
CS3214 Fall 2020 Exercise 1

Due: See website for due date.

What to submit: A tar file that should contain the file answers.txt, which must be
an ASCII file with answers for questions 1 and 2. For question 3, which asks for code,
include a file named dpipe.c in your tar file.

Use the submit.py script in ~cs3214/bin/submit.py to submit your tar file from the
command line, or use the submit website. Use the identifier ‘ex1.’

The assignment will be graded on the rlogin cluster, so your answers must match this
environment. In addition, every student will use a variant of dpipe that is unique; please
visit cs3214/fall2020/#!/ex1 to find your variant.

Understanding Processes and Pipes

In this exercise we consider a program ‘dpipe,’ which, in connection with a netcat utility
program, can be used to turn any ordinary program into a network server. The goal
of this exercise is to understand how a process’s standard input and standard output
file streams can be manipulated by a control program using standard Unix system call
facilities. A very similar file descriptor manipulation is performed by a shell when it sets
up I/O redirection or pipes.

In this exercise, you are asked to observe, reverse-engineer, and then reimplement the
dpipe program. The dpipe binary is provided in ~cs3214/bin/dpipe.variants/
dpipe-ABC on our machines, where ABC is the unique id created for you. For netcat, use
the ~cs3214/bin/gnetcat binary.

To allow you to invoke those commands directly, make sure that ~cs3214/bin and
~cs3214/bin/dpipe.variants are included in your PATH environment variable.1

Here’s an example session of how to use it. Say you’re logged in to the machine ‘locust’
and run the command dpipe-ABC wc gnetcat -l 159992. This will produce output
as follows:

[cs3214@locust sys1]$ ~cs3214/bin/dpipe.variants/dpipe-ABC wc gnetcat -l 15999
Starting: gnetcat
Starting: wc

Note that the shell is still waiting for dpipe to complete. The questions listed in part 1
must be answered at this point, after you have started dpipe, but before the next step.
You may wish to continue reading and then return to this point, after opening a second
terminal on the same machine.3

1This is, however, not necessary - you can also replace dpipe-ABC with its full path ~cs3214/bin/
dpipe.variants/dpipe-ABC

2When you try this out, please replace 15999 with a number that with high likelihood is unique so you
do not conflict with other students using this machine, let’s agree to using 10 000 + last 4 digits of your VT
PID here.

3Hint: ssh to portal.cs.vt.edu, then choose the machine on which your other shell session runs.

1

https://courses.cs.vt.edu/cs3214/fall2020//#!/ex1
http://en.wikipedia.org/wiki/Path_(variable)


CS3214 Fall 2020 Exercise 1

dpipe
forks,
waits forforks,

waits for

gnetcat
l 15999 wc

gnetcat locust 
15999 < 

pipe
stdout

TCP/IP

stdin

–l 15999/etc/passwd

chinkapin locust

stdin

/

pipe
stdout

chinkapin locust

Figure 1: Using dpipe to cross-link two programs’ standard input and output streams.

The next command can be run on any rlogin machine:

[cs3214@chinkapin ~]$ gnetcat locust 15999 < /etc/passwd
38 97 2170

[cs3214@chinkapin ~]$

The gnetcat instance started here connected to the gnetcat instance running on locust, and
sent its input there (in this case, the content of file /etc/passwd). Gnetcat (running on
locust) outputs this data to its standard output stream, which is connected via a pipe to
the standard input stream of the ‘wc’ program. The standard output stream of ‘wc’ is con-
nected to the standard input stream of locust’s gnetcat instance. Anything output by ‘wc’
will then be forwarded to chinkapin’s gnetcat instance, which outputs it to its standard
output, thus appearing on the user’s terminal on chinkapin. You have just turned the
ordinary ‘wc’ program into a network service! The entire scenario is shown in Figure 1.

Finally, dpipe exits when both of the processes it started have terminated:

[cs3214@locust sys1]$

1. Using /proc The /proc file system, originally introduced as part of the Solaris OS,
is a mechanism by which the Linux kernel provides information about processes
to users. This information is organized in directories and files that can be accessed
using ordinary tools such as ls or cat. However, they do not represent actual
directories or files – rather, their content is created dynamically when a user accesses
them, based on the current state of the system and its processes. The kernel creates
a directory for each process, which is named for its pid. Within the directory, there
are additional files and directories that describe the current state of the process.

After you have started dpipe with ‘wc’ and ‘gnetcat -l’, use the ps(1) command to
find the process ids of these three processes, then use ps or /proc to find the parent
process id, the process group id, and the current status of these processes.

(a) Provide the following information in table form:

2



CS3214 Fall 2020 Exercise 1

Process PID Parent PID Process Group ID State
dpipe-ABC
wc
gnetcat

You may find the proc(5) man page useful. 4

Use the single letter Linux shorthand for the process state.

(b) You should find that all three processes are in the same state. To which of the
3 states of the simplified process state diagram discussed in lecture does this state
correspond?

(c) Now examine the /proc/nnnnn/fd directories for each process. Use ls -l.
For each process’s open file descriptors, enter in the table below the device or object
to which it refers. Enter N/O if a file descriptor is not currently in use.

File Descriptor dpipe-ABC wc gnetcat
(stdin) 0

(stdout) 1
(stderr) 2

3

Look at Figure 1 and convince yourself that dpipe indeed creates the arrangement
shown there (minus the network connection, which has not yet been created).

2. Using strace. Processes use system calls to obtain services from the kernel. The
program ‘strace’ is a utility that can display which system calls a process is exe-
cuting. strace can trace individual processes from start to end; on request, it can
trace child and ancestor processes as well, and it can even trace already running
processes. Familiarize yourselves with the ‘strace’ command (use ’man strace’, for
instance). Frequently used switches include -f, -e, -p, -ff, and -o which you
should memorize.

Run dpipe-ABC under strace, creating again the constellation of processes described
in the introduction (wc and gnetcat), and use gnetcat on another machine to send
data until dpipe exits. Use the -ff and -o switches to strace to obtain separate
listings for dpipe and its children.

(a) Identify which system calls the dpipe process made. From the relevant strace
output, copy the entries corresponding to the system calls pipe(), close(),
fork(), wait(), and exit(). Hint: Linux’s implementation of the fork() sys-
tem call is actually called clone(), wait() is implemented using wait4(), and
exit() corresponds to exit_group().

(b) Identify which system calls the process executing ‘wc’ made. Include the entries

4The number (5) in parentheses denotes the section of the man pages in which the information is found.
On the command line, you would type man 5 proc to access this page in section 5. man proc works too,
but only because only section 5 of the manual has an entry for proc.

3



CS3214 Fall 2020 Exercise 1

corresponding to write(), dup2(), close(), and execve(). Stop at the first
execve() call that was successful (listed as returning 0 in strace’s output.)

(c) Like part b), except for the process executing ‘gnetcat’.

Note that the traces for part (b) and (c) correspond to the system calls made by the
child processes spawned by dpipe-ABC between fork() and exec().

(d) Now, rerun strace with the switches -f -e wait4,accept,read without
connecting the gnetcat client (like in part 1). All three processes will be inside the
kernel, in one of these three system calls. Answer the following questions for each
process:

• What is the state for each process, using the nomenclature of the simplified
process state diagram discussed in lecture?

• Which process is in which system call?

• How can each process’s state be explained from the semantics of that system
call?

Use the following example format for your answer: Process ‘dpipe’ is in the (insert
state here) state in the (insert system call here) system call because it is (describe
what caused it to be in this state).

3. Implement dpipe-ABC.

Armed with the knowledge gained in the previous part, implement dpipe-ABC so
that it issues exactly the system calls you’ve observed in the traces, in the same
order.

Although the OS will use predictable file descriptors in pipe(), your program should
use variables and not constants, e.g. calling close(3) would not be an acceptable
solution.

Use the execvp() frontend for the execve() system call. Make sure you imple-
ment argument passing correctly. dpipe should first invoke the program whose
name is given as its first argument, without passing any additional arguments to
it. Then it should interpret the second argument as the name of a second program
and pass the third argument as the first argument to the second program, the fourth
argument as the second, and so on. It is customary to set argv[0] to the name of
the program itself, and your invocations of execvp() should do the same. Hint:
it is possible to achieve this without creating a complete copy of the argv[] array
passed to dpipe’s main program.

If done correctly, the strace output for the relevant system calls 5 in your dpipe-ABC
implementation must be identical to the output obtained from the provided dpipe-
ABC; in fact, this is what the TAs’ software will check.

5these include the pipe, clone, and wait-related calls, as well as the file descriptor-related calls for the
file descriptors you create, manipulate, and close. You may find difference before and after those.

4



CS3214 Fall 2020 Exercise 1

Important: even though the relative order of some of the system calls is not impor-
tant for the correct functioning of dpipe, your assigned variant of dpipe will have a
specific ordering your submission must reproduce to obtain full credit.

Make sure that your dpipe-ABC does not return to the prompt prematurely, or fails
to return to the prompt after its children have exited.

Important: We will use the compiler switches -O -Wall -Werror when compil-
ing your program. If you compile without these switches, and any warnings occur
in your code, you run the risk of failing our autograding scripts.

5


