
CS3214 Fall 2009 Project 5 - “The sysstatd Web Service”

Due Date: Friday, Dec 11, 11:59pm (Late days may be used.)

This project can be done in groups of 2 students.

1 Introduction

This assignment introduces you to the principles of internetwork communication using
the HTTP and TCP protocols, which form two of the most widely used protocols in to-
day’s Internet. In addition, the assignment will give you some insights into how to con-
struct web services that are based on the popular REST [3, 4] architectural style.

2 Functionality

In this assignment, you will implement a basic HTTP web service that publishes a Linux
system’s status as reported by the kernel via the /proc file system. The web service must
provide this information in JSON [1] format. The web service should implement persis-
tent connections as per the HTTP/1.1 [2] protocol.

The web service shall respond to requests for at least the following resources:

Service URL Example JSON Output Based On
/loadavg {"total threads": "174",

"loadavg": ["0.00", "0.00",
"0.03"], "running threads":
"1"}

/proc/loadavg

/meminfo {"SwapTotal": "5799928",
"SwapFree": "5793240",
"MemFree": "2434304", ... }

/proc/meminfo

In addition, you must support query arguments as per RFC 2616, Section 3.2.2. You must
support a ’callback’ field. If given, you must return proper syntax for a JavaScript func-
tion call in which the value of the field appears as function name and the JSON object
appears as argument. You must ignore all additional field=value pairs. For example, a re-
quest to /loadavg?callback=jsonp1258749550540& =1258749554624would re-
turn jsonp1258749550540({"total threads": "174", "loadavg": ["0.00",
"0.00", "0.03"], "running threads": "1"}). (The second field is ignored.)

You can see a demo at http://cs3214.cs.vt.edu:9011/loadavg and
http://cs3214.cs.vt.edu:9011/meminfo.

Created by G. Back (gback@cs.vt.edu) 1 Revision : 1.3 November 23, 2009

http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.2.2
http://cs3214.cs.vt.edu:9011/loadavg
http://cs3214.cs.vt.edu:9011/meminfo


CS3214 Fall 2009 Project 5 - “The sysstatd Web Service”

2.1 Multiple Client Support

Your implementation should support multiple clients simultaneously. It must be able to
accept new clients and process HTTP requests even while HTTP transactions with already
accepted clients are still in progress. This can be implemented in multiple ways: using
a multi-process approach (fork()), using a multi-threaded approach (with 1 thread per
client, or using a thread pool), or via I/O multiplexing with select() or an equivalent
function. The recommended strategy is to create one thread per connection.

To test that your implementation supports multiple clients correctly, we will connect to
your server, then delay the sending of the HTTP request. The ’telnet’ client program can
be used for that. While your server has accepted one client and is waiting for the first
HTTP request by that client, it must be ready to accept and serve additional clients.

2.2 Widgets

Widgets are HTML elements that, when inserted into HTML documents, function as
placeholders for enhanced information or functionality. This functionality is usually pro-
vided by supporting JavaScript code that interprets the widgets and their parameters.
I have designed two small widgets that can interact with the web service you’ll create.
These widgets graphically display the load average and memory usage of the machine
on which your service runs.

You can find a demo of the widgets at
http://courses.cs.vt.edu/ cs3214/fall2009/sysstatwebservice/widget/. Please consult

the HTML code of this file for how to include the widgets into your own page for your
testing and demonstration, as discussed in Section 4.3.

2.3 Relay Server

The use of network-address translation (NAT) that hides individual machines or even
entire networks behind firewalls has grown significantly in the past years. This trend
is motivated both by security concerns and by the increasing shortage of routable IPv4
addresses. Understanding the implications of NAT is a crucial skills for application de-
velopers for at least the foreseeable future.

Many, if not most, NAT setups allow connections to be initiated only from the inside of the
firewall to the outside. The NAT device is typically the default gateway for the hosts be-
hind the firewall, thus allowing it to monitor TCP connection requests to outside servers
that pass the gateway. The NAT device can then establish and keep up to date the neces-
sary data structures to translate the addresses for this connection. Correct translation in
the other direction is more difficult: if a connection request arrives on the public-facing
interface of the NAT device, then the NAT device would need to know to which server

Created by G. Back (gback@cs.vt.edu) 2 Revision : 1.3 November 23, 2009

http://courses.cs.vt.edu/~cs3214/fall2009/sysstatwebservice/widget/


CS3214 Fall 2009 Project 5 - “The sysstatd Web Service”

on the inside to forward the request. This information needs to be provided by an admin-
istrator of the NAT device, making this approach unsuitable when administrative access
is not granted.

A commonly used technique to circumvent this restriction is the use of relay servers.
In this technique, a server located behind a firewall creates a TCP connection to a relay
server, which is running on a machine that has a routable IP address. Clients then connect
to the relay server, which forwards requests to the actual server and relays responses from
the server to the clients.

You should implement the ability to provide an HTTP/1.1 service through a relay server.
When run in relay server mode, your web service should initiate a TCP connection to
the relay server, and then send a single line terminated by \r\n with a unique identifier
(such as your SLO login). Subsequently, it should respond to HTTP/1.1 requests on that
connection. The relay server will create a URL for clients to connect to, which includes
that identifier as a prefix.

A relay server is running on cs3214.cs.vt.edu. Port 9050 is accepting connections from
web services wishing to make use of the relay service. It accepts connections from HTTP
clients on port 9051. Visit http://cs3214.cs.vt.edu:9051/ to see a status page. If a web
service connects and send ’prefix’ as the first line of data in that connection, requests to
http://cs3214.cs.vt.edu:9051/prefix/loadavg will be forwarded to the web
service as request for /loadavg after stripping the prefix.

Note that all connections from rlogin.cs.vt.edu machines will appear as going to a
port on machine hn1.cs.vt.edu, which is the DNS name of the public-facing interface
of our NAT gateway behind which the machines of the rlogin cluster are located.

2.4 Simplifications

Due to the short time allotted for this project, we will make some simplifications. You may
assume that HTTP requests are well-formed and that clients and the relay server adheres
to the HTTP/1.1 protocol when contacting your service. In relay server mode, you may
ignore the fact that the connection will time out after some time, although a more robust
implementation would automatically reconnect when that happens.

2.5 Minimum Requirements

Your web service must function at least well enough to support continuous use of the
memory and cpuload widgets when run in server mode (i.e., accepting clients directly
rather than via the relay server intermediary.) You must integrate the web service and
widgets into a web page you create.

These minimum requirements can be met using a single-threaded, one-request-at-a-time

Created by G. Back (gback@cs.vt.edu) 3 Revision : 1.3 November 23, 2009

http://cs3214.cs.vt.edu:9051/


CS3214 Fall 2009 Project 5 - “The sysstatd Web Service”

HTTP/1.0 implementation. Support for the relay server is not required to meet the mini-
mum requirements.

2.6 Choice of Port Numbers and Relay Server Prefixes

Port numbers are shared among all processes on a machine. To reduce the potential for
conflicts, use a port number that is 10,000 + last four digits of the student id of a team
member.

If a port number is already is use, bind() will fail with EADDRINUSE. If you weren’t
using that port number before, someone else might have. Choose a different port number
in that case. Otherwise, it may be that the port number is still in use because of your
testing. Check that you have killed all processes you may have started while testing. Even
after you have killed your processes, binding to a port number may fail for an additional
2 min period if that port number recently accepted clients. This timeout is built into the
TCP protocol to avoid mistaking delayed packets sent on old connections for packets that
belong to new connections using the same port number.

Choose the SLO login id of one team member as relay server prefix. When running in
relay server mode, do not bind the socket to any port before connecting. This ‘auto-bind’
strategy allows the OS to assign any available port, eliminating the potential for port
conflicts.

3 Strategy

Make sure you understand the roles of DNS host names, IP addresses, and port numbers
in the context of TCP communication. Study the roles of the necessary socket API calls.

You should exploit a layered design that separates your TCP support code from the HTTP
layer. Such a design will be crucial to easily implement the relay server mode while
minimizing the changes to the HTTP implementation.

For the TCP layer, make sure you handle short reads correctly, as discussed in lecture
and in the book. When assigning port numbers and IP addresses, pay attention to using
proper byte ordering. A recommended convention is to keep sin port and sin addr.-
s addr fields always in network order, and to use host order elsewhere in any other
storage location your program may store addresses or port numbers.

Since you may be using a multi-threaded design, use thread-safe versions of all functions.
Specifically, you should use getaddrinfo(3), getnameinfo(3) and inet ntop(3)
and you should avoid gethostbyname(3), getaddrbyname(3), or inet ntoa(3).
Using these newer functions has the additional advantage that adding support for IPv6
would be easy (though this is not required for this project).

Created by G. Back (gback@cs.vt.edu) 4 Revision : 1.3 November 23, 2009



CS3214 Fall 2009 Project 5 - “The sysstatd Web Service”

Familiarize yourselves with the commands wget(1) and curl(1) and the specific flags
that show you headers and protocol versions.

4 Grading

4.1 Coding Style

Your service must be implemented in the C language. You should follow proper coding
conventions with respect to documentation, naming, and scoping. You must check the
return values of all system calls and library functions.

We will pay particular attention to how you separated the implementation of HTTP from
your use of TCP sockets. If using a multi-threaded design, the helgrind checker must
not flag any warnings. Your code should compile under -Wall without warnings, we
recommend the use of the -Werror flag as part of CFLAGS.

4.2 Submission

You should submit a .tar.gz file of your project, which must contain a Makefile. Your
project should build with ‘make clean all’ This command must build an executable
’sysstatd’ that must accept the following command line arguments:

• -p port When given, your web service must run in server mode, accepting HTTP
clients and serving HTTP requests on port ’port.’ Multiple connection must be sup-
ported.

• -r relayhost:port When given, your web service should connect to host ’re-
layhost’ on port ’port.’. It should accept both fully-qualified host names and IPv4
addresses in dot notation.

Submit a file called ‘README’ that lists group members and briefly describes your DE-
SIGN.

Please test that make clean removes all executables and object files. Issue make clean
before submitting to keep the size of the tar ball small. Please use the submit.pl script or
web page and submit as ’p5’. Only one group member need submit.

4.3 Demonstration

To show that your service works, start two instances of your service on a rlogin machine
- one in server mode, and one in relay server mode. Email the following information
to cs3214-staff@cs.vt.edu: (1) the hostname and port number of the machine on
which your server runs in server mode (this may be a machine that is part of the rlogin

Created by G. Back (gback@cs.vt.edu) 5 Revision : 1.3 November 23, 2009



CS3214 Fall 2009 Project 5 - “The sysstatd Web Service”

cluster, but not a machine in the systems lab). (2) the URL to a web page that integrates
your web service when run in relay server mode. Once you receive a reply that we veri-
fied the correct functioning, you may shut down the instances of your service.

If you submit your request to demonstrate your service before the submission deadline
(expanded by late days if applicable), you will obtain feedback on how well your service
works before the final submission deadline. There is no penalty for demonstrations that
fail or uncover problems with your service.

If a successful demonstration was completed before 8pm on the date on which you submit
(expanded by applicable late days), then the TA will not run your submission. (Though
we will still verify that it builds correctly as described in Section 4.2)

If you did not successfully demonstrate your service by 8pm on the date on which you
submit, the TA will perform the testing for you and apply a 10-point penalty.

We expect to assign between 60 and 80 points for this project. Meeting the minimum
requirements will yield 30 points.

4.4 Extra Credit

For extra credit, implement your own relay server.

Good Luck!

References

[1] Douglas Crockford. Introduction to JSON. http://json.org/.

[2] Roy Fielding, Jim Gettys, Jeff Mogul, H. Frystyk, L. Masinter, P. Leach, and Tim
Berners-Lee. Rfc 2616: Hypertext transfer protocol – http/1.1. http://www.w3.org/-
Protocols/rfc2616/rfc2616.html.

[3] Roy T. Fielding and Richard N. Taylor. Principled design of the modern web architec-
ture. ACM Trans. Internet Technol., 2(2):115–150, May 2002.

[4] Leonard Richardson and Sam Ruby. RESTful web services. O’Reilly, 2007.

Created by G. Back (gback@cs.vt.edu) 6 Revision : 1.3 November 23, 2009

http://json.org/
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html

	Introduction
	Functionality
	Multiple Client Support
	Widgets
	Relay Server
	Simplifications
	Minimum Requirements
	Choice of Port Numbers and Relay Server Prefixes

	Strategy
	Grading
	Coding Style
	Submission
	Demonstration
	Extra Credit


