
CS3214 – Spring, 2014

Signal6 Demonstration

Files

The files for this demonstration can be found in the rlogin cluster in the directory

/web/courses/cs3214/spring2014/butta/examples/signal-demo/signal6

The files are esh-sys-utils.c esh-sys-utils.h list.c list.h Makefile
print-pid.c print-pid.h race.c norace.c

The “make” command by default will create an executable named race. A variant of the
program is created by “make norace”. This program creates many child processes and
maintains a list of process ids of child process that have been created but not yet terminated. The
termination of a child process is detected by installing a signal handler for the SIGCHLD signal.
Output is generated whenever a child’s process id is add to or removed from the list. The output
is generated using reentrant code (snprintf and write). At the end of its execution the
program outputs “Terminating Successfully.”

Purpose

The purposes of this demonstration are

• to see how a parent process can detect the termination of a child process
• to see an instance of a “race condition”
• to see how gdb can be used to examine a stopped process
• to see how to resolve the race condition by temporarily blocking the delivery of a signal.

Part 1: Steps

1. Use the Makefile to create the executable program race using the command
“make”.

2. At the shell prompt execute the race program.
3. Allow the program to run until either the program terminates or the program output

ceases without a shell prompt being given. In the later case, end the process by using a
control-c.

4. Use the ps and kill commands to get rid of any child processes that might remain.
5. To understand what is happening run the race code again. When the program stops

producing output use a control-z to stop the race code.
6. use the ps command to find the process id of the parent race process (it will be the

process with the smallest id among all those running the race code and not labeled
<defunct>). This process id will be referred to as <pid> below.

7. Examine the stopped race code using gdb as follows:
a. at the shell prompt enter: gdb ./race
b. at the gdb prompt enter: attach <pid>

CS3214 – Spring, 2014

8. The line of code being executed is likely the following one in the remove_child
function:
 while(current && current->child_pid != pid)

9. Use the gdb step command to execute the next line of code and the gdb print
current command to examine the value of current. Note: current is pointing to
an element in the list of pids.

10. Use the gdb commands to examine the list of pids: print head will show the address
of the first element of the list, print head->next will show the address of the first
element of the list, print head->next->next will show the address of the second
element of the list, and so on.

Part 2: Steps

1. Use the Makefile to create the executable program norace using the command
“make norace”.

2. At the shell prompt execute the norace program.
3. Allow the program to run until either the program terminates or the program output

ceases without a shell prompt being given. In the later case, end the process by using a
control-c.

4. Compare the race.c and norace.c code. Identify the difference in these two
programs. Hint: two lines of code are different and they are near the bottom of the main
program.

Questions

Based on your observations, answer these questions.

1. Does the process executing race always complete normally?
2. Based on your use of gdb in step 9 what diagnosis can you offer to explain why the

program ceases to produce output and terminate normally?
3. Based on your use of gdb in step 10 what it is about the list of pids that causes the

behavior leading to your diagnosis?
4. Does the process executing norace always complete normally?
5. Explain why the difference between the race.c and norace.c code accounts for the

difference in their behaviors.

