
CS 3214 Fall 2013 Midterm

1/13

CS 3214 Midterm

7

10

11

18

19

6

4

1

0

2

4

6

8

10

12

14

16

18

20

90s 80s 70s 60s 50s 40s 30s 20s

CS 3214 Midterm Fall 2013

The chart shows the distribution of midterm scores across both sections.

The average score was 63.1 and the median score was 64.

CS 3214 Fall 2013 Midterm

2/13

CS 3214 Midterm

This is a closed-book, closed-internet, closed-cell phone and closed-computer exam.
However, you may refer to your sheet of prepared notes. Your exam should have 12
pages with 3 topics totaling 100 points. You have 75 minutes. Please write your
answers in the space provided on the exam paper. If you unstaple your exam, please
put your initials on all pages. You may use the back of pages if necessary, but
please indicate if you do so we know where to look for your solution. You may ask us
for additional pages of scratch paper. You must submit all sheets you use with your
exam. However, we will not grade what you scribble on your scratch paper unless
you indicate you want us to do so. Answers will be graded on correctness and clarity.
The space in which to write answers to the questions is kept purposefully tight,
requiring you to be concise. You will lose points if your solution is more complicated
than necessary or if you provide extraneous, but incorrect information along with a
correct solution.

Name (printed) ___

I accept the letter and the spirit of the Virginia Tech undergraduate honor code – I will
not give and have not received aid on this exam.

(signed) ___

Problem Points Score

I Programs and Data 26

II Processes and Signals 50

III Threads and Synchronization 24

Total 100

CS 3214 Fall 2013 Midterm

3/13

I. Programs and Data (26 points)

1. (16 points) Consider your experiences in solving the Firecracker phase of the
Buffer Bomb. The two vital functions, getbuf() and bang() are shown below:

/* Buffer size for getbuf */

#define NORMAL_BUFFER_SIZE 32

int getbuf() 5 {

 char buf[NORMAL_BUFFER_SIZE];

 Gets(buf);

 return 1;

}

int global_value = 0;

void bang(int val) {

 if (global_value == cookie) {

 printf("Bang!: You set global_value to 0x%x\n",

 global_value);

 validate(2);

 } else

 printf("Misfire: global_value = 0x%x\n",

 global_value);

 exit(0);

}

In order to solve the phase, it is necessary to do two things:

• Put the team cookie into the variable global_value.

• Cause the function bang() to be executed.

When analyzing the situation, the student conducts a gdb session, shown below:

GNU gdb (GDB) Red Hat Enterprise Linux (7.2-60.el6)

. . .

Reading symbols from /home/sheldon/buflab/bufbomb...

(gdb) break getbuf

Breakpoint 1 at 0x8048c0a

(gdb) break Gets

Breakpoint 2 at 0x8048b50

(gdb) run -u sheldon

CS 3214 Fall 2013 Midterm

4/13

Starting program: /home/sheldon/buflab/bufbomb -u

sheldon

Userid: sheldon

Cookie: 0x28650607

Breakpoint 1, 0x08048c0a in getbuf ()

(gdb) print /a $ebp+4

$1 = 0x556834a4 <_reserved+1037476> #### A

(gdb) continue

Continuing.

(gdb) backtrace #### C

#0 ... in Gets ()

#1 ... in getbuf ()

#2 ... in test ()

. . .

Breakpoint 2, 0x08048b50 in Gets ()

(gdb) print /a *(void**)($ebp+8)

$2 = 0x55683478 <_reserved+1037432> #### B

(gdb) print /a (void*)bang

$3 = 0x8049012 <bang>

(gdb) print /a (void*)&global_value

$4 = 0x804c1ec <global_value>

(gdb)

(a) (3 points) Why is the value displayed by the print output labeled A relevant?

$epb + 4 points to (not IS) the return-to address that will be used when
getbuf() returns.

We need to replace that with the entry point for the exploit, and then with the
entry point for the function bang().

(b) (3 points) Why is the value displayed by the print output labeled B relevant?

$epb + 8 points to the first parameter to Gets(), which is the address of the
buffer to which Gets() will write. Since we dereference in this case, the value
printed is actually the parameter, which is the address of the buffer.

We need to:

• Write our exploit into the stack frame for getbuf(), starting at this
address

CS 3214 Fall 2013 Midterm

5/13

• Calculate the "distance" between the beginning of that buffer and the
return-to address from the previous question, so that we know how
much data we need to send Gets() in order to overwrite the return-to
address for getbuf() with the entry point of the exploit.

Draw a diagram of the state of the relevant parts of the stack at the point of the
backtrace labeled C in the gdb session. Annotate your stack diagram to explain your
answers to the following two questions.

Ret addr into test()

Frame for
test()

Ret addr into getbuf()

Frame for
getbuf()

buf

&buffer
ret
nop
 .
 .
 .
nop
Code to overwrite ret addr with &bang
Code to overwrite global_value

Frame for
Gets()

CS 3214 Fall 2013 Midterm

6/13

Note: the answers to the two parts are intertwined, so I’m showing a unified
solution. That’s how your answers were evaluated as well.

(c) (5 points) How can the student achieve the goal of placing his cookie into

global_variable? Be specific. A fully-satisfactory answer will refer to the stack

diagram you drew above, and include addresses and code.

(d) (5 points) How can the student achieve the goal of triggering a call to bang()? Be

specific and complete. A fully-satisfactory answer will refer to the stack diagram you
drew above and include addresses; code is not necessary.

There are a few things to note. We cannot, by overflowing the buffer, alter the
fact that Gets() returns to the call made from getbuf().

We cannot alter the execution of getbuf() prior to the point that getbuf() returns.

What we can do is this:

• cause getbuf() to return to somewhere else, like the beginning of our
exploit

• cause our exploit to do whatever we want as long as it fits within the
available space

• cause our exploit to “return” to wherever we want, specifically bang()

The student needs to:

• replace the return-to address of getbuf() with the address of the buffer, in
order to execute the exploit; therefore the exploit needs to be exactly the
correct length (hence padded with something sensible) and to end with
the address of buf, overwriting the old return address from getbuf() into
test()

• during the execution of the exploit, overwrite the value at the address of
global_value with the cookie

• during the execution of the exploit, replace the return-to address of
getbuf() with the address of bang()

• execute a ret from the exploit, so as to trigger the execution of bang()

This all needs to be described clearly and completely, so that it’s clear what
must be placed where, and what the order of execution will be.

CS 3214 Fall 2013 Midterm

7/13

2. (10 points) In the following code

. . .
static int f();

static int g();

int z() {

 int a = f();

 int b = g();

 return (a + b + f());

}

Why cannot a C compiler necessarily safely optimize z() by making the following

change:

 return (2*a + b);

Answer: because the compiler cannot guarantee that successive calls to the
function f() return the same result. For example, f() might use a static variable
or f() might refer to a global variable that’s modified by g().

CS 3214 Fall 2013 Midterm

8/13

II. Processes and Signals (60 points)

3. (10 points) Mark the appropriate box next to each statement to indicate whether that
statement is true or false.

Statement

True

False

A context switch happens on every system call. X

A context switch implies that a mode switch has also
occurred.

X

A mode switch causes a different process to execute. X

Some system calls cause a mode switch but do not
necessarily cause a context switch.

X

Some system calls cause a context switch but do not
necessarily cause a mode switch.

 X

Sending a signal blocks the sender if the receiving
process has the signal blocked.

 X

The signal handler for a process executes in user mode
and not in kernel mode.

X

File descriptors of a process remain unchanged across a
fork system call but not across an exec system call.

 X

Using the signal or sigaction system call to install a
signal handler blocks until a signal arrives.

 X

Read/write operations on a pipe do not require any
synchronization to be correct.

X

Answer: shown in table above.
Grading: 1 point per correct answer.

CS 3214 Fall 2013 Midterm

9/13

4. (15 points) When execution has reached the comment “HERE” in the following code
say how many processes are running and what code they are executing. The files
progA, progB, and progC are user-defined executable programs in the current path.

main() {

int index = 0;

…

int p = fork();

if (p==0 && index ==0)

 { index++; exec(“progA”…);}

if (p!=0 && index==0)

 { index++; p = fork(); exec(“progB”…);}

if (p==0 && index>0)

 { index++; exec(“progC”…); }

// HERE

}

Answer: three process are executing, one is executing progA and two are
executing progB

Grading: 6 points for answering there are 3 processes
 3 points each for giving the correct code that is executed by each
 process

5. (15 points) In a typical shell (like esh in project 2) the command to be executed is
done by a child process while the parent process continues executing the shell code.
However, the parent and child processes are essentially identical. Could you design the
shell so that the parent process performs the command to be executed while the child
process continues executing the shell code? Explain.

Answer: This could not be done because there would be no way for the shell
(the child process) to properly wait for the completion of the command (the
parent process).

Grading: 15 points for a correct answer and reason.
 10 points for a correct answer and a reason that is incorrect
 though plausibly related (e.g., terminal control, processes
 groups)
 7 points for a incorrect answer and a reason that is incorrect
 though plausibly related (e.g., terminal control, processes
 groups)
 5 points for making correct statements about process
 concepts that have plausible connection to the question

CS 3214 Fall 2013 Midterm

10/13

6. (10 points) Write the code for a parent process that will create and wait for a child
process. The created child process should execute the program in the file “progX”, read
its standard input from the file “myinput” and write its standard output to “myoutput”. For
the purposes of this question the otherwise unacceptable practice of ignoring error
conditions is allowed.

Answer:
int child = fork();

if (child==0) {

 int fd1 = open(myinput, O_RDONLY);

 int fd2 = open(myoutput, O_WRONLY);

 dup2(fd1,0);

 dup2(fd2, 1);

 close(fd1);

 close(fd2);

 exec(“progX”,…);

}

wait(child);

Grading:
2 points for correct fork and test for child process

 2 points for correct wait by parent
 1 point for opening both files

2 points for correct use of dup2 system call
 1 point for closing file descriptors fd1 and fd2
 2 points for correct exec call (ignore flavor of exec call used
 and other parameters to exec.

CS 3214 Fall 2013 Midterm

11/13

III. Threads and Synchronization (24 points)

7. (6 points) Consider the following declarations and code.

int x[20];

int y[20];

void addTo(int* vec, int start, int stop) {

 for(int i = start; i<stop; i++)

 vec[i] = vec[i] + 1;

}

The table below shows three cases of calls made by two threads. For each case
determine if there is a possible race condition and write Yes or No in the right column.

Thread 1 Thread 2
Race Condition

(yes/no)

addTo(x,5,10); addTo(y,7,10);

NO

addTo(x,5,10); addTo(x,7,10);

YES

addTo(y,5,10); addTo(y,12,20);

NO

Grading: 2 points for each correct answer

CS 3214 Fall 2013 Midterm

12/13

8. (6 points) Show the pthread synchronization needed in the code below to insure
that the file is not used until after the file is opened. Be sure to show the declaration
and initialization of any additional variables needed.

void fun(int i) {

 int fd = open("testdata",...);

}

void games(int i) {

 read(fd,...);

}

Answer:

pthread_mutex_t file_opened = PTHREAD_MUTEX_INITIALIZER;

main() {

 pthread_mutex_lock(&file_opened);

 …

}

void fun(int i) {

 int fd = open("testdata",...);

 pthread_mutex_unlock(&file_opened);

}

void games(int i) {

 pthread_mutex_lock(&file_opened);

 read(fd,...);

}

Grading: 1 point for declaration of mutex variable
 1 point for initialization of mutex variable
 2 point for indicating that the variable must be locked initially
 (any way they have of showing this is fine)
 1 point for use of unlock after file opened
 1 point for use of lock operation before file accessed

CS 3214 Fall 2013 Midterm

13/13

9. (12 points) Show the pthread synchronization needed so that the function below can
be executed safely by multiple threads. Answers will be graded on whether the correct
synchronization has been added and whether the synchronization is added in the
correct places. Be sure to show the declaration and initialization of any variables
needed for the synchronization.

struct { // global shared variable

 int cumulative;

 int values;

} val;

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

int func(int x, int y) {

{

 int increment, myvalues;

 increment = (x+y)**2 + (x-y)**2;

 myvalues = x+y;

 if (increment > 100) {

 pthread_mutex_lock(&mutex);

 val.cumulative = val.cumulative + increment;

 val.values = x+y;

 pthread_mutex_unlock(&mutex);

 }

 else {

 pthread_mutex_lock(&mutex);

 val.cumulative = x;

 val.number = y;

 pthread_mutex_unlock(&mutex);

 }

 int result = x*y;

 return result;

}

Answer: shown above in bold.
Grading: 2 points for declaration and initialization of global mutex variable
 5 points for lock/unlock in then clause
 5 points for lock/unlock in else clause

deduct 2 points if entire if-then-else is treated as one critical section
 5 points if initial assignments to increment and myvalues are in the
 critical section

