
CS 3214
Computer Systems

LINKING AND LOADING

Part 1

CS 3214 Spring 2017

Some of the following slides are taken with permission from
Complete Powerpoint Lecture Notes for
Computer Systems: A Programmer's Perspective (CS:APP)

Randal E. Bryant and David R. O'Hallaron

http://csapp.cs.cmu.edu/public/lectures.html

Topics
•  Static linking
•  Object files
•  Static libraries
•  Loading
•  Dynamic linking of shared libraries

•  Linking is a mundane topic
–  Full of quirks and seemingly arbitrary rules
–  But worth learning, IMO
–  Essential skill for any practicing C programmer
–  Necessary skill for productive practice in mixed-language

and inter-language environments

CS 3214 Spring 2017

High-Level Issues
•  How are (large) programs being built and

executed
– How do compiler, linker, and loader cooperate

•  SE angle:
– What “module” system does the standard

toolchain provide, particularly wrt encapsulation
and code reuse.

– Difference between declaration and definition
– Best practices in using it when writing large

programs

CS 3214 Spring 2017

Compiling and Linking
•  Compiler driver coordinates all steps in the translation

and linking process.
–  Typically included with each compilation system (e.g., gcc)
–  Invokes preprocessor (cpp), compiler (cc1), assembler

(as), and linker (ld).
–  Passes command line arguments to appropriate phases

•  Example: create executable p from m.c and a.c:
bass> gcc -O2 -v -o p m.c a.c
cpp [args] m.c /tmp/cca07630.i
cc1 /tmp/cca07630.i m.c -O2 [args] -o /tmp/cca07630.s
as [args] -o /tmp/cca076301.o /tmp/cca07630.s
<similar process for a.c>
ld -o p [system obj files] /tmp/cca076301.o /tmp/cca076302.o
bass>

cpp has been integrated into cc1

CS 3214 Spring 2017

CS 3214 Spring 2017

The Big Picture

Program Code
.c/.cc Source File 1

Assembly Code
.s File 1

Object Code
.o File 1

Program Code
.c/.cc Source File 2

Assembly Code
.s File 2

Object Code
.o File 2

.h Header File 1 .h Header File 2 .h Header File 3

Executable Program1

Process1

Physical RAM (physically addressed)

Preprocessor

Compiler

Assembler

Linker

Loader

MMU Run Time

Load Time

Link Time

Compile Time

Executable Program2

Process2 Process3

From High To Low Level:
Resolving Symbolic Names

•  Compiler, Assembler, Linker all resolve
symbolic names

•  Compiler: (function-)local variables, field
names, control flow statements

•  Assembler: resolves labels
•  Linker resolves references to (file-)local

(“static”) and global variables and function

CS 3214 Spring 2017

Linker Puzzles

int x;
p1() {}

int x;
p2() {}

int x;
int y;
p1() {}

double x;
p2() {}

int x=7;
int y=5;
p1() {}

double x;
p2() {}

int x=7;
p1() {}

int x;
p2() {}

int x;
p1() {}

p1() {}

Question for each
example:
Will it link?
If so, will it run?
If so, what will happen?

code1.c code2.c

CS 3214 Spring 2017

What Does a Linker Do?
•  Merges object files

–  Merges multiple relocatable (.o) object files into a single executable
object file that can loaded and executed by the loader.

•  Resolves external references
–  As part of the merging process, resolves external references.

•  External reference: reference to a symbol defined in another object file.

•  Relocates symbols
–  Relocates symbols from their relative locations in the .o files to new

absolute positions in the executable.
–  Updates all references to these symbols to reflect their new positions.

•  References can be in either code or data
–  code: a(); /* reference to symbol a */
–  data: int *xp=&x; /* reference to symbol x */

CS 3214 Spring 2017

Why Linkers?
•  Modularity

–  Program can be written as a collection of smaller source
files, rather than one monolithic mass.

–  Can build libraries of common functions (more on this later)
•  e.g., Math library, standard C library

•  Efficiency
–  Time:

•  Change one source file, compile, and then relink.
•  No need to recompile other source files.

–  Space:
•  Libraries of common functions can be aggregated into a single

archive file...
•  Yet executable files and running memory images contain only

code for the modules whose functions they actually use

CS 3214 Spring 2017

Executable and Linkable Format (ELF)

•  Standard binary format for object files
•  Derives from AT&T System V Unix

–  Later adopted by BSD Unix variants and Linux
•  One unified format for

– Relocatable object files (.o),
– Executable object files
– Shared object files (.so)

•  Generic name: ELF binaries
•  Better support for shared libraries than old

a.out formats.

CS 3214 Spring 2017

ELF Object File Format
•  Elf header

–  Magic number, type (.o, exec, .so), machine,
byte ordering, etc.

•  Program header table
–  Page size, virtual addresses memory

segments (sections), segment sizes.
•  .text section

–  Code
•  .data section

–  Initialized (static) data
•  .bss section

–  Uninitialized (static) data
–  “Block Started by Symbol”
–  “Better Save Space”
–  Has section header but occupies no space

ELF header

Program header table
(required for executables)

.text section

.data section

.bss section

.symtab

.rel.text

.rel.data

.debug

Section header table
(required for relocatables)

0

CS 3214 Spring 2017

ELF Object File Format (cont)
•  .symtab section

–  Symbol table
–  Procedure and static variable names
–  Section names and locations

•  .rel.text section
–  Relocation info for .text section
–  Addresses of instructions that will need to be

modified in the executable
–  Instructions for modifying.

•  .rel.data section
–  Relocation info for .data section
–  Addresses of pointer data that will need to be

modified in the merged executable
•  .debug section

–  Info for symbolic debugging (gcc -g)

ELF header

Program header table
(required for executables)

.text section

.data section

.bss section

.symtab

.rel.text

.rel.data

.debug

Section header table
(required for relocatables)

0

CS 3214 Spring 2017

Relocatable object files
•  Contains multiple sections denoted in header
•  Constructed as if text & data started at

address 0
•  Can be moved anywhere in memory
•  Includes place holders for where values of

symbols will go (e.g., as part of jump/call or
mov instructions)

•  Includes “patchup” instructions for linker –
aka relocation records that describe where
final addresses must appear after linking

CS 3214 Spring 2017

Merging Relocatable Object Files
into an Executable Object File

main()
m.o

int *ep = &e

a()

a.o

int e = 7

headers

main()

a()

0system code

int *ep = &e

int e = 7

system data

more system code

int x = 15
int y

system data

int x = 15

Relocatable Object Files Executable Object File

.text

.text

.data

.text

.data

.text

.data

.bss .symtab
.debug

.data

uninitialized data .bss

system code

0

0

0

CS 3214 Spring 2017

Linker Symbols
•  Global symbols

–  Defined by a module, can be used by other modules
–  C global variables and functions (non-static!)

•  External symbols
–  Used by a module, defined by another module

•  Local symbols
–  Defined by a module, used exclusively in that module
–  C static functions and static variables

•  Don’t confuse with local variables!
–  Different modules can use the same local symbol

without conflict – different copies!
CS 3214 Spring 2017

Example C Program

int e=7;

int main() {
 int r = a();
 exit(0);
}

m.c a.c

extern int e;

int *ep=&e;
int x=15;
int y;

int a() {
 return *ep+x+y;
}

CS 3214 Spring 2017

Relocating Symbols and Resolving
External References

•  Symbols are lexical entities that name functions and variables.
•  Each symbol has a value (typically a memory address).
•  Code consists of symbol definitions and references.
•  Definitions can be local or global. Local is local to a .o file/module!
•  Global definitions can be strong or weak.
•  References can be either local or external.

int e=7;

int main() {
 int r = a();
 exit(0);
}

m.c a.c
extern int e;

int *ep=&e;
int x=15;
int y;

int a() {
 return *ep+x+y;
}

Def of strong  
global
symbol e

Ref to external
symbol exit
(defined in
libc.so)

Ref to
external
symbol e Def of

global
symbol
ep

Defs of
global
symbols  
x (strong)
and y
(weak) Refs to global

symbols ep,x,y

Def of
strong global
symbol a

Ref to external
symbol a

CS 3214 Spring 2017

m.o Relocation Info
Disassembly of section .text:

00000000 <main>: 00000000 <main>:
 0: 55 pushl %ebp
 1: 89 e5 movl %esp,%ebp
 3: e8 fc ff ff ff call 4 <main+0x4>
 4: R_386_PC32 a
 8: 6a 00 pushl $0x0
 a: e8 fc ff ff ff call b <main+0xb>
 b: R_386_PC32 exit
 f: 90 nop

Disassembly of section .data:

00000000 <e>:
 0: 07 00 00 00
 source: objdump

int e=7;

int main() {
 int r = a();
 exit(0);
}

m.c

CS 3214 Spring 2017

R_386_PC32:
PC-relative relocation

a.o Relocation Info (.text)
a.c
extern int e;

int *ep=&e;
int x=15;
int y;

int a() {
 return *ep+x+y;
}

Disassembly of section .text:

00000000 <a>:
 0: 55 pushl %ebp
 1: 8b 15 00 00 00 movl 0x0,%edx
 6: 00
 3: R_386_32 ep
 7: a1 00 00 00 00 movl 0x0,%eax
 8: R_386_32 x
 c: 89 e5 movl %esp,%ebp
 e: 03 02 addl (%edx),%eax
 10: 89 ec movl %ebp,%esp
 12: 03 05 00 00 00 addl 0x0,%eax
 17: 00
 14: R_386_32 y
 18: 5d popl %ebp
 19: c3 ret

CS 3214 Spring 2017

a.o Relocation Info (.data)
a.c
extern int e;

int *ep=&e;
int x=15;
int y;

int a() {
 return *ep+x+y;
}

Disassembly of section .data:

00000000 <ep>:
 0: 00 00 00 00

 0: R_386_32 e
 00000004 <x>:
 4: 0f 00 00 00

CS 3214 Spring 2017

Executable After Relocation and
External Reference Resolution (.text)

08048530 <main>:
 8048530: 55 pushl %ebp
 8048531: 89 e5 movl %esp,%ebp
 8048533: e8 08 00 00 00 call 8048540 <a>
 8048538: 6a 00 pushl $0x0
 804853a: e8 35 ff ff ff call 8048474 <_init+0x94>
 804853f: 90 nop

08048540 <a>:
 8048540: 55 pushl %ebp
 8048541: 8b 15 1c a0 04 movl 0x804a01c,%edx
 8048546: 08
 8048547: a1 20 a0 04 08 movl 0x804a020,%eax
 804854c: 89 e5 movl %esp,%ebp
 804854e: 03 02 addl (%edx),%eax
 8048550: 89 ec movl %ebp,%esp
 8048552: 03 05 d0 a3 04 addl 0x804a3d0,%eax
 8048557: 08
 8048558: 5d popl %ebp
 8048559: c3 ret

CS 3214 Spring 2017

Executable After Relocation and
External Reference Resolution(.data)

Disassembly of section .data:

0804a018 <e>:
 804a018: 07 00 00 00

0804a01c <ep>:
 804a01c: 18 a0 04 08

0804a020 <x>:
 804a020: 0f 00 00 00

int e=7;

int main() {
 int r = a();
 exit(0);
}

m.c

a.c extern int e;

int *ep=&e;
int x=15;
int y;

int a() {
 return *ep+x+y;
}

CS 3214 Spring 2017

CS 3214 Spring 2017

Linker’s Symbol Rules
•  Rule 1. A strong symbol can only appear

once.

•  Rule 2. A weak symbol can be overridden by
a strong symbol of the same name.
–  references to the weak symbol resolve to the

strong symbol.

•  Rule 3. If there are multiple weak symbols of
the same name, the linker can pick an
arbitrary one.

CS 3214 Spring 2017

Linker Puzzles, Resolved

int x;
p1() {}

int x;
p2() {}

int x;
int y;
p1() {}

double x;
p2() {}

int x=7;
int y=5;
p1() {}

double x;
p2() {}

int x=7;
p1() {}

int x;
p2() {}

int x;
p1() {}

p1() {} Link time error: two strong symbols (p1)

References to x will refer to the same
uninitialized int. Is this what you really want?

Writes to x in p2 might overwrite y!
Evil!

Writes to x in p2 will overwrite y!
Nasty!

References to x will refer to the same initialized
variable.

CS 3214 Spring 2017

Linker Symbols
•  Global symbols

–  Defined by a module, can be used by other modules
–  C global variables and functions (non-static!)

•  External symbols
–  Used by a module, defined by another module

•  Local symbols
–  Defined by a module, used exclusively in that module
–  C static functions and static variables

•  Don’t confuse with local variables!
–  Different modules can use the same local symbol

without conflict – different copies!
CS 3214 Spring 2017

Mapping C Names To Symbols
Functions
•  static void f(void) { … }

–  Defines local symbol ‘f’
•  void g(void) { … }

–  Defines (strong) global
symbol ‘g’

•  static void f(void);
–  Defines no symbol

•  void e(void);
extern void e(void);
–  Make ‘e’ an external

reference
•  Undefined functions are

assume to be external by
default

Variables
•  static int lf = 4;

static int lf2;
–  Defines local symbols ‘lf’,

‘lf2’
•  int wgl;

–  Defines weak global symbol
aka ‘common’ symbol

•  int gl = 4;
–  Defines strong global symbol

•  extern int ef;
–  ‘ef‘ is defined somewhere

else
•  No default

CS 3214 Spring 2017

Aside: Assembler Rules

•  Symbols became labels at the assembler
level

•  Default here is local, must say “.global” to
make it global
– Reversed from C, where default is global and

must say “static” to make local

CS 3214 Spring 2017

Practical Considerations
•  Variables:

–  Avoid global variables (of course!)
–  Place ‘extern’ declaration in header file, choose exactly one .c

file for definition
•  (If appropriate) initialize global variable to make symbol strong

–  If you followed these rules,
-Wl,--warn-common should be quiet

•  Functions
–  Make static whenever possible
–  Use consistent prefix for public functions, e.g.:

•  file.c exports file_open, file_close, file_read, file_write
•  strlen.c contains strlen()

–  Don’t ignore “implicit declaration warnings”
–  Declare global functions in header files

•  Consider –Wmissing-prototypes

CS 3214 Spring 2017

Practical Considerations (2)
•  Never define variables in header files
•  Consider

–  If defined non-static
•  w/o initialization, e.g. int x;

–  will link and refer to same variable – unclear if this is
intended (because of multiple weak symbol rule)

•  w/ initialization, e.g. int x = 5;
–  gives linker error “multiply defined” once .h is included in

multiple .c files
–  If defined static, e.g. static int x;

•  w/ or w/o initialization
–  Will compile and link, but each .c file has its own copy
–  This is practically never what you want

CS 3214 Spring 2017

Practical Considerations (3)
•  Defining functions in header files
•  Ok for static functions

–  (non-static would give conflicting strong symbols)
•  Potential disadvantage: if function is not inlined,

code will be duplicated in each .o module
–  If inlined, no penalty

•  Remember that compiler needs to see function
definition in same compilation unit to inline
–  Solution: define all functions you wish to inline

statically in .h files
–  Define all small functions in .h files

CS 3214 Spring 2017

LINKING AND LOADING

Part 2

CS 3214 Spring 2017

Some of the following slides are taken with permission from
Complete Powerpoint Lecture Notes for
Computer Systems: A Programmer's Perspective (CS:APP)

Randal E. Bryant and David R. O'Hallaron

http://csapp.cs.cmu.edu/public/lectures.html

Merging Relocatable Object Files
into an Executable Object File

main()
m.o

int *ep = &e

a()

a.o

int e = 7

headers

main()

a()

0system code

int *ep = &e

int e = 7

system data

more system code

int x = 15
int y

system data

int x = 15

Relocatable Object Files Executable Object File

.text

.text

.data

.text

.data

.text

.data

.bss .symtab
.debug

.data

uninitialized data .bss

system code

0

0

0

CS 3214 Spring 2017

Packaging Commonly Used Functions

•  How to package functions commonly used by
programmers?
–  Math, I/O, memory management, string manipulation,

etc.
•  Awkward, given the linker framework so far:

–  Option 1: Put all functions in a single source file
•  Programmers link big object file into their programs
•  Space and time inefficient

–  Option 2: Put each function in a separate source file
•  Programmers explicitly link appropriate binaries into their

programs
•  More efficient, but burdensome on the programmer

CS 3214 Spring 2017

Static libraries (.a archive files)

•  Concatenate related relocatable object
files into a single file with an index (called
an archive).

•  Enhance linker so that it tries to resolve
unresolved external references by looking
for the symbols in one or more archives.

•  If an archive member file resolves
reference, link member file into
executable.

CS 3214 Spring 2017

Static Libraries (archives)

Translator

p1.c

p1.o

Translator

p2.c

p2.o libc.a
static library (archive) of
relocatable object files
concatenated into one file.

executable object file (only contains code and
data for libc functions that are called from p1.c
and p2.c)

Further improves modularity and efficiency by packaging
commonly used functions [e.g., C standard library (libc), math
library (libm)]

Linker selectively includes only the .o files in the archive that are
actually needed by the program.

Linker (ld)

p

CS 3214 Spring 2017

How to link with static libraries
•  Suppose have /some/path/to/libfun.a

– Two options
•  Specify library directly

– gcc … /some/path/to/libfun.a
•  Use –L and –l switch

– gcc … -L/some/path/to –lfun
– Driver adds ‘lib[name].a’
–  -L must come before -l

•  Example:
– -liberty links in libiberty.a

CS 3214 Spring 2017

Creating Static Libraries

Translator

atoi.c

atoi.o

Translator

printf.c

printf.o

libc.a

Archiver (ar)

... Translator

random.c

random.o

ar rs libc.a \
 atoi.o printf.o … random.o

Archiver allows incremental updates:
•  Recompile function that changes and replace .o
file in archive.

C standard library

CS 3214 Spring 2017

Commonly Used Libraries
•  libc.a (the C standard library)

–  8 MB archive of 900 object files.
–  I/O, memory allocation, signal handling, string handling, date and time,

random numbers, integer math
•  libm.a (the C math library)

–  1 MB archive of 226 object files.
–  floating point math (sin, cos, tan, log, exp, sqrt, …)

CS 3214 Spring 2017

% ar -t /usr/lib/libc.a | sort
…
fork.o
…
fprintf.o
fpu_control.o
fputc.o
freopen.o
fscanf.o
fseek.o
fstab.o
…

% ar -t /usr/lib/libm.a | sort
…
e_acos.o
e_acosf.o
e_acosh.o
e_acoshf.o
e_acoshl.o
e_acosl.o
e_asin.o
e_asinf.o
e_asinl.o
…

Using Static Libraries
•  Linker’s algorithm for resolving external

references:
– Scan .o files and .a files in command line order
– During the scan, keep a list of the current

unresolved references
– As each new .o or .a file obj is encountered, try to

resolve each unresolved reference in the list
against the symbols in obj

– Add any new external symbols not yet resolved to
list

–  If any entries in the unresolved list at end of scan,
then error.

CS 3214 Spring 2017

Using Static Libraries (2)
•  Problem:

– Command line order matters!
– Moral: put libraries at the end of the command

line. bass> gcc -L. libtest.o -lmine
bass> gcc -L. -lmine libtest.o
libtest.o: In function `main':
libtest.o(.text+0x4): undefined reference to `libfun'

•  Granularity of linking is .o file/module, not function
•  When designing libraries, place functions that may

be used independently in different files
•  Otherwise, conflicts or unintended resolutions may

result
•  Hint: create a linker map!

•  gcc –Wl,Map –Wl,filename
CS 3214 Spring 2017

CS 3214 Spring 2017

Loading
•  When starting a program, OS loads

executable from disk and creates a new
process

•  Linker and loader cooperate:
–  Linker: creates ELF files
–  Loader: interprets them

•  Process’s information appears at virtual
addresses
– Start with segments defined by executable
– More added as program executes

CS 3214 Spring 2017

Virtual Address Space
Layout in Linux for IA32

•  All of this is by convention
–  Changing over time

•  Recent systems randomize
everything that is not fixed
during static linking phase
–  Start of stack, heap, mmap,
…

•  Can tell linker to link at any
address
–  Built-in instructions:

ld --verbose

CS 3214 Spring 2017

Code

Data
BSS

Stack

Heap

Kernel

Others (mmap’d files,
shared libs,

special segments)

ASLR

•  Address Space Layout Randomization
•  Addresses known at link time facilitate certain

types of attacks (e.g. buffer overflow, return-
to-libc, etc.)

•  Modern systems (since ca. 2004)
aggressively randomize addresses of various
segments (shared libs, heap, stack);
– Some go further, i.e., OpenBSD: PIE

•  Trade-off: costs vs. gain
CS 3214 Spring 2017

Loading Executable Binaries
ELF header

Program header table
(required for executables)

.text section

.data section

.bss section

.symtab

.rel.text

.rel.data

.debug

Section header table
(required for relocatables)

0

.text segment
(r/o)

.data segment
(initialized r/w)

.bss segment
(uninitialized r/w)

Executable object file for
example program p

Process image

0x08048494

init and shared lib
segments

0x080483e0

Virtual addr

0x0804a010

0x0804a3b0

CS 3214 Spring 2017

Aside: Anatomy of an Executable
On Disk:

In
Virtual
Memory:

8048000 8049000 804A000 804B000 804C000 804D000 804E000

0 4096 8192 12288

…..

14025
14287

read only read/write

Code and Read-Only Data Other sections: Debugging Info, etc.

Initialized Global Data Uninitialized Global Data (Must Zero)
“impurities” – the content of these areas is undefined as far as the
program is concerned. For simplicity, they can be filled with data from
the executable

45391

Read from executable

Zeroed by loader

CS 3214 Spring 2017

Drawbacks of Static Libraries

•  Static libraries have the following
disadvantages:
– Potential for duplicating lots of common code

in the executable files on a filesystem
•  e.g., every C program needs the standard C library

– Potential for duplicating lots of code in the
virtual memory space of many processes

– Minor bug fixes of system libraries require
each application to explicitly relink

CS 3214 Spring 2017

Shared Libraries
•  Shared libraries (dynamic link libraries, DLLs)

whose members are dynamically loaded into
memory and linked into an application at run-time.
–  Dynamic linking can occur when executable is first

loaded and run.
•  Common case for Linux, handled automatically by ld-linux.so.
•  Explore ‘ldd’ command

–  Dynamic linking can also occur after program has
begun.

•  In Linux, this is done explicitly by user with dlopen()
•  Basis for many plug-in systems

–  Shared library routines can be shared by multiple
processes.

CS 3214 Spring 2017

Dynamically Linked Shared
Libraries (Simplified)

libc.so functions called by m.c
and a.c are loaded, linked, and
(potentially) shared among
processes.

Shared library of dynamically
relocatable object files

Translators
(cc1, as)

m.c

m.o

Translators
(cc1,as)

a.c

a.o

libc.so

Linker (ld)

p

Loader/Dynamic Linker
(ld-linux.so)

Fully linked executable
p’ (in memory)

Partially linked executable p
(on disk)

P’
CS 3214 Spring 2017

A More Complete Picture

Translator

m.c

m.o

Translator

a.c

a.o

libc.so

Static Linker (ld)

p

Loader/Dynamic Linker
(ld-linux.so)

libwhatever.a

p’

libm.so

CS 3214 Spring 2017

Shared Libraries
•  Loaded on demand

– Using a trampoline (next slide)
•  Want to load shared libraries
•  Goal: want to load shared libraries into

multiple processes at different addresses
•  Note:

– Code segment should not change during dynamic
linking

– Each process needs own data segment
•  Solution: Position-Independent Code

CS 3214 Spring 2017

Use of Trampolines

CS 3214 Spring 2017

int main()
{
 exit(printf(“Hello, World\n”));
}

0x080483cc <main+24>: call 0x80482b8 <printf@plt>

0x80482b8 <printf@plt>: jmp *0x80495b8

0x80495b8 <_GLOBAL_OFFSET_TABLE_+20>: 0x080482be 0x80495b8 <_GLOBAL_OFFSET_TABLE_+20>:
0x00146e10

0x146e10 <printf>: push %ebp

0x80482be <printf@plt+6>: push $0x10
0x80482c3 <printf@plt+11>: jmp 0x8048288

0x8048288: pushl 0x80495a8
0x804828e: jmp *0x80495ac

0x80495ac <_GLOBAL_OFFSET_TABLE_+8>: 0x003874c0

0x3874c0 <_dl_runtime_resolve>: push %eax

Position-Independent Code
•  How to encode accesses to global

variables without requiring relocation?
– Use indirection

CS 3214 Spring 2017

Contents of section .data:
 1530 efbeadde

int x = 0xdeadbeef;

int getx() { return x; }

.text

Global
Offset Table

.data

Fixed Offset

Position-Independent Code (2)

CS 3214 Spring 2017

000003bc <getx>:
 3bc: 55 push %ebp
 3bd: 89 e5 mov %esp,%ebp
 3bf: e8 10 00 00 00 call 3d4 <__i686.get_pc_thunk.cx>
 3c4: 81 c1 58 11 00 00 add $0x1158,%ecx
 3ca: 8b 81 f8 ff ff ff mov 0xfffffff8(%ecx),%eax
 3d0: 8b 00 mov (%eax),%eax
 3d2: 5d pop %ebp
 3d3: c3 ret

000003d4 <__i686.get_pc_thunk.cx>:
 3d4: 8b 0c 24 mov (%esp),%ecx
 3d7: c3 ret

.text

Global
Offset Table

.data
•  All access to global variables are

indirect

Relevant gcc switches

•  -shared
– build a shared object

•  -fpic, -fPIC
– Generate position-independent code

CS 3214 Spring 2017

Dynamically loading objects
at runtime

#include <dlfcn.h>

void *dlopen(const char *filename, int flag);
char *dlerror(void);
void *dlsym(void *handle, const char *symbol);
int dlclose(void *handle);

NB: each dynamically loaded module gets its own

private link chain

CS 3214 Spring 2017

Using link-time interposition

•  LD_PRELOAD=./mylib.so
•  Preloaded libraries can define symbols

before libraries that would normally define
are loaded
– Redirection

•  Can implement interposition by
dynamically loading original libraries and
forwarding the calls
– Very powerful

 CS 3214 Spring 2017

Linking C with other languages

•  Many scripting languages need to load
and then call compiled functions

•  Easy part:
– Use dlopen() + dlsym() and call the function

•  Harder part:
– Access arguments compatibly & safely

•  Each language has its own API
•  Use SWIG – Simplified Wrapper and

Interface Generator
CS 3214 Spring 2017

SWIG

•  Wrapper manage
parameter passing, type
representations, etc.

CS 3214 Spring 2017

Embedding
Interpreter:

Python, Perl,
Java, C#, Tcl,

…

Glue Code/
Wrappers

(Unchanged)
C

Code

Shared library (.so, .dll)

