clone
over SSH (which you may need to do on rlogin), you will have to add an SSH public key
to your profile by visiting https://git.cs.vt.edu/profile/keys. This key is sep-
arate from the key you added to your /.ssh/authorized keys file.

If updates or bug fixes to this code are required, they will be announced on the forum.
You will be required to use version control for this project.

4.1 Code Base

The code contains a command line parser that implements the following grammar:

cmd_line : cmd_list

cmd_list :
| pipeline
| cmd_list ’;’
| cmd_list ’&’
| cmd_list ’;’ pipeline

Created by G. Back (gback@cs.vt.edu) 7 February 3, 2021

http://git-scm.com/
git.cs.vt.edu
http://git-scm.com/documentation
https://about.gitlab.com/
https://git.cs.vt.edu/
https://git.cs.vt.edu/cs3214-staff/cs3214-cush
https://git.cs.vt.edu/cs3214-staff/cs3214-cush
https://git.cs.vt.edu/profile/keys

CS3214 Spring 2021 Project 1 - “Customizable Shell”

| cmd_list ’&’ pipeline

pipeline : command
| pipeline ’|’ command
| pipeline ’|&’ command

command : WORD
| input
| output
| command WORD
| command input
| command output

input : ’<’ WORD

output : ’>’ WORD
| ’>>’ WORD
| ’>&’ WORD

Look at the provided cush.c main function to see how to invoke the parser. If a command
line is semantically correct, the parser code will create a ast command line data struc-
ture, which refers to a list of ast pipeline structures. Each ast pipeline is used
to create a job. It may consist of one or more individual commands that form a pipeline.
Each command is represented as a ast command structure. Study the definitions of these
structures.

By default, the provided code will read a line, parse it, and dump the parsed command
line to stdout.

The files signal support.c and termstate management.c contain a number of util-
ity functions for dealing with signals and managing the terminal state, which do most of
the heavy lifting for you. We strongly recommend you use these functions rather than
directly calling the functions described in the textbook.

5 Builtins

The basic builtins our tests expect include kill, fg, bg, jobs, stop, exit.

In addition, you should implement at least 2 builtin commands or a functionality exten-
sion, a simple one and a more complex one. Ideas for simple builtins include:

• A custom prompt (e.g. outputting hostname and current directory)

• Setting and unsetting environment variables

• Other simple commands

Ideas for “more complex” builtins include

Created by G. Back (gback@cs.vt.edu) 8 February 3, 2021

CS3214 Spring 2021 Project 1 - “Customizable Shell”

• A user-customizable prompt (e.g. like bash’s PS1)

• Support for a command line history similar to bash’s, including navigation with
cursor keys.

• Glob expansion (e.g., *.c)

• Support for aliases

• Shell variables

• Timing commands: ”time” or time-outs.

• A directory stack maintained via pushd, popd, etc.

• Command-line history (perhaps using’s GNU History library)

• Backquote substitution

• Smart command-line completion, i.e., help with mistyped commands

• Embedding applications: scripting languages, web servers, etc.

Generally, we expect for more complex builtins to add significant value for the user.

A side-note on Unix philosophy - in general, Unix implements functionality using many
small programs and utilities. As such, built-in commands are often only those that must
be implemented within the shell, such as cd. In addition, essential commands such as
’kill’ are often built-in to make sure an operator can execute those commands even if no
new processes can be forked. Your builtins should generally stay with this philosophy
and implement only functionality that is not already available using Unix commands or
that would be better implemented using separate programs. If in doubt, ask.

6 Testing

We will provide a test driver to test your project, and tests for the basic and advanced
functionality. The tests are part of the repository, which may be updated once before the
deadline.

The basic and advanced tests are also in the Gitlab repository that you forked to start the
project. If updates to the tests come out you will have to pull from the remote repository
to update your local copy.

Note: you are required to add tests for the builtin commands you add, using the example.

Created by G. Back (gback@cs.vt.edu) 9 February 3, 2021

CS3214 Spring 2021 Project 1 - “Customizable Shell”

7 Grading

Rubrics. This project will account for 140 points. 50 points will be assigned for passing
the base tests. 50 points for advanced tests, and up to 20 additional points can be earned
through builtins.

10 points are awarded for correct use of version control, and 10 points for documenta-
tion. In addition, deductions may be taken for deficiencies in coding style and lack of
robustness.

Coding Style. Your coding style should match the style of the provided code. You
should follow proper coding conventions with respect to documentation, naming, and
scoping.

You must check the return values of all system calls and library functions, with the sole
exception of malloc(3). (Production code would need to check for those as well; this is a
simplification for this project.) This includes calls such as kill(2) and close(2).

You may not use unsafe string functions such as strcpy() or strcat(), see the website
for a complete list.

Submission. You must submit a design document, README.txt, as an UTF-8 document
using the following format to describe your implementation:

Student Information

<Student 1 Information>
<Student 2 Information>

How to execute the shell

<describe how to execute from the command line>

Important Notes

<Any important notes about your system>

Description of Base Functionality

<describe your IMPLEMENTATION of the following commands:
jobs, fg, bg, kill, stop, \ˆC, \ˆZ >

Description of Extended Functionality

Created by G. Back (gback@cs.vt.edu) 10 February 3, 2021

CS3214 Spring 2021 Project 1 - “Customizable Shell”

<describe your IMPLEMENTATION of the following functionality:
I/O, Pipes, Exclusive Access >

List of Additional Builtins Implemented

(Written by Your Team)
<builtin name>
<description>

The TA will assign credit only for the functionality for which test cases and documentation exist.

You must submit a .tar.gz file of your ’src’ directory, which contains a Makefile. Please
use the submit.pl script or web page and submit as ’p1’. Only one group member may
submit. You need to run ’make clean’ on your directory before you create your tarball.
Make sure to also delete all temporary folders and files (i.e. clean your submission to
pertinent files).

Good Luck!

Created by G. Back (gback@cs.vt.edu) 11 February 3, 2021

	Introduction
	Base Functionality
	Strategy
	Handling SIGCHLD To Process Status Changes
	Process Groups
	Managing Access To The Terminal
	Managing The Terminal's State
	Pipes and I/O Redirection

	Use of Git
	Code Base

	Builtins
	Testing
	Grading

