
CS 3214 Fall 2012  Midterm 
 

1/11 

CS 3214 Midterm 
 
This is a closed-book, closed-internet, closed-cell phone and closed-computer 
exam.  However, you may refer to your sheet of prepared notes. Your exam 
should have 9 pages with 4 topics totaling 100 points. You have 75 minutes. 
Please write your answers in the space provided on the exam paper. If you 
unstaple your exam, please put your initials on all pages.  You may use the back 
of pages if necessary, but please indicate if you do so we know where to look for 
your solution.  In three places you are asked to write your answers on the back of 
the pages. You may ask us for additional pages of scratch paper.  You must 
submit all sheets you use with your exam.  However, we will not grade what you 
scribble on your scratch paper unless you indicate you want us to do so.  
Answers will be graded on correctness and clarity. The space in which to write 
answers to the questions is kept purposefully tight, requiring you to be concise. 
You will lose points if your solution is more complicated than necessary or if you 
provide extraneous, but incorrect information along with a correct solution.  
 
 
Name (printed) ___________________________________________________ 
 
 
I accept the letter and the spirit of the Virginia Tech undergraduate honor code – 
I will not give and have not received aid on this exam. 
 
 

(signed) _____________________________________________ 
 
 

# Problem Points Score 

1 Program Representation 20  

2 Linking and Loading 25  

3 Processes and Job Control 35  

4 Memory Management 20  

 Total 100  

 



CS 3214 Fall 2012  Midterm 
 

2/11 

1. Program Representation (20 points) 
 
The assembly language code in the IA32 architecture for a C function is shown 
below. Each line is numbered for reference. 
 
          
         pushl %ebp                //line 1 

    movl %esp, %ebp          //line 2 
    subl $16, %esp           //line 3 
    movl 8(%ebp), %eax       //line 4 
    movl %eax, -8(%ebp)      //line 5 
    movl 12(%ebp), %eax      //line 6 
    movl %eax, -4(%ebp)      //line 7 
    movl -4(%ebp), %eax      //line 8 
    movl -8(%ebp), %edx      //line 9 
    leal (%edx,%eax), %eax   //line 10 
    movl %eax, s             //line 11 
    movl z, %eax             //line 12 
    movl %eax, 16(%ebp)      //line 13 
    movl 16(%ebp), %eax      //line 14 
    leave                       //line 15 
    ret                         //line 16 

  
 
 
 
(a) (7 points) Fill in the table below to indicate how many parameters, local 
variables, and global variables are accessed in this code and which lines of the 
code reference each type. 
 

Type Number Lines where referenced 

Parameters 3 4,6,13,14 

Local variables 2 5,7,8,9 

Global variables 2 11,12 

 
 
 
 
 



CS 3214 Fall 2012  Midterm 
 

3/11 

Shown below are two versions of the assembly code produced by gcc for 
function “b(int)”. The left column is the result when compiling at the first level of 
optimization (-O1). The right column is the result when compiling at the second 
level of optimization (-O2).  
 

IA32 code compiled with –O1 IA32 code compiled with –O2 
 
b: 
 pushl %ebp 
 movl %esp, %ebp 
 subl $24, %esp 
 movl 8(%ebp), %ebx 
 movl $0, %eax 
 testl %ebx, %ebx 
 je .L3 
 movb $1, %al 
 cmpl $1, %ebx 
 je .L3 
 leal -1(%ebx), %eax 
 movl %eax, (%esp) 
 call b 
 movl %eax, %esi 
 subl $2, %ebx 
 movl %ebx, (%esp) 
 call b 
 addl %esi, %eax 
.L3: 
 movl %ebp, %esp 
 popl %ebp 
 ret 
  

b: 
 pushl %ebp 
 movl %esp, %ebp 
 xorl %esi, %esi 
 subl $16, %esp 
 movl 8(%ebp), %ebx 
 testl %ebx, %ebx 
 je .L3 
 cmpl $1, %ebx 
 jne .L8 
 jmp .L13 
.L6: 
 cmpl $1, %ebx 
 je .L12 
.L8: 
 leal -1(%ebx), %eax 
 movl %eax, (%esp) 
 call b 
 addl %eax, %esi 
 subl $2, %ebx 
 jne .L6 
.L3: 
 addl $16, %esp 
 movl %esi, %eax 
 popl %ebp 
 ret 
.L12: 
 addl $1, %esi 
 addl $16, %esp 
 movl %esi, %eax 
 popl %ebp 
 ret 
.L13: 
 movw $1, %si 
 jmp .L3 
 

 
 
 
 
 
 
 



CS 3214 Fall 2012  Midterm 
 

4/11 

(b) (8 points) Provide a C version of function b(int).  [Hint: it is a well known 
mathematical algorithm.] Write your answer on the back of this page. 
 
 
int b(int n) { 
          if (n==0) return 0; 
          if (n==1) return 1; 
          return ( b(n-1) + b(n-2)  ) 
        } 
 
 
(c) (5 points) Describe the optimization that the complier applied in the –O2 case 
that it did not apply in the –O1 case. Write your answer on the back of this 
page. 
 
 
The recursive call in b has been replaced by iteration 
 
   
 
 



CS 3214 Fall 2012  Midterm 
 

5/11 

2. Linking and Loading (25 pts) 
Two .c files shown below are compiled to produce an executable file that is loaded into 
memory and ready to run. Use these files to answer the questions below.  

                
extern int x; 
int *p; 
static int f=0; 
 
main(){ 
  int f,g; 
   
  p = malloc(100); 
 
  f = 6;      //line 6 
  sub(f,g);   //line 7 
  exit();     //line 8 
} 

 
int x; 
int y = 0; 
extern int *p; 
 
void sub(int a, int b){ 
  int c; 
    
  c = a;     //line 1 
  a = x;     //line 2 
  b = y;     //line 3 
  x = y;     //line 4 
  *p = b;    //line 5 
} 

 
(a) (15 points) The following table references the code above using line numbers shown 
as comments. In the assignment statement in line 1, the variable “a” is the source and 
variable “c” is the target. For each line that is an assignment statement identify in 
column (b) the region in the executable file where the SOURCE value is located, identify 
in column (c) the region in the executable file where the TARGET value is located, and 
show in column (d) whether the source region is above (at a higher address) or below 
(at a lower address) the target region. Write UNKNOWN if the above/below ordering is 
not known.  For lines 8 and 9 the source is the region containing the program counter 
address immediately before the call and the target is the region containing the program 
counter address immediately after the call. Use correct ELF names wherever possible 
to name the regions. 

 

(a) CODE (b) SOURCE (c) TARGET 
(d) SOURCE 

ABOVE/BELOW 
TARGET 

line 1 stack stack above 

line 2 bss stack below 

line 3 data stack below 

line 4 data bss above 

line 5 stack heap above 

line 6 code data above 

line 7 code code unknown 

line 8 code kernel below 



CS 3214 Fall 2012  Midterm 
 

6/11 

(b) (6 points) The table below refers to symbols in the file above that contains the 
code for the sub function. Fill in each entry in the table with linker information. For 
each symbol definition. Write “NO” if the symbol is not one known to the linker or 
if it is not a definition. 
 

Symbol Weak/Strong Local/Global 
x weak global 
y strong global 
sub strong global 
p no no 
a no no 
c no no 

 
 
 
(c) (4 points) The table below refers to symbols in the file above that contains the 
definition of the main function. Fill in each entry in the table with linker 
information. In some cases you are asked to show whether a symbol is 
strong/weak and local/global. In other cases (where the symbol name is not 
given) you must identify a symbol with the given properties. Write “NO” if the 
symbol is not one known to the linker 
 

Symbol Weak/Strong Local/Global 
x no no 
p weak global 
main strong global 
f strong local 

 
 
 
 
 



CS 3214 Fall 2012  Midterm 
 

7/11 

3. Processes and Job Control (35 pts) 
The table below gives information about a collection of processes. Use this 
information to answer the questions below.  
 

PID Parent PID Group PID 
5516 5212 5516 
5612 5516 5612 
5613 5516 5612 
5600 5516 5600 
5610 5600 5610 
5712 5516 5712 
5720 5613 5612 

 
(a) (5 points) Draw a tree diagram showing the parent-child relationships labeling 
each node with its PID. Draw a circle around those processes which could share 
control of the terminal at one time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) (5 points) Suppose that the process whose process id is 5712 has just output 
a line to the terminal and is blocked waiting for the user to provide input. At this 
point the user enters a <cntrl>-C. For each signal that is sent give the name of 
the signal and what is the process id of the process that receives this signal.  
 

Signal Name PID of receiver 
SIGINT 5712 
SIGCHILD 5516 
  
  

 
 
 

5720 

5613 5612 

5516 

5600 

5610 

5712 

5212 



CS 3214 Fall 2012  Midterm 
 

8/11 

 
 
(c) (5 points) Suppose that the process whose process id is 5613 has just output 
a line to the terminal and is blocked waiting for the user to provide input. At this 
point the user enters a <cntrl>-C. For each signal that is sent give the name of 
the signal and what is the process id of the process that receives this signal.  
 

Signal Name PID of receiver 
SIGINT 5613 
SIGINT 5612 
SIGINT 5720 
SIGCHILD 5613 
SIGCHILD 5516 
SIGCHILD 5516 

 
 
 
 
You have been assigned the job of writing a function that can be used to launch 
a new process running a given executable and return two file descriptors allowing 
the parent to write to and read from a pipe that is connected to the child process. 
The child process communicates with the parent through the pipe using its 
STDIN and STDOUT file descriptors. The signature for this function is: 
 
    int  run_piped(char* ex, int write_fd, int read_fd); 
 
(d) (10 points) Identify the five most important system calls that you would need 
and very briefly state for each what role it would play. 
 
 

1. pipe – to create the pipes for communication 
2. fork – to create a child process 
3. exec – to load/execute the child code 
4. dup2 – to rearrange the child’s file descriptors 
5. close – to close unneeded file descriptors in the parent and child 

 
 
 
 
 
 
 
 
 
 



CS 3214 Fall 2012  Midterm 
 

9/11 

NOTE: IT IS RECOMMENDED THAT DEFER ANSWERING THIS QUESTION 
UNTIL AFTER YOU HAVE FINISHED WITH OTHER PARTS OF THE EXAM. 
 
(e) (10 points). Write below the code for the run_piped function.  
 
 
int  run_piped(char* ex, int *write_fd, int *read_fd){ 
 
  int to_child[2], from_child[2]; // create pipes 
  pipe(to_child); 
  pipe(from_child); 
 
  if (fork()==0) {  //child code 
 
     dup2(to_child[1], STDIN);   // set up pipes for child 
     dup2(from_child[0], STDOUT); 
     close(to_child[0]; 
     close(from_child[1]; 
 
     exec(ex);                   // load child code 
  } 
  //parent code 
 
  *read_fd  = from_child[0];  // return pipe ends to parent 
  *write_fd = to_child[1]; 
  close[from_child[1];       // close unneeded pipe ends 
  close(to_child[0]); 
    
} 
 



CS 3214 Fall 2012  Midterm 
 

10/11 

4. Memory Management (20 pts) 
 
(a)(5 points) For a memory allocator using implicit lists, write an algorithm that 
determines the size of the largest payload in the free memory. Assume that  
void* pstart and void* pend are pointers to the beginning and the end of the 
heap memory. 
 
 
int max = 0; 
p = pstart;              // from start of heap 
while (p<pend) {         // while more blocks 
  if (p&01)              // check use bit 
    p=p + (*p & ~01)     //go to next block if used 
  else {                 // for free block 
    if((*P & ~01) > max) // biggest seen so far 
    max = (*p & ~01);    // set new maximum 
  } 
} 
 
 
 
 
 
 
(b) (5 points) Describe two types of serious errors that application developers can 
make when performing explicit memory management. 
 
 
 
     1. neglecting to free allocated memory – leads to memory leaks 
     2. freeing memory that is still in use – leads to program errors 
 
     
 
 
 
 
 
 
 
 
 
 
 



CS 3214 Fall 2012  Midterm 
 

11/11 

A dynamic memory allocator uses explicit lists with a LIFO ordered free list and a 
first-fit allocation policy. A particular application makes requests in three phases 
as follows: 
 
phase 1: make a large number of pairs of request – one for a block of size 50  
               and for a block of size 100 
phase 2: free all the blocks of size 50 
phase 3: allocate a large number of blocks for size 200 
 
 
(c) (5 points)  During phase 3 the application experiences poor throughput 
performance from the dynamic memory allocator. Explain why.  
 
 
 
Because the beginning of the free list contains a large number of blocks 
that are too small to satisfy the requested allocations in phase 3. Since this 
is a LIFO list the small blocks released in phase 2 will all be at the front of 
the list. First-fit starts at the beginning of the list. Thus, a large number of 
iterations is needed on each allocation to find a suitable block. 
 
 
 
 
 
(d) (5 points) What are two ways in which the dynamic memory allocator could be 
changed to achieve better throughput performance for the above application? 
 
 
    1. use segregated storage 
    2. use next fit algorithm 
 
    [other valid answers also acceptable] 
 
 
 


	1. Program Representation (20 points)
	2. Linking and Loading (25 pts)
	3. Processes and Job Control (35 pts)
	4. Memory Management (20 pts)

