* Project 2: User Programs

Abdelmounaam Rezgui

The content of some slides is partly taken
from Josh Wiseman's presentation

:.| Overview

= Objective: Enable user programs to run
and interact with the OS via system
calls

= Directories:
= userprog/
= threads/
= examples/

1 Using the File System -1-

= NOT the focus of this project

= User programs are loaded from the FS

= Many system calls deal with the FS (e.qg.,
open(), read(), write())

= Simple file system provided in the filesys
directory
= Look at: filesys.h and file.h
= Limit is 16 files
= No subdirectories

Using the File System -2-

= Create a (simulated) disk:
= pintos-mkdisk <img-file> <size>
= img-file = filename for disk (usually “fs.dsk”)
= size = disk capacity, MB
= Format disk
= pintos -f -q
= -f = format, -q = quit after boot
= Copy to disk:
= Pintos -p <source> -a <dest> -- -q
= -p = source file, -a = filename on disk
= Run program:
= Pintos run <executable>
= $ make check: will build a disk for you

3 Sample user programs

= In examples/
= cat, echo, halt, hex-dump, Is, shell

= You should be able to write and run
your own programs

= Create a test disk
= Copy programs to the test disk

:| Requirements

1 Argument passing

2 System calls

3) Process termination

4 Deny writes to executables
55 DESIGNDOC

3 Getting Started

= In the default version, programs will
crash

= To get simple programs to run:
*esp = PHYS_BASE - 12;

= This will NOT make argument passing
work

Argument Passing -1-

= Motivation:
= kernel creates first
process

= One process creates
another

= $ pintos run ‘pgm alpha beta’
= You may:
= use strtok_r() to parse the
command line
= assume cmd line length <
4KB

pgm.c
main(int argc,
char *argv[]) {

}

$ pintos run ‘pgm alpha beta’
argc = 3

argv[0] = “pgm”
argv[1] = “alpha”
argv[2] = “beta”

3 Argument Passing -2-

Kemel
Virtual

PHYS_BASE Invalid Pointer Area
[
s

(Block Starting Symbol BSS)

Initiaized data segment

Code segment

0x 08048000)

0

!.’ Argument Passing -3-

408

PHYS_BASE

User stack

| e

Grows
upward

Uninitalized data segment
(_Block Starting SymbolBSS)

Initalized data segment

Code segment

0x 0804800

0

10

3 Argument Passing -4-

!.| Argument Passing -5-

bfffffd0

bfffffe0

bffffffo

00 00 00 00 03 00 00 00 e0 ff ff bf
f1 ff ff bf 5 ff ff bf fb ff ff bf 00 00 00 00

0070 67 6d 00 61 6¢ 70 68 61 00 62 65 74 61 00

I

pgm.alpha .beta.

12

3 System Calls -1-

= User programs make system calls
= E.g., open(), close(), exit(), halt(), ...
= Implement system calls:
= Process control:
= exit(), exec(), and wait()

= Filesystem calls:

= create(),open(),close(),read(),write(),seek(),
tell(),filesize(),remove()

« halt()

System Calls -2-

= The OS deals with software exceptions (called
“Internal interrupts” in the x86)

= SEs are events that occur in program code.
They may be:
= Errors: e.g., page faults, division by 0
= System Calls

= SEs don't execute in interrupt context
= i.e., intr_context() == false

= In the 80x86 arch, the ‘int’ instruction is used
to make system calls

= In Pintos, user programs invoke ‘int $0x30’ to
make system calls

14

System Calls -3-

= A system call has:

= System call number

= (possibly) arguments
= System call numbers are in: lib/syscall-nr.h
= When syscall_handler() gets control:

syscall_handler (struct intr_frame *f) {

f>esp
. Arg #2

f>eax=...;
} Arg #1

L—»| sys.cal#

= System calls that return
a value () must modify
f->eax

Caller's User Stack 15

System Calls -4-

= Filesystem calls

= You must decide how to implement file descriptors
= O(n) data structures for file descriptors are OK

= For this project, access granularity is the entire file
syst. Use ONE lock for the entire file system

= write(d, ...) writes to the console. Use putbuf().

= read(0, ...) reads from the stdin (keyboard). Use
kbd_getc().

16

3 System Calls -5-

= exec(const char

*cmd_line)
= Runs ‘cmd_line’, main() {
passes args, returns pid_t p;
pid p = exec(“cp filel file2");
= exit() retains error }

codes for wait()

!.| System Calls -6-

= wait(pid_t pid)
= Waits for process pid to die and returns the
status that pid returned to exit()
= Returns -1 if
= pid was killed by the kernel
= pid is not a child
= Wait has already been successfully called

18

3 System Calls -7-

Parent may or may not wait for
its child

Parent may call wait() after child
terminates!

Implement process_wait() in
process.c

main() {

int i; pid_t p;

p = exec(“pgm a b");
i = wait (p);

... /*imust be 5*/

= Then, implement wait() in terms 3
of prqqess_walt() _ maing) {
= Conditions and semaphores will)
heIp int status;
= Think about what semaphores may ... status = 5;
be used for and how they must be . 3
initialized exit(status);
}
pgm.c o

Process Termination

= Record the argument passed to the exit()
syscall

= When a user process exits:
printf(“%os: exit(%d)\n",...)

= ALL programs call exit() unless, of course,

if they're terminated
= Returning from main implicitly calls exit()
_start() is { exit(main(...)); }

20

3 Virtual Memory Layout -1-

ac8

Stack does NOT grow
until Project 3

PHYS BASE

Heap never grows

Uninitialized means
“zero-initialized”

UVM is per-process

A user program

accesses only its UVM oo

o

21

!.’ Virtual Memory Layout -2-

= If it attempts to access
KVM —Page fault

PHYS BASE

= Kernel threads access KVM
and the UVM of the l“
running user process

= In this project, this image
is ALREADY set up for you.

= You only have to query
the page table to see oxowm
which pages are mapped .

Kernel
Virtual
Memory

Code segment

22

3 Memory Access -1-

= Kernel needs to access memory through

pointers given by a user program
= user-provided pointers may be invalid

= point to unmapped VM

= point to KVM address space

= How to handle this ?

!.| Memory Access -2-

= Two options:
= verify the validity of a user-provided pointer,
then dereference it —
STRONGLY RECOMMENDED!
= dereference and handle during page fault
= Check only that user pointer points below
PHYS_BASE
= Dereference it
= If it causes a page fault, handle it
= You need to modify the code for page_fault()

24

3 Memory Access -3-

= In BOTH cases:
= Graceful termination
= Misbehaving processes must be killed
= Orderly shutdown
= No resource leaks
= E.g., release locks, free allocated memory pages,
etc.

= Data may span page boundaries

:.| Denying Writes to Executables

= YOou may use:
= file_deny_write() to prevent writes to an open file

= file_allow_write() re-enables them (if no
other process has already denied them)

= If a file is closed, writes are re-enabled.

26

3 Misc

= Read Section 4.2 (page 51) (Suggested Order
of Implementation) in Pintos documentation

= Do not forget the Design Document
= Good Luck !

27

