
CS3214 Spring 2015 Project 2 - “A Fork-Join Framework”

Due: Wednesday, March 25, 2015. 11:59pm.(Late days may be used.)

What to submit: Upload a tar ball using the p2 identifier that includes the following
files:
- id.txt with SLO IDs in the format described for Project 1.
- threadpool.c with your code.
- threadpool.pdf with your project description. Use a suitable word processing pro-
gram to produce the PDF file.
We will be using the provided fjdriver.py file to test your code.

We will use the machines of the rlogin cluster for testing and benchmarking, so make sure
your code runs there.

1 Background

In 2001, Intel VP Patrick Gelsinger [3] warned in a now famous keynote given at the
ISSCC 2001 conference that if processor power consumption trends for the Intel x86 line
of processors continued at their then-existing trajectory, chip surface temperatures would
reach the power density of a nuclear reactor by 2005, a rocket nozzle by 2010, and the
surface of the sun by 2015. The answer was soon found in the move from single core to
multiple core chips, opening the multicore era. Analysts soon projected that the number
of cores per chips would soon double at a pace akin to Moore’s law.

That change needed to be accompanied by a complete rethinking of how to write soft-
ware. Researchers at Berkeley called the switch to parallel microprocessors nothing less
than a “milestone” in the history of computing [1], and called for new human-centric
programming models that make it easy to write scalable programs for the emerging mul-
ticore systems.

Fast forward 13 years to present day. The guardians of C++, after much deliberations,
finally introduced support for multithreading in their language through the use of a
std::async function1. The reference documentation on cppreference.com provides the
example shown in Figure 1.

This toy example sums up the elements of a vector (all initialized to be 1) using a recur-
sive divide-and-conquer approach. At each level of recursion, the array is subdivided
into two equal parts, one of which is passed to std::async to be executed in a sepa-
rate thread, the other part is recursively performed by the calling thread. std::async
returns a handle of type std::future, which represents a reference to the result of a
computation that is executed asynchronously. When the result is needed, a thread may
invoke the get() method. get() will return the result, arranging for — or waiting for
— its computation if necessary.

Compiling and running this program under g++ 4.7.22 one obtains the following output:
1You will not need to learn C++ for this project, I am just using it as a motivating example
2What about clang, George may ask. clang 3.4, which is the default clang on my brand new Ubuntu

Created by G. Back (gback@cs.vt.edu) 1 Revision : 1.1 January 31, 2015

http://en.cppreference.com/w/cpp/thread/async

CS3214 Spring 2015 Project 2 - “A Fork-Join Framework”

#include <iostream>
#include <vector>
#include <algorithm>
#include <numeric>
#include <future>

template <typename RAIter>
int parallel_sum(RAIter beg, RAIter end)
{

auto len = std::distance(beg, end);
if(len < 1000)

return std::accumulate(beg, end, 0);

RAIter mid = beg + len/2;
auto handle = std::async(std::launch::async,

parallel_sum<RAIter>, mid, end);
int sum = parallel_sum(beg, mid);
return sum + handle.get();

}

int main()
{

std::vector<int> v(100000000, 1);
std::cout << "The sum is " << parallel_sum(v.begin(), v.end())

<< ’\n’;
}

Figure 1: A parallel sum implementation in C++11. This is a slightly modified version of
the example published at http://en.cppreference.com/w/cpp/thread/async. Instead of
10,000, this program is summing up a vector with 100,000,000 elements.

$ scl enable devtoolset-1.1 bash
$ g++ -O2 -std=c++0x cppasyncpsum.cc -o cppasyncpsum -pthread
$./cppasyncpsum
terminate called after throwing an instance of ’std::system_error’

what():

Running it under strace, one can observe the clone() system call failing with EGAIN, Re-
source temporarily unavailable. Apparently, C++11’s std::async is implemented by blindly
spawning kernel-level threads (roughly 105 of them), without any regard to resource use.

This is where you come in.

In this project, you will create a framework that allows the parallel execution of divide-
and-conquer algorithms such as the one shown in this example. To do that, you will
create a thread pool implementation for dynamic task parallelism, which can execute so-
called fork/join tasks. Your implementation should avoid excessive resource use to avoid

14.04 installation, will not even compile the example because it does not agree that the program constitutes
valid C++ [URL]

Created by G. Back (gback@cs.vt.edu) 2 Revision : 1.1 January 31, 2015

http://en.cppreference.com/w/cpp/thread/async
http://stackoverflow.com/questions/25185595/template-function-with-stdasync-in-clang

CS3214 Spring 2015 Project 2 - “A Fork-Join Framework”

Figure 2: A work stealing thread pool. Worker threads execute tasks from their own
deques in LIFO order. If they run out of work, they attempt to dequeue tasks from a
global submission queue. Failing that, they attempt to steal tasks from the bottom of
other workers queues.

crashes like the one shown above.

2 Thread Pools and Futures

Your thread pool should implement the following API:

/**
* threadpool.h

*
* A work-stealing, fork-join thread pool.

*/

/*
* Opaque forward declarations. The actual definitions of these

* types will be local to your threadpool.c implementation.

*/
struct thread_pool;
struct future;

/* Create a new thread pool with no more than n threads. */
struct thread_pool * thread_pool_new(int nthreads);

/*
* Shutdown this thread pool in an orderly fashion.

* Tasks that have been submitted but not executed may or

* may not be executed.

Created by G. Back (gback@cs.vt.edu) 3 Revision : 1.1 January 31, 2015

CS3214 Spring 2015 Project 2 - “A Fork-Join Framework”

*
* Deallocate the thread pool object before returning.

*/
void thread_pool_shutdown_and_destroy(struct thread_pool *);

/* A function pointer representing a ’fork/join’ task.

* Tasks are represented as a function pointer to a

* function.

* ’pool’ - the thread pool instance in which this task

* executes

* ’data’ - a pointer to the data provided in thread_pool_submit

*
* Returns the result of its computation.

*/
typedef void * (* fork_join_task_t) (struct thread_pool *pool, void * data);

/*
* Submit a fork join task to the thread pool and return a

* future. The returned future can be used in future_get()

* to obtain the result.

* ’pool’ - the pool to which to submit

* ’task’ - the task to be submitted.

* ’data’ - data to be passed to the task’s function

*
* Returns a future representing this computation.

*/
struct future * thread_pool_submit(

struct thread_pool *pool,
fork_join_task_t task,
void * data);

/* Make sure that the thread pool has completed the execution

* of the fork join task this future represents.

*
* Returns the value returned by this task.

*/
void * future_get(struct future *);

/* Deallocate this future. Must be called after future_get() */
void future_free(struct future *);

2.1 Work Stealing

The are at least two common ways in which multiple threads can share the execution of
dynamically created tasks: work sharing and work stealing. In a work sharing approach,
tasks are submitted to a central queue from which all threads remove tasks. The draw-
back of this approach is that this central queue can quickly become a point of contention,
particularly for applications that create many small tasks.

Instead, a work stealing approach is recommended [2] which has been shown to lead to

Created by G. Back (gback@cs.vt.edu) 4 Revision : 1.1 January 31, 2015

CS3214 Spring 2015 Project 2 - “A Fork-Join Framework”

better load balancing and lower synchronization requirements. In a work stealing pool,
each worker thread maintains its own local queue of tasks, as shown in Figure 1. Each
queue is a double-ended queue (deque) which allows insertion and removal from both
the top and the bottom. When a task spawns a new task, it is added to the top. Workers
execute tasks by removing them from the top, thus in LIFO order. If a worker runs out
of tasks, it checks a global submission queue for tasks. If a task can be found in it, it is
executed. Otherwise, the worker attempts to steal tasks to work on from the bottom of
other threads’ queues.

2.2 Helping

A naive attempt to implement future get would have the calling thread block if the
task associated with that future has not been computed. However, doing so risks thread
starvation: it is easily possible for all worker threads to be blocked on futures, leading to
a deadlock because no worker threads are available to compute the tasks on which the
workers are blocked!

Instead, worker threads that attempt to resolve a future that has not yet computed must
help in their execution. For instance, if the future’s task has not yet started executing, the
worker could steal it and execute it itself. If it has started executing, the worker has a
number of choices: it could wait for it to finish, or it could help executing tasks spawned
by the task being joined, hoping to speed up its completion.

However, helping must be done carefully: worker threads should not attempt to help by
stealing tasks who, in order to complete, rely on the results of tasks whose execution has
already been started by the current worker. This can happen if the current worker thread
started a task but has not yet completed it because it may be in the middle of joining a
task it has spawned. To avoid that, you could adopt a technique such as leap frogging [4],
which keeps track of the depth of each task in the computation graph and provides a rule
that allows or disallow stealing.

For the purposes of this assignment, we assume a fully-strict model. A fully-strict model
requires that tasks join tasks they spawn (in order words, every call to submit a task has a
matching call to future get() within the same function invocation.) All our tests will
be fully strict computations.

2.3 Implementation

Except for constraints imposed by the API and outside resource availability, you have
near absolute freedom in how to implement your thread pool. Numerous strategies for
stealing, helping, blocking, and signaling are possible, each with different trade-offs.

You will need to design a synchronization strategy to protect the data structures you use,
such as flags representing the execution state of each tasks, the local queues, and the

Created by G. Back (gback@cs.vt.edu) 5 Revision : 1.1 January 31, 2015

CS3214 Spring 2015 Project 2 - “A Fork-Join Framework”

global submission queue, and others. You will need a signaling strategy to achieve that
worker threads learn about the availability of tasks in the global queue or in other threads’
queues.

2.4 Basic Strategy

A basic strategy would be to use locks, condition variables, and the provided list im-
plementation (known to you from Project 1), which allows constant-time insertion and
removal of list elements.

You will have to define private structures struct future and struct thread pool
in threadpool.c. A future should store a pointer to the function to be called, any data
to be passed to that function, as well as the result (when available). You will have to
define appropriate variables to record the state of a future, such as whether its execution
has started, is in progress, or has completed, as well as possibly which queues the future
is in to keep track of stealing.

A thread pool should keep track of a global submission queue, as well as of the worker
threads it has started. Each worker thread requires its own queue. You will also need a
flag to denote when the thread pool is shutting down.

thread pool submit(). You should allocate a new future in this function and submit it
to the pool. Since the same API is used for external submissions (from threads that are
not part of the pool) and internal submissions (from threads that are part of the pool),
you will need to use a thread-local variable to distinguish those cases. The thread local
variable could be used to quickly look up the worker thread for internal submissions.

future get(). The calling thread may have to help in completing the future being joined,
as described in Section 2.2.

thread pool shutdown and destroy(). This function will shut down the thread pool. Al-
ready executing futures should complete; queued futures may or may not complete.

The calling thread must join all worker threads before returning. Do not use pthread cancel()
because this function does not ensure that currently executing futures run to completion;
instead, use a flag and an appropriate signaling strategy.

future free(). Frees the memory for a future instance allocated in thread pool submit().
This function is called by the client. Do not call it in your thread pool implementation.

3 Additional Notes

3.1 Grading

Grading will be based on a combination of factors, including

Created by G. Back (gback@cs.vt.edu) 6 Revision : 1.1 January 31, 2015

CS3214 Spring 2015 Project 2 - “A Fork-Join Framework”

• Correctness. We expect your code to produce the correct result. In particular, it
should complete test programs when we restrict the number of worker threads to
be 1.

• Thread Safety. Your code must not contain race conditions. You should run the
code using the Helgrind race condition checker. If Helgrind flags any warnings, you
should address them. If you believe Helgrind’s warnings are spurious because you
are making use of advanced synchronization facilities that trigger false positives,
provide an rigorous proof.

• Speedup. For each of the benchmarks we provide, we will measure the speedup
obtained using your thread pool.

• Resource Use. Outside of dedicated high-performance computing (HPC) fork-join
implementations are required to coexist with other code and share computational
resources. We will measure the amount of CPU time used by your implementation;
the lower, the better.

3.2 Honor Code

As usual, all work submitted must be yours. You may not reuse code from any imple-
mentations you may find online without the instructor’s permission (and the permission
of the author, if applicable). If in doubt, you must ask. Otherwise, the collaboration policy
described in the syllabus applies.

3.3 Minimum Requirements.

The minimum requirements for this project include a working thread pool implementa-
tion that can execute a specific set of parallel programs correctly. fjdriver.py will flag
that you have met minimum requirements.

3.4 Running Experiments

Please run the fjdriver.py script on the rlogin machine. You can find hardware speci-
fications for the cluster machines at http://rlogin.cs.vt.edu/more.html.

Perform these experiments on an unloaded machine on the rlogin cluster. Unloaded
means that ’uptime’ should report a load average close to 0, so that all processors are
available for your experiment. Coordinate with other students by avoiding running your
benchmarks if you notice that other students are running theirs; use the forum or email if
necessary.

Created by G. Back (gback@cs.vt.edu) 7 Revision : 1.1 January 31, 2015

http://rlogin.cs.vt.edu/more.html

CS3214 Spring 2015 Project 2 - “A Fork-Join Framework”

3.5 Additional Requirements.

• Fork the directory https://git.cs.vt.edu/cs3214/threadlab-spring-2015 into your
GIT account. This directory contains all the files you need. Use of version control,
e.g., GIT, is required.

• You need to create threadpool.c. Do not change any of the other files! (If you do,
such changes will not be taken into account when grading and you may you fail the
grading process.)

• Your code must compile without warnings. The Makefile enforces this via -Werror.

• You should not define any global or static variables.

• You should not define any global functions other than the ones asked for - use static
functions as necessary.

The submission check script may impose additional requirements to simplify automatic
grading. Please work with teaching staff on any questions you encounter.

Good Luck!

References

[1] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry
Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John Shalf,
Samuel Webb Williams, and Katherine A. Yelick. The landscape of parallel comput-
ing research: A view from berkeley. Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley, Dec 2006.

[2] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations
by work stealing. J. ACM, 46(5):720–748, September 1999.

[3] P.P. Gelsinger. Microprocessors for the new millennium: Challenges, opportunities,
and new frontiers. In Solid-State Circuits Conference, 2001. Digest of Technical Papers.
ISSCC. 2001 IEEE International, pages 22–25, Feb 2001.

[4] David B. Wagner and Bradley G. Calder. Leapfrogging: A portable technique for
implementing efficient futures. In Proceedings of the Fourth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPOPP ’93, pages 208–217, New York,
NY, USA, 1993. ACM.

Created by G. Back (gback@cs.vt.edu) 8 Revision : 1.1 January 31, 2015

	Background
	Thread Pools and Futures
	Work Stealing
	Helping
	Implementation
	Basic Strategy

	Additional Notes
	Grading
	Honor Code
	Minimum Requirements.
	Running Experiments
	Additional Requirements.

