Pintos Virtual Memory Management
Project
* (CS3204 Spring 2006 \V/T)

Yi Ma

!-‘ Outline

= Memory and Access

= Current Status in Pintos
= Requirements

= Suggestion

1
ii In project 2, loader installs user executable
o into physical RAM. Virtual, relative
| o are translated into absolute, physical

s address by MMU and paging. It manages
User executable uses virtual, Tanias the RAM so that multiple process shares
relative address (0-3GB). They ~ffaer fiak | RAMwithout interrupting each other. However
are organized as segment ——Wmmjygf w—‘ﬂad code and data

at first.

Executable on Disk /
Physical Memory

(RAM+ROM)

Virtual Linear Address Space

Virtual Memory Management

~/’J Virtual Memory Management ’\@
TFimton
— ‘ \

w1 ! %
[ Dhes e - B
| Sopueun | ) RAM Frames
| Code Sogment | .- -
C 1 MMU translating linear address into page and offset
Virtual Address Space e

and pagedir.h/c for

its interface.
4

!- Curl‘ent Status (after a successful project2)

= Kernel's memory has been well handled.

= MMU—PD, PT, pagedir—address maps.

= Per-process page table (process.c).

= Preload data and code segment and stack
(load, load_segment, and setup stack).

= Fixed stack and limited size and number of
programs.

!-| Requirement Overview

= Page Table Management
= Address mapping and page fault
= Swapping
= Choose a replacement alg., like a 1-bit
clock alg. (NRU)

= Lazy loading
= Load on demand
= Memory mapped files




:- Page Table Management

= Functionalities
= Virtual mapped to physical
= Locate page (RAM or SWAP)
= Physical back to virtual (evicting)
= This vs. PD & PT?
= Virtual vs. Physical Page
= Install virtual page into a physical frame
= Mapping through MMU’s PD and PT
= Keep track

Page Fault

= Pre-project 3
= Install new PD when switching
= Setup all mapping
= Fault on unmapped address and kill
= Post-project 3
= Page_fault is no longer always an error
= May have to swap in or load
= How
Get the faulting address
Find the page (file or swap)

Let it in (may require eviction of other page currently
located in the frame.)

Update PTE

i Address Translation Process

Virtual Address done in hardware

. " done in OS software
restart instruction

Page Table Walk
miss, hit

done in software
or hardware

Page Fault Exception

“Page Not Present” Check Permissions

denied ok
49;”%_ Page Load Page
Available

“Protection Fault”
L Swapping |

Terminate Process

Page Fault Exception Physical Address

:-| Confusing?

= ToO many pages and tables?
= MMU: pde, pte

= Frame page

= Virtual page

= Swapped page

= Their cross links

3 Frames

= Only user pool

= ram_pages in load.s and init.c?

= It's relation with current palloc.

= Two ways for your frame allocator.
= Where you initialize.

11

:-| Virtual Pages

= It is the core of the virtual memory.

= Relation with user address space.
(continuous or not)

= Relation with frames

= Relation with swap disk

= Relation with executable file

= Relation with MMU’s PD and PT




3 Pages on disk

= Memory in 4KB pages

= Disk in 512B sectors

= How to organize the swap disk so that it
could best conform page system

= Design data structure to implement the
above design

:-‘ What is the problem

= Starting/end address of a page
= Permission of the page

= Location of the “virtual” page: RAM,
SWAP, or File

= Keep track: when and what to update

3 Stack Growth

= First page allocated in setup_stack

= Look at memory layout: there is a vacant
between heap and stack

i386 “push” at most 32B to the stack at once
Stack is growing downwards

Catch the stack pointer—esp

= When: page_fault

Limit the size of stack reasonably

:-| Swapping

= Loaded pages got evicted—swap out

= Evicted pages got reloaded—swap in

= Swap out on page fault and no free frame

= Swap in on page fault

= Manage Disk (track occupied or free sectors)
= No order

= Parallel

3 Evict a page

= Keep track where is the free frames

= Keep track who are evict-able frames

= Pick a replacement algorithm like 1-bit
alg.

= Accessed/dirty bit in PTE

= Send it to swap

= Update PD & PT

17

:-| Lazy Loading

= Now: load all loadable pages into RAM
= Lazy: load these only when needed

= Not swapping, use the executable file
= Keep track the location




3 Memory mapped files

= Keep a copy of an open file in memory

= Keep it in continuous virtual pages

= File size is not multiple of PGSIZE—stick-out,
cause partial page

Mapped IDs

= Don’t map when: zero address or length,
overlap, or console

Address or pages are “virtual”
System calls: mmap(fd, addr), munmap(ID)

:-‘ On process termination

= Clean you page table
= Free your frames

= Free your SWAP

= Close all files

Other issues

= Access user data
= In project 2, need only verify user address
= In project 3, need handle actual access to the content of user
memory
= Need protect: check address, lock frame, read/write, and unlock.
= Synchronization
= Allow parallelism of multiple processes
= Page fault form multiple processes
= E.g., A's page fault need 1/0 (swap, lazy load); B's page fault need
not, then B should go ahead;
= Containers
Proper container will affect your design significantly
Bit map, hash, list, and array
How many copies?
Make it simple

21

Suggested Order

= Frame table management: your own
“palloc”—modify or design new

= Switch to your allocator—modify process.c
Virtual page table management

Page Fault

Stack growth, mmap, and reclamation
Swap: accessed/dirty bits, alias, parallelism,
and eviction algorithm

http://courses.cs.vt.edu/~cs3204/spring2006/
wmcquain/index.html

3 Other suggestions

= Go over your lecture notes
= Design before start

= Keep an eye on Dr. Back’s project
pages

23




