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CS 3204 Sample Midterm 
 
Answers are shown in this style. This exam was given Fall 2006. 

1. Semaphores, Monitors, and Barriers (24 pts) 
a)  (12 pts) Suppose a system provides monitors, but no semaphores. 

Assume that the monitors are Mesa-style. Assume a C-style syntax for the 
monitors, e.g. whereby mutexes and condition variables are separately 
defined. Implement a semaphore using monitors. You only need to show 
the sema_down/up functions, and the necessary initialization code. 

 
The following code shows how to implement semaphores using condition 
variables: 

 
// initialization 

 struct semaphore { 
  int value; 
  struct lock lock; 
  struct condvar cond; 
 }; 
 
 sema_init(struct semaphore *s, int initialvalue) { 
  s->value = initialvalue; 
  lock_init(&s->lock); 
  cond_init(&s->cond); 
 } 
 

// code for signal (or sema_up) 
 void sema_up(struct semaphore *s) { 
  lock_acquire(&s->lock); 
  if (++s->value == 1)  
   cond_signal(&s->cond, &s->lock); 
  lock_release(&s->lock);   
 } 
 

// code for wait (or sema_down) 
void sema_down(struct semaphore *s) { 

  lock_acquire(&s->lock); 
  while (s->value == 0)  
   cond_wait(&s->cond, &s->lock); 
  s->value--; 
  lock_release(&s->lock);   
 } 

 
 
b) (12 pts) Barrier Synchronization. In class, we had discussed how 2 

semaphores can be used to implement a rendezvous between 2 threads: 
no thread will progress past the rendezvous point unless the other thread 
has also reached that point. A barrier is a synchronization primitive 
whereby N threads can rendezvous with each other.  
Provide pseudo-code that implements an n-way barrier using semaphores 
only. You may assume that the number N of threads is a constant. 
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The solution is a straightforward generalization of the code discussed in class - 
use one semaphore for each thread – on a rendezvous, signal the semaphores 
of all other threads and wait for N-1 signals from them. The opposite approach 
works as well (upping your own semaphore N-1 times and downing each of the 
others.) This is not a very efficient solution, but it works with only semaphores. 
 

semaphore s[N](0); // all initialized to 0 
barrier() { 
 for (i = 0..N-1) 
  if (i != self) 
   sema_up(s[i]); 
 for (i = 1..N-1) 
  sema_down(s[self]); 
} 

 

2. Protection (16 pts) 
a) (8 pts) In the Pintos fault page handler, the default exception handler code 

reports whether the page fault occurred in a “user context” or in the “kernel 
context.”   
Briefly explain what each means and why you are much more concerned 
about page faults that occur in the kernel context. (State your 
assumptions, if necessary.) 

 
Assuming that the system does not use paging (as is the case up until before 
Project 3), a page fault in a user context means that a user program accessed 
memory that is not mapped, or accessed it in a way not allowed by the current 
mapping (e.g., a write to a read-only page, an attempt to read kernel-only pages.) 
The correct action is to terminate the offending process and continue. 
 
A page fault in kernel context, however, means that kernel code accessed 
memory that’s not mapped (or tried to write to read-only) memory. This indicates 
a bug in your code. At this point, the kernel panics, forcing the termination of all 
running applications and a reboot. This is clearly a more severe situation that 
losing one user process. (In Windows, you’d see the so-called Blue Screen Of 
Death instead.  Linux in such situations only terminates the current process and 
prints an “Oops” in its kernel log – however, this approach runs the risk that 
kernel state is already corrupted, which can cause further corruption and often 
leads eventually to a lockup and/or loss of data.) 
 

b) (8 pts) Your teammate suggests that, in order to check the validity of the 
buffer passed to the write() system call (which is declared as write(int 
fd, const void *buffer, size_t length)), you could simply check 
whether the beginning of the buffer (‘buffer’) and the end of the buffer 
(‘buffer + length-1’) are in the user virtual address range and have valid 
page table entries. 
 
Show an example user program for which this approach fails. 
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It is necessary to check every single page that is spanned by the range [buffer, 
buffer+length). Otherwise, the kernel would attempt to access the entire memory 
for such programs as: 

 
int main() { 
 static char c[3]; 
 write(1, &c[2], 0xffffffff); 
} 
 

‘buffer’ would be &c[2], ‘buffer+length-1’ would be &c[0]. Both will have valid user 
virtual addresses.  

 

3. Process States and Scheduling (36 pts) 
a) (8 pts) Let |RUNNING| be the number of running processes in a system, 

let |READY| be the number of ready processes in a system, and let 
|BLOCKED| be the number of blocked processes (assuming the simple 3-
state model.) 

 
1. (4 pts) What are possible values for |RUNNING|? 

 
Possible values are 0 (if the system is idle), or 1, 2, 3, … up to the number of 
CPUs in the system. 
 

2.  (4 pts) At a typical moment in a typical system, how does |READY| 
compare to |BLOCKED|? 

 
Typically, |READY| << |BLOCKED|. If it were otherwise, the system would not be 
usable – many READY processes would make very slow progress. Look in your 
Windows Task Manager and click the Processes Tab. You’ll see numerous 
process waiting for either user I/O, timer events, or external events such as 
network I/O. In Linux, use top.  
 

b) (6 pts) The Windows Task Manager shows you CPU utilization in its “CPU 
Usage History” window. The Unix tool “xload”, on the other hand, plots a 
machine’s load average over time, which is computed in the same manner 
as you computed Pintos’s load average in Project 1. What information 
does the load average provide for a user that CPU utilization does not? 

 
The CPU utilization tells a user what portion of the time the CPU is used vs. what 
portion it is idle. The load average tells a user in addition what the CPU demand 
is, i.e., how much longer it will take to complete a job, giving the current number 
of ready processes that are competing for the CPU or CPUs. Another way to say 
this is to say that load average represents the number of CPUs you could keep 
busy, rather than how busy the current CPUs are.  
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c) (6 pts) In Unix terminology, a child process becomes a ‘zombie’ if it calls 
exit() before its parent calls wait(). Your system administrator claims that 
too many zombie processes are bogging down the machine. Is he 
correct? Briefly justify your answer. 

 
As the question says, a zombie process is one that has already exited(), so it 
doesn’t consume any CPU. It’s not bogging down the machine (unless there’s an 
extremely large number of them – in this case, the system may be unable to 
assign new PIDs because the limit on the total number of processes is reached. 
Also, there is a small amount of memory consumed for each zombie to store its 
exit status for retrieval by the parent – but this will not usually bog down a 
machine.) 
 

d)  (8 pts) Show a task set that demonstrates that the Earliest Deadline First 
(EDF) real-time scheduling algorithm does not always produce a schedule 
with a minimum average waiting time.  

 
We know that Shortest Process Next (SPN) produces schedules with the 
minimum average waiting time. Consequently, EDF produces such schedules for 
task sets where shorter tasks have farther deadlines. For example,  
Task 1: cost = 3, deadline 4.  
Task 2: cost = 1, deadline 6. 
Assume both tasks arrive at 0. EDF schedules Task 1, then Task 2, average 
waiting time is 1.5. SPN would schedule Task 2, then Task 1. Minimum average 
waiting time is 0.5. 
 

e) (8 pts) Consider the BSD4.4 Advanced Scheduler you implemented in 
Project 1. Explain how a thread could ``cheat’’ this scheduler and use a 
much larger proportion of the CPU than other user threads with the same 
nice value. (Assume that the thread does not have the privilege to use 
interrupt disable/enable – clearly, disabling interrupts would give a thread 
exclusive access to the CPU.) 

 
The scheme you implemented has a fundamental weakness, which many of you 
learned the hard way: it relies on sampling which thread is running at each timer 
interrupt. A thread could make sure that no CPU time is ever charged to it by 
giving up the CPU right before a timer interrupt occurs – this could be 
accomplished, for instance, by calling “thread_sleep(1).” Most likely, when the 
thread is woken up at the next interrupt, it will have the highest dynamic priority 
and reacquire the CPU. To be practical, a thread would have to insert checks for 
the current time (for instance, using the processor’s cycle counter register) 
periodically in its execution. 

4. Mutual Exclusion (24 pts) 
a) (10 pts) Rewrite the following code fragment to not use locks or 

semaphores. You only need to sketch the differences in the right column. 
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Pseudo-code is ok. Your solution should not contain any race conditions, 
not directly disable interrupts, and should not use busy-waiting. 

 
int request_counter; 
struct lock l; 
 
void server() 
{ 
  while (!shutdown) 
    { 
 handle_request(); 
 lock(&l);  
 request_counter++; 
 unlock(&l); 
    } 
} 
 
int main() 
{ 
  thread t[5]; 
  lock_init (&l); 
  // start five server threads 
  for (int i = 0; i < 5; i++) 
    t[i] = thread_create (server); 
   
  // wait for them to finish 
  for (int i = 0; i < 5; i++) 
    thread_join (t[i]); 
 
 
 
 
  printf (“Requests handled:%d\n”, 
           request_counter); 
} 
 

int request_counter; 
int thread_counter[5]; 
 
void server() 
{ 
  while (!shutdown) 
    { 
 handle_request(); 
 int me = current()->id;  
 thread_counter[me]++; 
  
    } 
} 
 
int main() 
{ 
  thread t[5]; 
 
  // start five server threads 
  for (int i = 0; i < 5; i++) 
    t[i] = thread_create (server); 
   
  // wait for them to finish 
  for (int i = 0; i < 5; i++) 
    { 
       thread_join (t[i]); 
       request_counter +=  
          thread_counter[i]; 
    } 
  printf (“Requests handled:%d\n”, 
           request_counter); 
} 
 

 
This is a classic example where state partitioning can avoid race conditions, so 
locks are not necessary. Give each thread its own counter, and sum them after 
the threads have finished – no need to lock every increment. 

 
b)  (10 pts) Suppose you have a system that uses nonpreemptive 

scheduling. Assume that nonpreemptive scheduling means (1) that 
unblocking a thread does not trigger a scheduling decision and (2) that 
running threads are never involuntarily preempted. In such a system, 
would you still need locks (or other ways of providing critical sections?)  
Justify your answer! 

 
Locks are still necessary, because processes can still lose access to the CPU 
inside a critical section if they voluntarily yield or block due to I/O or sleep. In 
those cases, a nonpreemptive scheduler is invoked and may schedule another 
thread, which could then enter the critical section, leading to a loss of mutual 
exclusion. (Locks can only be omitted if it can be ensured that a thread will not 
yield or block – which you may be able to verify for small sections of code, but 
this property clearly does not always hold.) 
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c) (4 pts) When designing synchronization primitives that work on shared-

memory multiprocessor systems, we must use atomic instructions such as 
“compare-and-exchange”, “test-and-set”, etc. Explain the computer-
architectural reason why an OS designer would attempt to minimize the 
number of times those instructions are executed. 

 
These instructions must exclude other CPUs from accessing the memory 
location that the atomic instruction accesses. This requirement implies some 
form of bus locking or interprocessor communication, which costs many more 
cycles than a regular memory access. 
 


