
CS3214 – Spring, 2014

Thread2 Demonstration

Files

The files for this demonstration can be found in the rlogin cluster in the directory

/web/courses/cs3214/spring2014/butta/examples/thread-demo/thread2

The files are bounded-buf.c bounded-buf.h int-pipe1.c int-pipe2.c
int-pipe3.c int-pipe4.c int-pipe.h, int-pipe1.h, int-pipe2.h,
int-pipe3.h, int-pipe4.h, Makefile prime.c prime.h rngs.c rngs.h
thread-ipipe.c thread-pipe.c

The “make” command by default will create four executables named tp, tip1, tip2,
tip3, and tip4. The programs for these executables have different ways of performing the
same simple task – generating a sequence of random numbers and testing whether each number
is a prime. Prime random numbers are used in cryptographic security systems but their purpose
here is simply to have work for threads to perform.

The files are named to help indicate what code is used in each executable as shown in this table.

executable main code uses
tp thread-pipe.c Unix pipe
tp1 thread-ipipe.c int-pipe1.c, int-pipe1.h
tp2 thread-ipipe.c int-pipe2.c, int-pipe2.h
tp3 thread-ipipe.c int-pipe3.c, int-pipe3.h
tp4 thread-ipipe.c int-pipe4.c, int-pipe4.h

The files for the random number generation (rngs.c and rngs.h) and prime testing
(prime.c and prime.h) are used in all versions. All of the versions of int-pipex.c
implement the same interface for a circular queue but they use different approaches for
synchronization.

Purpose

The purposes of this demonstration are

• to see how Unix pipes can be used for inter-thread communication
• to see how arguments are passed to threads and how values are returned from threads
• to see how to use locks to guarantee mutual exclusion of critical sections
• to see an example of an atomicity violation
• to see how to use locks for signaling
• to see how to use condition synchronization

CS3214 – Spring, 2014

Step 1

1. Use the Makefile to create the executable programs with the command “make”.
2. At the shell prompt execute tp. Observe the output that is produced. Execute tp

several times and observe the output in each case. Examine the code in thread-
pipe.c. Briefly read the description of the producer-consumer problem in
http://en.wikipedia.org/wiki/Producer-consumer_problem. Answer questions 1 and 2.

Step 2

1. Examine the code in bounded-buf.h and bounded-buf.c. This code implements
a simple circular queue. Read the code sufficiently to be convinced of this. Examine the
code in int-pipe1.h and int-pie1.c. Note the comments at the beginning
int_pipe_write and int_pipe_read referring to “busy waiting.” Read briefly
http://en.wikipedia.org/wiki/Busy_waiting for a description of busy waiting. Note also
the two assert statements in the two functions int_pipe_write and
int_pipe_read. Use “man 3 assert” at the shell prompt to see the man page
about assert. Answer question 3.

2. Examine the code in thread-ipipe.c and compare it to the code in thread-
pipe.c. Answer question 4.

3. At the shell prompt execute tip1 which uses thread-ipipe.c and int-
ipipe1.c. Observe the output that is produced. Execute tip1 several times and
observe the output in each case. Answer questions 5 and 6.

Step 3

1. Examine the code in int-pipe2.h and int-pipe2.c. In particular, notice the
int_pipe_read function. Answer question 7.

2. If you execute tip2 some number of times you will likely see output similar to this:
tip1: int-pipe1.c:51: intp_pipe_read: Assertion
‘!int_pipe_empty(intp) && !int_pipe_closed(intp)’
failed.

Answer question 8.

Step 4

1. Examine the code in int-pipe3.h and int-pipe3.c. In particular, notice the
int_pipe_read function and the int_pipe_write function. Answer questions
9 and 10.

2. If you execute tip3 some number of times you will not see the assertion failure seen in
Step 3 above. Look carefully at the code in int_pipe_read in int-pipe3.c and
answer question 11.

http://en.wikipedia.org/wiki/Producer-consumer_problem�
http://en.wikipedia.org/wiki/Busy_waiting�

CS3214 – Spring, 2014

Step 5

1. Examine the code in int-pipe4.h and answer question 12.
2. Compare closely the while loop in the int_pipe_read function in int-pipe3.c

and int-pipe4.c. Also note the one line change in the int_pipe_write function
between the two versions. Answer question 13.

Questions

Based on your observations above, answer these questions:

1. How does the description of the producer-consumer problem differ from the code in
main()? How many threads play the role of the producer? How many threads play the
role of the consumer? What plays the role of the bounded buffer? What code does a
producer thread execute? What code does a consumer thread execute? What argument is
passed to a producer thread? What argument is passed to a consumer thread? Explain
how a random number generated in rand_gen is made available to be tested for being a
prime number in prime_test?

2. Does each execution of tp produce results that account for all of the numbers that are
produced? Though we do not see the actual numbers, would you believe that the
executable performs its function of producing random prime numbers? Does the
execution of tp appear to be deterministic? If not, to what do you attribute the non-
determinism? Does this analysis give you a different understanding of non-determinism?

3. What does “busy waiting” mean? What is a major disadvantage of “busy waiting? What
does an assert statement do in general? What role do they play in the implementation
of int_pipe_write and int_pipe_read?

4. What is the major difference between thread-pipe.c and thread-ipipe.c.

5. Does each execution of tip1 produce results that account for all of the numbers that are
produced? Does the execution of tip1 appear to be deterministic? If not, to what do
you attribute the non-determinism?

6. Are there critical sections in the code of the bounded_buffer_add and
bounded_buffer_remove functions in bounded_buf.c? If so, what shared
variables are manipulated in these critical sections? Can you describe a sequence where
two threads execute int_pipe_read and both retrieve the same value from the
bounded buffer? Can you describe a sequence where two threads execute
int_pipe_read and the size of the bounded buffer is left in an incorrect state?

7. What synchronization element has been added to the implementation of the bounded
buffer in int-pipe2? Will the use of this synchronization element in the
int_pipe_read and int_pipe_write functions guarantee that the internal
variables in the bounded buffer are protected against concurrent execution? Explain why
this is or is not the case? In the int_pipe_read function in int-pipe2.c why is

CS3214 – Spring, 2014

the while loop before the lock operation? Should this not be inside the critical section so
that the state variables of the pipe are protected from concurrent access?

8. How is it possible for this assertion in int_pipe_read to have failed given the
conditions on the while loop and if statements that immediately precede the assertion?
Can you identify an atomicity violation? How would you summarize the two major
deficiencies of the int-pipe2.c implementation?

9. What synchronization element has been added to the implementation of the circular
queue in int-pipe3? How does this new element help to synchronize the actions in
int_pipe_read and int_pipe_write?

10. What significance is there to this code sequence in int_pipe_read:
pthread_mutex_unlock(&intp->mutex);
pthread_mutex_lock(&intp->avail);
pthread_mutex_lock(&intp->mutex);

Why is this code in the body of the while loop? What is true when the loop is terminated?
How does this code related to the code in int_pipe_write that unlock the mutex
variable avail?

11. Does the int-pipe3.c implementation use busy waiting for reading?

12. Looking in int-pipe4.h how has the “avail” synchronization element changed
from int-pipe3.h?

13. Based on your comparison of the code can you form a hypothesis about the meaning of
the pthread_cond_wait operation? Can you also form a hypothesis about the
meaning of the pthread_cond_signal operation?

Extensions

1. Use condition synchronization to eliminate the busy waiting in the int-pipe-write
function. You will need to introduce another pthread_cond_t variable.

2. Test your implementation by creating two or more threads that write random numbers to
the circular queue.

