
1

Project 2: User Programs

Presented by

Jaishankar Sundararaman
2/22/2007

Till now …

All code part of Pintos Kernel

Code compiled directly with the kernel
This required that the tests call some functions whose
interface should remain unmodified

From now on, run user programs on top of kernel
Freedom to modify the kernel to make the user
programs work

Project 1 and Project 2

User Programs

Kernel

int 0x30 Exceptions

Timer
Interrupts

Other
IRQs

Project 2
Tests

Project 1
Tests

lib/user/syscall.c

filesystem

syscall layer exc handling

Using the File system

May need to interact with file system
Do not modify the file system!

Certain limitations (till Project 4)
No internal synchronization
Fixed file size
No subdirectories
File names limited to 14 chars
System crash might corrupt the file system

Files to take a look at: ‘filesys.h’ & ‘file.h’

Some commands
Creating a simulated disk

pintos-mkdisk fs.dsk 2

Formatting the disk
pintos -f –q
This will only work after your kernel is built !

Copying the program into the disk
pintos -p ../../examples/echo -a echo -- -q

Running the program
pintos -q run ’echo x’
Single command:

pintos --fs-disk=2 -p ../../examples/echo -a echo -- -f -q run ’echo x’

$ make check – Builds the disk automatically
Copy&paste the commands make check does!

Various directories

Few user programs:
src/examples

Relevant files:
userprog/

Other files:
threads/

2

Requirements

Process Termination Messages
Argument Passing
System calls
Deny writes to executables

Process Termination

Process Terminates
printf ("%s: exit(%d)\n",...);
for eg: args-single: exit(0)

Do not print any other
message!

Program
name

Return Code

Argument Passing
Pintos currently lacks argument
passing!

Change *esp = PHYS_BASE to
*esp = PHYS_BASE – 12 in
setup_stack() to get started
Change process_execute() in
process.c to process multiple
arguments
Could limit the arguments to fit in
a page(4 kb)
String Parsing: strtok_r() in
lib/string.h

pgm.c
main(int argc,

char *argv[]) {
…

}
$ pintos run ‘pgm alpha beta’
argc = 3
argv[0] = “pgm”
argv[1] = “alpha”
argv[2] = “beta”

Example taken from Abdelmounaam Rezgui’s presentation

Memory layout

User stack

Uninitialized data segment
(Block Starting Symbol, BSS)

Initialized data segment

Code segment

0

PHYS_ BASE

Grows
downward

Grows
upward

4GB
Kernel
Virtual

Memory

User
Virtual

Memory

0x 08048000

Invalid Pointer Area
(for User Programs)

PHYS_BASE = 3GB

Figure taken from Abdelmounaam Rezgui’s presentation

Setting up the Stack
How to setup the stack for the program - /bin/ls –l foo bar

Setting up the Stack… Contd
bffffffc0 00 00 00 00 | |

bffffffd0 04 00 00 00 d8 ff ff bf-ed ff ff bf f5 ff ff bf |................|

bffffffe0 f8 ff ff bf fc ff ff bf-00 00 00 00 00 2f 62 69 |............./bi|

bfffffff0 6e 2f 6c 73 00 2d 6c 00-66 6f 6f 00 62 61 72 00 |n/ls.-l.foo.bar.|

3

System Calls

Pintos lacks support for system
calls currently!

Implement the system call
handler in userprog/syscall.c
System call numbers defined in
lib/syscall-nr.h
Process Control: exit, exec, wait
File system: create, remove,
open, filesize, read, write, seek,
tell, close
Others: halt

static void
syscall_handler (struct intr_frame *f
UNUSED)
{
printf ("system call!\n");
thread_exit ();

}

Syscall handler currently …

System Call Details

Types of Interrupts – External and Internal
System calls – Internal Interrupts or Software
Exceptions
80x86 – ‘int’ instruction to invoke system calls
Pintos – ‘int $0x30’ to invoke system call

Continued…
A system call has:

System call number
(possibly) arguments

When syscall_handler() gets control:

System calls that return
a value () must modify
f->eax

Sys. Call #

Arg #2

Arg #1

.

.

.

Caller’s User Stack

syscall_handler (struct intr_frame *f) {

f->esp
….

f->eax = … ;
}

Figure taken from Abdelmounaam Rezgui’s presentation

System calls – File system

Decide on how to implement the file descriptors
O(n) data structures would entail no deduction !

Access granularity is the entire file system
Have 1 global lock!

write() – fd 1 writes to console
use putbuf() to write entire buffer to console

read() – fd 0 reads from console
use input_getc() to get input from keyboard

Implement the rest of the system calls

System calls – Process Control
wait(pid) – Waits for process pid to
die and returns the status pid
returned from exit
Returns -1 if

pid was terminated by the kernel
pid does not refer to child of the
calling thread
wait() has already been called for
the given pid

exec(cmd) – runs the executable
whose name is given in command
line

returns -1 if the program cannot be
loaded

exit(status) – terminates the
current program, returns status

status of 0 indicates success, non
zero otherwise

Parent:
exec()

Parent:
exec()

Parent:
wait()

Parent:
wait()

Parent
process
executes

Parent
process
executes

Child
process
executes

Child
process
executes

Child
process

exits

Child
process

exits

OS notifies

Figure taken and modified from Dr. Back’s lecture – CS3204 - Fall 2006

Process Control – continued…
Implement process_wait() in process.c
Then, implement wait() in terms of
process_wait()
Cond variables and/or semaphores will
help

Think about what semaphores
may be used for and how they
must be initialized

Some Conditions to take care!
Parent may or may not wait for its
child
Parent may call wait() after child
terminates!

main() {

int i; pid_t p;

p = exec(“pgm a b”);

// i = wait (p);

}

int
process_wait (tid_t
child_tid UNUSED)
{
return -1;

}

4

Memory Access

Invalid pointers must be rejected. Why?
Kernel has access to all of physical memory including that of
other processes
Kernel like user process would fault when it tries to access
unmapped addresses

User process cannot access kernel virtual memory
User Process after it has entered the kernel can
access kernel virtual memory and user virtual memory
How to handle invalid memory access?

Memory Access – contd…

Two methods to handle invalid memory access
Verify the validity of user provided pointer and then dereference
it

Look at functions in userprog/pagedir.c, threads/vaddr.h
Strongly recommended!

Check if user pointer is below PHYS_BASE and dereference it
Could cause page fault
Handle the page fault by modifying the page_fault() code in
userprog/exception.c

Make sure that resources are not leaked

Some Issues to look at…

Check the validity of the system call parameters
Every single location should be checked for validity
before accessing it. For e.g. not only f->esp, but
also f->esp +1, f->esp+2 and `f->esp+3 should be
checked
Read system call parameters into kernel memory
(except for long buffers)

copy_in function recommended!

Denying writes to Executables

Use file_deny_write() to prevent writes to an
open file
Use file_allow_write() to re enable write
Closing a file will automatically re enable writes

Suggested Order of Implementation

Change *esp = PHYS_BASE to *esp = PHYS_BASE –
12 to get started
Implement the system call infrastructure
Change process_wait() to a infinite loop to prevent
pintos getting powered off before the process gets
executed
Implement exit system call
Implement write system call
Start making other changes

Misc

Deadline: Mar 20, 11:59 pm
Do not forget the design document

Must be done individually
Good Luck!

