
CS 3214 Fall 2010 Midterm Solution

1/16

CS 3214 Midterm Solution

51 students took the midterm. The table below shows for each problem who
graded it, as well as statistics about each problem. If you have a question about
your score, please contact the person who graded the problem first before
contacting your instructor.
Problem 1 2 3 4 Total

Min 3 0 0 2 10
Max 20 25 22 26 84
Median 9 15 12 15 49
Average 9.6 14.2 11.3 14.4 49.5
StDev 3.8 7.2 6.1 5.9 16.1
Grader a),b) McQuain

c) Puran
a) Puran
b) Back

Xiaomo a‐c) Scott
d) McQuain

e) Puran

Students who received a score of 40 or less are at risk of failing the class (even if
the project minimum requirements are met) and must show improvement in the
final exam as well as in the concurrent exercises.

Solutions are shown in this style.
Grading comments are shown in this style.

CS 3214 Fall 2010 Midterm Solution

2/16

1. Compiling and Linking (25 pts)
a) (2 pts) Prototypes. During project 3, your teammate added a function

give_terminal_to() to the esh.c file like so:

void give_terminal_to(pid_t pgrp, struct termios *pg_tty_state) {
 …
}

When you compiled the project, you saw:

$ make
cc -Wall -Werror -Wmissing-prototypes -g -c -o esh.o esh.c
cc1: warnings being treated as errors
esh.c:196: warning: no previous prototype for ‘give_terminal_to’
make: *** [esh.o] Error 1

Your teammate then changed the code to be:

void give_terminal_to(pid_t pgrp, struct termios *pg_tty_state);
void give_terminal_to(pid_t pgrp, struct termios *pg_tty_state) {
 …
}

Discuss the merits of this idea! Address whether the code now compiles or
not, and whether your teammate suggested the correct approach! If not,
describe the approach that should be used!

The code compiles now, but the suggested fix is utterly bogus. Either the
function should be defined static (if it is used only in esh.c), or else the prototype
belongs in a header file such as esh.h

b) Static Linking. Consider a static library built from multiple .c and multiple .h

files with the arrangement shown below:

CS 3214 Fall 2010 Midterm Solution

3/16

i. (3 pts) Rows 1 and 2, 2 and 3, and 3 and 4 are connected by arrows
that denote the relationship of these files during the build process. For
each connection, name the tool that connects the files in each pairs of
rows! You may use Unix shorthand names.

a. Rows 1 to 2

C preprocessor (cpp or built into cc1, or gcc -E)

b. Rows 2 to 3

The C compiler (cc1 or gcc)

c. Rows 3 to 4

The archiver (ar)

A lot of students made the mistake to name the linker (ld) for rows 3 to 4. The linker builds
executables from object files (.o) and libraries (.a archives containing .o files).

ii. (18 pts) Consider the following C declarations and definitions. For each

declaration or definition, list all possible locations where a programmer
may legally place them so that any program using libfilesupport.a will
link and function correctly! Use the letters shown in the figure, i.e., A
for file.h, B for dir.h, and so on! If a declaration needs to appear, or
may appear in multiple files, say “A and B” or “A or B” as appropriate.
In addition, list those files where an experienced programmer following
best practices would place those declarations or definitions!

Fill your answers into the table on the next page!

CS 3214 Fall 2010 Midterm Solution

4/16

Declaration/Definition Legal
Placements

Best Practice

struct file; A – F Usually A, but
could be
repeated in B
and C.

struct file { // an open file

 struct list_elem elem;

 // link elem for open file list

 off_t pos;
 // current read/write offset

};

A – F A

(or D if struct
is private to
file.c)

struct file *file_open (const char *name); A – F A (prefix
matches file
name)

static struct file * get_file_helper (int fd); A – F D or E or F,
as needed

static off_t file_get_pos (struct file *f) {

 return f->pos;

}

A – F A

static struct list open_file_list; D or E or F Likely D

static int open_dir_count; D or E or F Likely E

extern struct disk *filesys_disk; A – F Likely C

struct disk *filesys_disk; A – F
(weak/BSS
symbol)

Likely F

The entries in this table are shown under the assumption that all object files of
the libfilesupport.a library might be included in an executable the linker creates
when linking with libfilesupport.a (recall that when linking with a static library, the
linker will include only those object files from the library that provide definitions
for symbols that are still in the ‘unresolved’ list at the time the library is
processed).

Most entries could be in any file and still legally link and work because they either
represent just declarations (which don’t define symbols and thus don’t cause
linker conflicts) or represent definitions of weak symbols (e.g. filesys_disk).
(Though some combinations may not compile, such as including file_get_pos’s
definition in multiple .h files that are included in the same .c file). The definitions

CS 3214 Fall 2010 Midterm Solution

5/16

of static variables (open_file_list and open_dir_count) cannot be placed in header
files because then the linker will create multiple copies of these variables.

Regarding best practice: a forward declaration such as ‘struct file’ would usually
be found in file.h, but it’s not uncommon to forward declare such a struct
independently elsewhere. Its definition would be found in file file.h (or file.c if the
struct is used only in file.c). file_open’s declaration should go in file.h which
declares the public functions file.c exports. file_get_pos() is likely best placed in
file.h since it operates on struct file; placing it in file.h allows the compiler to inline
the function. Static variables open_dir_count and open_file_list would likely be
used in dir.c and file.c, respectively. filesys_disk’s declaration should go in a
header file (provided this variable is accessed elsewhere, which would be the
only reason to have an extern declaration), and its definition should go in the .c
file that logically owns it.

c) (2 pts) Dynamic Linking. You and a friend discuss the benefits and

drawbacks of dynamic linking, specifically with position-independent
shared object libraries. Your friend claims that programs that call
dynamically linked functions generally run slightly slower than programs
that are statically linked, even when one ignores the one-time cost of
loading the dynamic library at runtime.
Is he or she correct? Justify your opinion!

Yes, this is correct. Even after the dynamic linking process, each invocation of a
dynamically linked function involves an indirect jump through a pointer in the
global offset table.

Additional notes: note that the question specifically asked about position-
independent shared object libraries. It is also possible to relocate the executable
and binary at run time (in essence, performing the same process that a regular
linker does at link time when linking statically), but that will require updates to the
process’s and libraries text and data segments, thus preventing them from being
shared across processes. For this reason, it’s not commonly done.

Second, please do not misinterpret this loss of performance as a major concern.
For most applications, the performance drawback is negligible – it is a concern
only for high-performance applications that invoke functions in their most
frequently executed code portions. Those are typically statically linked for this
reason, if not inlined.

A lot of students pointed out that there is overhead when the library is dynamically loaded, but the
question explicitly stated to ignore the one-time costs of dynamic loading.

2. Execution and Optimization (25 pts)
The following questions relate to how programs are compiled and optimized for
IA32.

CS 3214 Fall 2010 Midterm Solution

6/16

a) (12 pts) Understanding IA32 Assembly Code.

Consider the following function compiled using gcc –O2 –S:

pws3:
 pushl %ebp
 movl %esp, %ebp
 movl 12(%ebp), %ecx
 movl 16(%ebp), %edx
 leal (%edx,%ecx), %eax
 imull %ecx, %edx
 imull 8(%ebp), %eax
 popl %ebp
 addl %edx, %eax
 ret

Write a C version of this function!

This function computes the pairwise sum of its 3 integer arguments:

int
pws3(int a, int b, int c)
{
 return a * b + a * c + b * c;
}

We accepted any C function that returns the pairwise sum of its 3 int (or long) arguments.

b) (13 pts) Optimizing Sparse Matrix-Vector Multiply. Sparse matrices are
those in which the majority of elements is zero. In many numerical
applications, special techniques are used that avoid storing those zeros.
For instance, the COO format stores the nonzero elements of a sparse
matrix using tuples (row, column, value). These tuples may be stored in
multiple one-dimensional arrays, one per component. For example, the
matrix:

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

1400
0700
0015
2001

A would be stored as
()

()
()3122030

3132100
1147521

=
=

=

COLS
ROWS
AA

because A[0][0] = 1, A[0][3] = 2, and so on. The dimension of the matrix is
given by N=4; the number of nonzeros is nnz=7 in this example. The
following function accepts any matrix in COO format and computes the
algebraic product of this matrix with a dense vector b:

CS 3214 Fall 2010 Midterm Solution

7/16

double *
spmv(double *AA, int *ROWS, int *COLS, int nnz, double *b, int N)
{
 double * r = calloc(N, sizeof(double));
 int i = 0;
 for (i = 0; i < nnz; i++)
 r[ROWS[i]] += AA[i] * b[COLS[i]];

 return r;
}

 This question examines the locality properties of this function.

i. (10 pts) Fill in the following table, describing what kind of locality you
can expect for the memory accesses through the array variables used
in this function during a single invocation. Use suitable terms to
describe each variable’s locality, such as stride, regularity/irregularity,
and reuse!

 Spatial Locality Temporal Locality

AA
Good – regular accesses with a
stride of 1

Bad - No reuse

ROWS
Good – regular accesses with a
stride of 1

Bad - No reuse

COLS
Good – regular accesses with a
stride of 1

Bad - No reuse

b
Potentially irregular (depending
on matrix structure and order of
nonzeros);

Reuse depends on matrix
structure – each b[i] is reused as
many times as there are nonzero
elements in column i

r
Potentially irregular (depending
on the order in which nonzeros
are stored)

Reuse depends on order of
nonzeros

Some students interpreted the exhibited locality only when the function is run on the given
example. In this case, the answer should be the same (or similar) to the one given above.
Common mistakes included to discuss the locality of accesses to the pointer variables (rather than
the memory these pointers refer to), and assuming that the function would be called multiple times
(in which case AA, ROWS, and COLS are reused). The problem stated explicitly to consider only a
single invocation. Some students interpreted the lack of reuse as good temporal locality. It’s bad –
caches pay off only when elements are reused.

CS 3214 Fall 2010 Midterm Solution

8/16

ii. (3 pts) How could the locality of this function be improved?

Keeping the nonzero elements sorted by row will result in perfect temporal
locality of the accesses to r[], and unless the matrix has empty rows, also perfect
spatial locality with regular accesses with stride 1. Further sorting the elements
within each row by column will improve b’s spatial and temporal locality,
depending on the structure of the matrix. Many matrices are banded in that the
nonzero form bands that are parallel to the diagonal. (This sorting is commonly
done in COO representation, though the code shown does not assume it, and the
example provided showed ROWS/COLS not sorted.)
These appear to be the only obvious choices for COO. In general, it is difficult to
improve the locality of sparse matrix operations. Interested students are referred
to

Belgin, M., Back, G., and Ribbens, C. J. 2009. Pattern-based sparse matrix representation for
memory-efficient SMVM kernels. In Proceedings of the 23rd international Conference on
Supercomputing (Yorktown Heights, NY, USA, June 08 - 12, 2009). ICS '09. ACM, New York,
NY, 100-109. DOI= http://doi.acm.org/10.1145/1542275.1542294

Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., and Demmel, J. 2007. Optimization of
sparse matrix-vector multiplication on emerging multicore platforms. In Proceedings of the 2007
ACM/IEEE Conference on Supercomputing(Reno, Nevada, November 10 - 16, 2007). SC '07.
ACM, New York, NY, 1-12. DOI= http://doi.acm.org/10.1145/1362622.1362674

Some of you proposed techniques such as using local temp variables or the use of multiple
accumulators. The use of local temp variables requires a different matrix representation that tracks
where the nonzero of each row start (called CSR). The use of multiple accumulators may improve
performance, but the question asked how to improve locality. Since multiple accumulators do not
change the memory access pattern, locality is not affected.

3. Variables and Addresses (20 pts)
Address Space Layout in Windows. In lecture, we had
discussed the address space layout of a typical IA32
process executing on Linux (shown on the right). In this
question, you are asked to infer the address space
layout of a process executing on 32-bit Windows XP. To
that end, the following C program was compiled using
the Cygwin GCC compiler and executed on a 32-bit
Windows machine. (Microsoft’s C compiler would
produce similar results, except for printf()). Assume that
printf is dynamically linked!

#include <stdio.h>
#include <stdlib.h>

int y = 42;
int *z;

CS 3214 Fall 2010 Midterm Solution

9/16

void *get_real_printf_address() {
 char * printf_code = (char *) printf;
 /* objdump -d shows printf as:
 00401310 <_printf>:
 401310: ff 25 bc 50 40 00 jmp *0x4050bc
 */
 void ** printf_ptr_location = (void **) &printf_code[2];
 void ** printf_ptr = (void **) * printf_ptr_location;
 return * printf_ptr;
}

int main(int ac, char *av[]) {
 int x = 22;

 printf("&x\t= %08X\n", &x);
 printf("&y\t= %08X\n", &y);
 printf("&z\t= %08X\n", &z);
 z = malloc(200);
 printf("z\t= %08X\n", z);
 printf("main\t= %08X\n", main);
 printf("printf\t= %08X\n", get_real_printf_address());
}

This program produced this output:

$./where.exe
&x = 0028CD10
&y = 0040200C
&z = 00404120
z = 00A50268
main = 004011C5
printf = 610C1721

a) (6 pts) Based on this information, draw a sketch of the address space
layout of a 32-bit Windows process!

Based on the information provided, the following relative locations of the different
segments could be made out. (The addresses are shown for illustration only and
were not required for full credit.)

CS 3214 Fall 2010 Midterm Solution

10/16

An easy question if you understood which variables belong to which segment.

b) (14 pts) Mystery GCC Option. Consider this function discussed in lecture:

#include <stdio.h>

void echo(void)
{
 char buf[4];
 gets(buf);
 puts(buf);
}

When compiled with a certain option, gcc created this code:

echo:
 pushl %ebp
 movl %esp, %ebp
 pushl %ebx
 subl $20, %esp
 movl %gs:20, %eax
 movl %eax, -8(%ebp)
 xorl %eax, %eax # clear canary from %eax
 leal -12(%ebp), %ebx
 movl %ebx, (%esp)
 call gets

CS 3214 Fall 2010 Midterm Solution

11/16

 movl %ebx, (%esp)
 call puts
 movl -8(%ebp), %eax
 xorl %gs:20, %eax
 je .L3
 call __stack_chk_fail
.L3:
 addl $20, %esp
 popl %ebx
 popl %ebp
 ret

i. (8 pts) Examine this code and explain what this option does! You
should explain both its purpose and how it accomplishes this
purpose!

The option is –fstack-protector-all, see http://gcc.gnu.org/onlinedocs/gcc-
4.2.3/gcc/Optimize-Options.html

GCC emits additional code in order to detect stack overflow attacks. Upon
entering the procedure, it writes a canary value to -8(%ebp). Before the
procedure returns, the value at -8(%ebp) is checked. If the value changed, the
program will assume a stack overflow attack occurred and will call
__stack_chk_fail, which then aborts the process. Here’s what the user will see

$./stack
Type a string:a long string
a long string
*** stack smashing detected ***: ./stack terminated
Aborted

ii. (3 pts) Circle or underline all relevant instructions in the code
above!

The added instructions are shown in red.

We didn’t require that you circled the xor %eax, %eax instruction. It is used to clear the canary
value from %eax so that it is not accidentally leaked.

iii. (3 pts) For this code to be effective, what kind of value must be

stored at address %gs:20?

It must be a value an attacker cannot easily guess; typically, a random value is
generated when a program starts. If the attacker knew the value, they could
construct a stack overflow attack that leaves this value intact.

4. Processes in Unix (30 pts)
The following questions relate to how processes execute on Unix.

CS 3214 Fall 2010 Midterm Solution

12/16

a) (4 pts) System Calls. The following two diagrams illustrate system calls.
The first one is taken from the lecture slides, the second one from the text
book.

Both illustrations show a user process and the OS/kernel, but the textbook
authors (right) chose a different way of arranging the figure than the
lecture slide (left). Provide a brief rationale for each approach at
illustrating system calls!

i. Rationale for approach on left

The approach on the left shows the actual physical time line, illustrating that the
execution of a process consists of user-mode and kernel-mode portions.

ii. Rationale for approach on right

The approach on the right illustrates that a user process’s logical control flow
continues directly after the system call, making it appear to the process as if a
system call is simply a procedure call.

We awarded partial credit for pointing out relevant details shown in either figure, such as the fact
that system calls are invoked via a trap/exception mechanism and involve a transition from user to
kernel mode.

b) (4 pts) Process States. In lecture, we had discussed a simplified process
state diagram consisting of the states RUNNING, READY, and
BLOCKED. In Project 3, you saw that Linux processes can enter an
additional state, STOPPED.

Complete the state diagram below and show which transitions to/from the
STOPPED state are possible! Label each transition and describe which
action or system call may cause the transition! If a transition can be
caused by multiple reasons, provide at least 2! You do not need to label
the transitions already shown.

CS 3214 Fall 2010 Midterm Solution

13/16

The figure above shows which signals are involved in the transition. We also
accepted if you provided the key strokes and/or shell commands that trigger the
corresponding transitions. ^Z for SIGTSTP, needing exclusive access for
SIGTTOU/SIGTTIN, issuing the ‘stop’ command for SIGSTOP, and issuing the
‘fg’ or ‘bg’ commands to send SIGCONT to stopped jobs to get them to continue.

It’s not possible to transition from the stopped state directly into the running state.
Note that SIGTTIN/SIGTTOU are caused by actions a process itself takes, so the
process must have been running. On the other hand, SIGTSTP and SIGSTOP
can be triggered by external events – the affected process may be RUNNING,
READY, or BLOCKED.

Note that this diagram is still simplified – real OS use two separate states for
STOPPED to remember whether a BLOCKED process was stopped or a
READY/RUNNING process: say STOPPED/BLOCKED and STOPPED/READY.
BLOCKED processes will transition to STOPPED/BLOCKED, and
READY/RUNNING processes to STOPPED/READY. When asked to continue
with SIGCONT, they’ll return to the BLOCKED and READY states, respectively.
The reason is that a user’s decision to continue blocked processes cannot
unblock them unless the event they were waiting for has also arrived, which is
independent of the user’s job control decisions. The arrival of the event while a
stopped process is blocked would move the process from the
STOPPED/BLOCKED state to the STOPPED/READY state.

CS 3214 Fall 2010 Midterm Solution

14/16

You can easily observe process states and their relationship to job control using
the ‘ps’ command. Processes that are marked ‘R’ are READY or RUNNING,
those marked ‘S’ are BLOCKED (which Linux calls ‘Sleeping’), and those
STOPPED are marked ‘T’.

c) (8 pts) time. The /usr/bin/time command can be used to determine how

long a Unix command takes to execute as well as additional statistics
about its execution. The command takes the name and command line
arguments of an arbitrary program as input, and passes those command
line arguments to the program it executes. For instance, below are
examples that show how to time the execution of ‘sleep 1.5’ and ‘echo
Hello World’.

$ /usr/bin/time sleep 1.5
0.00user 0.00system 0:01.50elapsed (rest elided)
$ /usr/bin/time echo Hello World
Hello World
0.00user 0.00system 0:00.00elapsed (rest elided)

In this exercise, you should implement a simplified version of time which
only prints the real (wall clock) time elapsed during the execution of any
command. The output of your command shall be:

$./time sleep 1.5
Took 1 sec 502470 usec.
$./time echo Hello World
Hello World
Took 0 sec 960 usec.

Complete time.c below!

// time.c
#include <stdio.h>
#include <unistd.h>
#include <sys/time.h>
#include <sys/wait.h>

int
main(int ac, char *av[])
{
 struct timeval start, end, diff;
 gettimeofday(&start, NULL);

 /* Complete this part. For simplicity,
 you do not need to show error checking. */

 if (!fork())
 execvp(av[1], av + 1);

 wait(NULL);

 gettimeofday(&end, NULL);

CS 3214 Fall 2010 Midterm Solution

15/16

 timersub(&end, &start, &diff);
 printf("Took %ld sec %ld usec.\n",
 diff.tv_sec, diff.tv_usec);
 return 0;
}

In my opinion, this simple example shows the elegance of Thompson’s and
Ritchie’s original design of Unix.

d) (4 pts) File Descriptors. In addition to redirecting stdout (file descriptor 1)

and stdin (file descriptor 0), the bash shell and many other shells also
support redirecting stderr (file descriptor 2). Many programs report error
messages to stderr. In bash, this is possible using the syntax 2>&1, which
redirects stderr to stdout. For instance,

$ bash -c "ls doesnotexist >error 2>&1"

produces a file named error with this content:

ls: doesnotexist: No such file or directory

If you examined a system call trace of bash and its children, which system
calls would you find that implement this redirection functionality? Include
both system calls to redirect stdout to error and to redirect stderr to
stdout! Your solution should include the parameters given to those system
calls, using variables as necessary!

open(“error”, …) = X
dup2(X, 1)
dup2(1, 2)

where ‘X’ is a file descriptor chosen by the OS.

e) (10 pts) Concurrency. Consider the following program:

void sigchld_handler(int s) {
 OUTPUT(S);
}

int main()
{
 signal(SIGCHLD, sigchld_handler);
 esh_signal_block(SIGCHLD);
 if (fork() != 0) {
 OUTPUT(A);
 esh_signal_unblock(SIGCHLD);
 OUTPUT(B);
 waitpid(-1, NULL, 0);
 OUTPUT(C);
 } else {
 OUTPUT(D);

CS 3214 Fall 2010 Midterm Solution

16/16

 }
}

OUTPUT(X) outputs the character ‘X’. esh_signal_block() and
esh_signal_unblock() (implementation not shown) block and unblock
SIGCHLD, respectively. In the chart below, connect two circles with an
arrow if it is guaranteed that the character shown in the first circle is
printed before the character shown in the second circle. For instance, an
arrow from B → D would indicate that B is always printed before D.

A happens before B, which happens before C because of the textual order in the
parent process. D happens before C since the parent will not progress past
waitpid() unless the child has exited. D happens before S since SIGCHLD is not
sent until after the child has exited. A happens before S because SIGCHLD is
blocked while A is output, delaying SIGCHLD even if the child has already exited.
S happens before C since even if the child exits after the parent has reached
waitpid(), the signal will be delivered when waitpid() returns, before the process
does anything else. A happens before C because of transitivity.

Any other arrows are wrong. There are no guarantees with respect to the order of
A and D, B and D, or B and S.

We didn’t deduct for not showing A→C as long as A→B and B→C were shown. Similarly, we
didn’t deduct if D→C wasn’t shown as long as D→S and S→C were shown.

