
1

1

Pintos Virtual Memory Management 
Project 

(CS3204 Spring 2006 VT)

Yi Ma

2

Outline

Memory and Access
Current Status in Pintos
Requirements
Suggestion

3

Memory

Executable on Disk

Virtual Linear Address Space

Physical Memory
(RAM+ROM)

User executable uses virtual, 
relative address (0-3GB). They
are organized as segments.

In project 2, loader installs user executable 
into physical RAM. Virtual, relative 
are translated into absolute, physical
address by MMU and paging. It manages
the RAM so that multiple process shares
RAM without interrupting each other. However
in lazy load you don’t have to load code and data
at first.

4

Virtual Memory Management

MMU translating linear address into page and offset

Find these in mmu.h 
and pagedir.h/c for 

its interface.

Virtual Memory Management

Virtual Address Space

RAM Frames

5

Current Status (after a successful project2)

Kernel’s memory has been well handled.
MMU—PD, PT, pagedir—address maps.
Per-process page table (process.c).
Preload data and code segment and stack 
(load, load_segment, and setup stack).
Fixed stack and limited size and number of 
programs.

6

Requirement Overview

Page Table Management
Address mapping and page fault

Swapping
Choose a replacement alg., like a 1-bit 
clock alg. (NRU)

Lazy loading
Load on demand

Memory mapped files



2

7

Page Table Management

Functionalities
Virtual mapped to physical
Locate page (RAM or SWAP)
Physical back to virtual (evicting)
This vs. PD & PT?

Virtual vs. Physical Page
Install virtual page into a physical frame
Mapping through MMU’s PD and PT
Keep track

8

Page Fault
Pre-project 3

Install new PD when switching
Setup all mapping
Fault on unmapped address and kill

Post-project 3
Page_fault is no longer always an error
May have to swap in or load

How
Get the faulting address
Find the page (file or swap)
Let it in (may require eviction of other page currently 
located in the frame.)
Update PTE

9

Address Translation Process
Virtual Address

Page Table Walk

Check Permissions

Physical AddressPage Fault Exception
“Protection Fault”

Page Fault Exception
“Page Not Present”

Terminate Process

miss hit

restart instruction

okdenied
Load Page

done in hardware
done in OS software

done in software 
or hardware

Swapping

Free Page 
Available

10

Confusing?

Too many pages and tables?
MMU: pde, pte
Frame page
Virtual page
Swapped page
Their cross links

11

Frames

Only user pool
ram_pages in load.s and init.c?
It’s relation with current palloc.
Two ways for your frame allocator.
Where you initialize.

12

Virtual Pages

It is the core of the virtual memory. 
Relation with user address space. 
(continuous or not)
Relation with frames
Relation with swap disk
Relation with executable file
Relation with MMU’s PD and PT



3

13

Pages on disk

Memory in 4KB pages
Disk in 512B sectors
How to organize the swap disk so that it 
could best conform page system
Design data structure to implement the 
above design

14

What is the problem

Starting/end address of a page
Permission of the page
Location of the “virtual” page: RAM, 
SWAP, or File
Keep track: when and what to update

15

Stack Growth

First page allocated in setup_stack
Look at memory layout: there is a vacant 
between heap and stack
i386 “push” at most 32B to the stack at once
Stack is growing downwards
Catch the stack pointer—esp
When: page_fault
Limit the size of stack reasonably

16

Swapping

Loaded pages got evicted—swap out
Evicted pages got reloaded—swap in
Swap out on page fault and no free frame
Swap in on page fault
Manage Disk (track occupied or free sectors)
No order
Parallel

17

Evict a page

Keep track where is the free frames
Keep track who are evict-able frames
Pick a replacement algorithm like 1-bit 
alg.
Accessed/dirty bit in PTE
Send it to swap
Update PD & PT

18

Lazy Loading

Now: load all loadable pages into RAM
Lazy: load these only when needed
Not swapping, use the executable file
Keep track the location



4

19

Memory mapped files
Keep a copy of an open file in memory
Keep it in continuous virtual pages
File size is not multiple of PGSIZE—stick-out, 
cause partial page
Mapped IDs
Don’t map when: zero address or length, 
overlap, or console
Address or pages are “virtual”
System calls: mmap(fd, addr), munmap(ID)

20

On process termination

Clean you page table
Free your frames
Free your SWAP
Close all files

21

Other issues
Access user data

In project 2, need only verify user address
In project 3, need handle actual access to the content of user 
memory
Need protect: check address, lock frame, read/write, and unlock.

Synchronization
Allow parallelism of multiple processes
Page fault form multiple processes
E.g., A’s page fault need I/O (swap, lazy load); B’s page fault need 
not, then B should go ahead;

Containers
Proper container will affect your design significantly
Bit map, hash, list, and array
How many copies?
Make it simple

22

Suggested Order
Frame table management: your own 
“palloc”—modify or design new
Switch to your allocator—modify process.c
Virtual page table management
Page Fault
Stack growth, mmap, and reclamation 
Swap: accessed/dirty bits, alias, parallelism, 
and eviction algorithm 
http://courses.cs.vt.edu/~cs3204/spring2006/
wmcquain/index.html

23

Other suggestions

Go over your lecture notes
Design before start
Keep an eye on Dr. Back’s project 
pages


