
CS3214 Spring 2015 Project 2 - “A Fork-Join Framework”

Due: Wednesday, Mar 25, 2015. 11:59pm.(Late days may be used.)

What to submit: Upload a tar ball using the p2 identifier that includes the following
files:
- id.txt with SLO IDs in the format described for Project 1.
- threadpool.c with your code.
- threadpool.pdf with your project description. Use a suitable word processing pro-
gram to produce the PDF file.
We will be using the provided fjdriver.py file to test your code. Please see Section 3.3
for more information.

1 Background

In 2001, Intel VP Patrick Gelsinger [5] warned in a now famous keynote given at the
ISSCC 2001 conference that if processor power consumption trends for the Intel x86 line
of processors continued at their then-existing trajectory, chip surface temperatures would
reach the power density of a nuclear reactor by 2005, a rocket nozzle by 2010, and the
surface of the sun by 2015. As a response, manufacturers soon started packing CPU cores
on chips, resulting in lower power consumption and heat dissipation. This trend started
what we now refer to as the multicore era. Analysts projected that the number of cores
per chips would soon double at a pace akin to Moore’s law.

This architectural change needed to be accompanied by a complete rethinking of how
to write software. Researchers at Berkeley called the switch to parallel microproces-
sors nothing less than a “milestone” in the history of computing [1], and called for new
human-centric programming models that make it easy to write scalable programs for the
emerging multicore systems.

Fast forward to present day. The guardians of C++, after much deliberation, finally in-
troduced support for multithreading in their language through the use of a std::async
function1. The reference documentation on cppreference.com provides the example shown
in Figure 1.

This toy example sums up the elements of a vector, which here are initialized to 1, using
a recursive divide-and-conquer approach. At each level of recursion, the array is subdi-
vided into two equal parts, one of which is passed to std::async to be executed in a
separate thread, whereas the other part is recursively performed by the calling thread.
std::async returns a handle of type std::future, which represents a reference to a
result of a computation that is executed asynchronously. When the computation’s result
is needed, a thread may invoke the future’s get() method. get() will return the result,
arranging for — or waiting for — its computation as necessary.

1You will not need to learn C++ for this project, I am just using it as a motivating example

Created by G. Back (gback@cs.vt.edu) 1 Revision : 1.2 February 22, 2015

http://en.cppreference.com/w/cpp/thread/async

CS3214 Spring 2015 Project 2 - “A Fork-Join Framework”

#include <iostream>
#include <vector>
#include <algorithm>
#include <numeric>
#include <future>

template <typename RAIter>
int parallel_sum(RAIter beg, RAIter end)
{

auto len = std::distance(beg, end);
if(len < 1000)

return std::accumulate(beg, end, 0);

RAIter mid = beg + len/2;
auto handle = std::async(std::launch::async,

parallel_sum<RAIter>, mid, end);
int sum = parallel_sum(beg, mid);
return sum + handle.get();

}

int main()
{

std::vector<int> v(100000000, 1);
std::cout << "The sum is " << parallel_sum(v.begin(), v.end())

<< ’\n’;
}

Figure 1: A parallel sum implementation in C++11. This is a slightly modified version of
the example published at http://en.cppreference.com/w/cpp/thread/async. Instead of
10,000, this program is summing up a vector with 100,000,000 elements.

Compiling and running this program under g++ 4.8.2 one obtains the following output:

$ scl enable devtoolset-2 bash
$ g++ -O2 -std=c++0x cppasyncpsum.cc -o cppasyncpsum -pthread
$./cppasyncpsum
terminate called after throwing an instance of ’std::system_error’

what():

When running this program under strace one can observe the clone() system call failing
with EGAIN, Resource temporarily unavailable. The reason for this failure is that C++11’s
std::async is implemented by blindly spawning kernel-level threads (roughly 105 of
them), without any regard to the amount of resources used by those threads. The same
is true when using threads in Java (via java.langThread), making the use of threads
difficult for all but the most simple scenarios.

This is where you come in.

In this project, you will create a fork/join framework that allows the parallel execution
of divide-and-conquer algorithms such as the one shown in the example in Figure 1 in

Created by G. Back (gback@cs.vt.edu) 2 Revision : 1.2 February 22, 2015

http://en.cppreference.com/w/cpp/thread/async

CS3214 Spring 2015 Project 2 - “A Fork-Join Framework”

Figure 2: A work stealing thread pool. Worker threads execute tasks from their own
deques in LIFO order. If they run out of work, they attempt to dequeue tasks from a
global submission queue. Failing that, they attempt to steal tasks from the bottom of
other workers queues.

a resource-efficient manner. To that end, you will create a thread pool implementation
for dynamic task parallelism, focusing on the execution of so-called fork/join tasks. Your
implementation should avoid excessive resource use to avoid crashes like the one seen in
this example.

2 Thread Pools and Futures

Your fork-join thread pool should implement the following API:

/**
* threadpool.h

*
* A work-stealing, fork-join thread pool.

*/

/*
* Opaque forward declarations. The actual definitions of these

* types will be local to your threadpool.c implementation.

*/
struct thread_pool;
struct future;

/* Create a new thread pool with no more than n threads. */
struct thread_pool * thread_pool_new(int nthreads);

Created by G. Back (gback@cs.vt.edu) 3 Revision : 1.2 February 22, 2015

CS3214 Spring 2015 Project 2 - “A Fork-Join Framework”

/*
* Shutdown this thread pool in an orderly fashion.

* Tasks that have been submitted but not executed may or

* may not be executed.

*
* Deallocate the thread pool object before returning.

*/
void thread_pool_shutdown_and_destroy(struct thread_pool *);

/* A function pointer representing a ’fork/join’ task.

* Tasks are represented as a function pointer to a

* function.

* ’pool’ - the thread pool instance in which this task

* executes

* ’data’ - a pointer to the data provided in thread_pool_submit

*
* Returns the result of its computation.

*/
typedef void * (* fork_join_task_t) (struct thread_pool *pool, void * data);

/*
* Submit a fork join task to the thread pool and return a

* future. The returned future can be used in future_get()

* to obtain the result.

* ’pool’ - the pool to which to submit

* ’task’ - the task to be submitted.

* ’data’ - data to be passed to the task’s function

*
* Returns a future representing this computation.

*/
struct future * thread_pool_submit(

struct thread_pool *pool,
fork_join_task_t task,
void * data);

/* Make sure that the thread pool has completed the execution

* of the fork join task this future represents.

*
* Returns the value returned by this task.

*/
void * future_get(struct future *);

/* Deallocate this future. Must be called after future_get() */
void future_free(struct future *);

2.1 Work Stealing

There are at least two common ways in which multiple threads can share the execution of
dynamically created tasks: work sharing and work stealing. In a work sharing approach,
tasks are submitted to a central queue from which all threads remove tasks. The draw-

Created by G. Back (gback@cs.vt.edu) 4 Revision : 1.2 February 22, 2015

CS3214 Spring 2015 Project 2 - “A Fork-Join Framework”

back of this approach is that this central queue can quickly become a point of contention,
particularly for applications that create many small tasks.

Instead, a work stealing approach is recommended [2] which has been shown to lead to
better load balancing and lower synchronization requirements. In a work stealing pool,
each worker thread maintains its own local queue of tasks, as shown in Figure 2. Each
queue is a double-ended queue (deque) which allows insertion and removal from both
the top and the bottom. When a task spawns a new task, it is added to the top. Workers
execute tasks by removing them from the top, thus following a LIFO order. If a worker
runs out of tasks, it checks a global submission queue for tasks. If a task can be found
in it, it is executed. Otherwise, the worker attempts to steal tasks to work on from the
bottom of other threads’ queues.

2.2 Helping

A naive attempt at implementing future get would have the calling thread block if the
task associated with that future has not yet been computed. “Blocking” here means to
wait on a synchronization device such as a semaphore until it is signaled by the thread
computing the future. However, this approach risks thread starvation: it is easily possible
for all worker threads to be blocked on futures, leading to a deadlock because no worker
threads are available to compute the tasks on which the workers are blocked!

Instead, worker threads that attempt to resolve a future that has not yet been computed
must help in their execution. If the future’s task has not yet started executing, the worker
should steal it and execute it itself. If it has started executing, the worker has two choices:
it could wait for it to finish, or it could help executing tasks spawned by the task being
joined, hoping to speed up its completion.

For the purposes of this assignment, we assume a fully-strict model as defined in [2]. A
fully-strict model requires that tasks join tasks they spawn — in other words, every call to
submit a task has a matching call to future get() within the same function invocation.
All our tests will be fully strict computations, which encompass a wide range of parallel
computations.

Restricting ourselves to fully-strict computation for this project simplifies helping because
it is always safe for workers intending to help to steal any task as long as they steal from
the bottom of any other worker’s queue. Safety here refers to the absence of execution
deadlock.

2.3 Implementation

Except for constraints imposed by the API and resource availability, you have complete
freedom in how to implement your thread pool. Numerous strategies for stealing, help-
ing, blocking, and signaling are possible, each with different trade-offs.

Created by G. Back (gback@cs.vt.edu) 5 Revision : 1.2 February 22, 2015

CS3214 Spring 2015 Project 2 - “A Fork-Join Framework”

You will need to design a synchronization strategy to protect the data structures you
use, such as flags representing the execution state of each tasks, the local queues, and
the global submission queue, and possibly others. You will need a signaling strategy to
achieve that worker threads learn about the availability of tasks in the global queue or in
other threads’ queues.

2.4 Basic Strategy

A basic strategy would be to use locks, condition variables, and the provided list im-
plementation (known to you from Project 1), which allows constant-time insertion and
removal of list elements.

You will have to define private structures struct future and struct thread pool
in threadpool.c. A future should store a pointer to the function to be called, any data
to be passed to that function, as well as the result (when available). You will have to
define appropriate variables to record the state of a future, such as whether its execution
has started, is in progress, or has completed, as well as possibly which queues the future
is in to keep track of stealing.

A thread pool should keep track of a global submission queue, as well as of the worker
threads it has started. Each worker thread requires its own queue. You will also need a
flag to denote when the thread pool is shutting down.

thread pool submit(). You should allocate a new future in this function and submit it
to the pool. Since the same API is used for external submissions (from threads that are
not part of the pool) and internal submissions (from threads that are part of the pool),
you will need to use a thread-local variable to distinguish those cases. The thread local
variable could be used to quickly look up the worker thread for internal submissions.

future get(). The calling thread may have to help in completing the future being joined,
as described in Section 2.2.

thread pool shutdown and destroy(). This function will shut down the thread pool. Al-
ready executing futures should complete; queued futures may or may not complete.

The calling thread must join all worker threads before returning. Do not use pthread cancel()
because this function does not ensure that currently executing futures run to completion;
instead, use a flag and an appropriate signaling strategy.

future free(). Frees the memory for a future instance allocated in thread pool submit().
This function is called by the client. Do not call it in your thread pool implementation.

2.5 Advanced Strategies/Extra Credit

Real-world fork/join implementation employ a number of optimizations designed to
minimize per-task synchronization overhead. For instance, a crucial optimization is to

Created by G. Back (gback@cs.vt.edu) 6 Revision : 1.2 February 22, 2015

CS3214 Spring 2015 Project 2 - “A Fork-Join Framework”

adopt strategies that speed up the common case of adding and removing an element
to/from the top of a worker’s queue. The THE protocol based on Djikstra’s mutual ex-
clusion algorithm [3] may be used, which is further described in [4] and [6].

A second possible extension would be to support computations that are not fully-strict
(although the computational graph would still need to be assumed to by acyclic - if the
computation has inherently cyclic dependencies, it is impossible to schedule it.) If the
computation is not fully-strict, that is, if futures could be passed among tasks, a deadlock
situation could arise where one worker steals a task that, in order to complete, requires
the results of a task whose execution has been started by the stealing thread, but not yet
finished. Systems such as CILK [4] avoid this by using a technique known as continuation
stealing [7] in which it is possible for other worker threads to continue (and complete) a
spawning task. However, continuation stealing requires compiler support since another
thread would need access to the task’s local variables. Systems that exploit child stealing,
such as the thread pool you are building in this assignment, have to impose constraints
on stealing for non-strict computations.2 A technique such as leap frogging [8] could be
used, which keeps track of the depth of each task in the computation graph and provides
a rule that allows or disallow stealing.

If you implement any of these strategies, be sure to discuss it in your project description
so that TAs may award extra credit if warranted.

3 Additional Notes

3.1 Grading

Grading will be based on a combination of factors, including

• Correctness. We expect your code to produce the correct result. Since you are writ-
ing a concurrent program, the results may vary between runs if your implementa-
tion is incorrect; we will run your code multiple times and expect it to complete
correctly each time we run it. You should perform similar stress testing.

We also expect your code to be correct when we restrict the number of threads in
the pool to be 1, which requires a correct implementation of helping.

• Thread Safety. Your code must not contain race conditions. You should run the
code using the Helgrind race condition checker. If Helgrind flags any warnings, you
should address them. If you believe Helgrind’s warnings are spurious because you
are making use of advanced synchronization facilities that trigger false positives,
provide a rigorous proof.

• Speedup. For each of the benchmarks we provide, we will measure the speedup
obtained using your thread pool. The fjdriver.pywill compile your thread pool,

2Read Robison’s Primer [URL] to learn more about child vs continuation stealing.

Created by G. Back (gback@cs.vt.edu) 7 Revision : 1.2 February 22, 2015

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3872.pdf

CS3214 Spring 2015 Project 2 - “A Fork-Join Framework”

link it with our tests, and benchmark it. It will then prepare a file you may upload
to the scoreboard (via fjpostresults.py) to compare your results to those of
others.3

The scoreboards are unofficial in that your final grade will be determined when the TAs
check and benchmark your code. However, we will use the scoreboard as a yardstick to
determine high-performing and low-performing implementations. In particular, if you
see that for a particular test some implementations provide speedup that is a multiple of
what your implementation provides, you may conclude that your implementation may
impose unnecessary serialization or have other bottleneck factors you should try to ad-
dress.

For grading, we will award credit for

• Meeting Minimum Requirements. The minimum requirements for this project in-
clude a working thread pool implementation that can execute a specific set of par-
allel programs correctly. fjdriver.py will flag whether you have met minimum
requirements, but keep in mind that during grading, we will run the required tests
multiple times and expect them to pass every time.

• Robustness. as measured by the ability to successfully and reliably complete a num-
ber of more complex applications within a test-specific timeout.

• Performance. as measured by the speedup obtained for more complex application-
s/tests.

3.2 Honor Code

As usual, all work submitted must be yours. You may not reuse code from any imple-
mentations you may find online without the instructor’s permission (and the permission
of the author, if applicable). If in doubt, you must ask. Otherwise, the collaboration policy
described in the syllabus applies.

3.3 Running Experiments

We will use the machines of the rlogin cluster for testing, so make sure your code runs
there when invoking fjdriver.py. For the final scalability testing, we will use 2 AMD
machines with 64 cores each (machine names are fir.rlogin and sourwood.rlogin). Please
do not use those two machines until after you reliably pass all tests; they should be re-
served for optimizing the scalability of your implementation only.

Perform these experiments on an unloaded machine on the rlogin cluster. Unloaded
means that ’uptime’ should report a load average close to 0, so that all processors are

3We will have two scoreboards, one for regular 20-core rlogin machines, and one for the 64-core ma-
chines. See Section 3.3.

Created by G. Back (gback@cs.vt.edu) 8 Revision : 1.2 February 22, 2015

CS3214 Spring 2015 Project 2 - “A Fork-Join Framework”

available for your experiment. Coordinate with other students by avoiding running your
benchmarks if you notice that other students are running theirs; use the forum or email
if necessary. fjdriver.py will output a message and wait if run on a machine with a
non-zero load average.

3.4 Additional Requirements.

• The use of git is required as in project 1.

• The upstream repository is https://git.cs.vt.edu/cs3214-staff/threadlab

• After forking the repository, be sure to set access to private. Not doing so is a po-
tential honor code violation.

• All code for this project must be contained in threadpool.c, mainly to simplify
testing. We also believe that the complexity of this assignment, at least in its basic
form, should not necessitate the use of multiple source files.

• Do not change any of the other files! (If you do, such changes will not be taken into
account when grading and you may you fail the grading process.)

• Your code must compile without warnings. The Makefile enforces this via -Werror.

• You should not define any global or static variables.

• You should not define any global functions other than the ones asked for - use static
functions as necessary.

• The submission check script may impose additional requirements to simplify auto-
matic grading. Please work with teaching staff on any questions you encounter.

• Updates to these requirements may be posted on the website or the Piazza forum
(in a ’pinned’ post at the top of the Piazza page).

Good Luck!

References

[1] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry
Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John Shalf,
Samuel Webb Williams, and Katherine A. Yelick. The landscape of parallel comput-
ing research: A view from berkeley. Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley, Dec 2006.

[2] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations
by work stealing. J. ACM, 46(5):720–748, September 1999.

Created by G. Back (gback@cs.vt.edu) 9 Revision : 1.2 February 22, 2015

https://git.cs.vt.edu/cs3214-staff/threadlab

CS3214 Spring 2015 Project 2 - “A Fork-Join Framework”

[3] E. W. Dijkstra. Solution of a problem in concurrent programming control. Commun.
ACM, 8(9):569–, September 1965.

[4] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the
cilk-5 multithreaded language. In Proceedings of the ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation, PLDI ’98, pages 212–223, 1998.

[5] P.P. Gelsinger. Microprocessors for the new millennium: Challenges, opportunities,
and new frontiers. In Solid-State Circuits Conference, 2001. Digest of Technical Papers.
ISSCC. 2001 IEEE International, pages 22–25, Feb 2001.

[6] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2008.

[7] Arch Robison. A primer on scheduling fork-join parallelism with work stealing, 2014.

[8] David B. Wagner and Bradley G. Calder. Leapfrogging: A portable technique for
implementing efficient futures. In Proceedings of the Fourth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPOPP ’93, pages 208–217, New York,
NY, USA, 1993. ACM.

Created by G. Back (gback@cs.vt.edu) 10 Revision : 1.2 February 22, 2015

	Background
	Thread Pools and Futures
	Work Stealing
	Helping
	Implementation
	Basic Strategy
	Advanced Strategies/Extra Credit

	Additional Notes
	Grading
	Honor Code
	Running Experiments
	Additional Requirements.

