
1

Chapter 5: CPU SchedulingChapter 5: CPU Scheduling

5.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Chapter 5: CPU SchedulingChapter 5: CPU Scheduling

Basic Concepts
Scheduling Criteria
Scheduling Algorithms
Multiple-Processor Scheduling
Real-Time Scheduling
Thread Scheduling
Operating Systems Examples
Java Thread Scheduling
Algorithm Evaluation

5.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Basic ConceptsBasic Concepts

Maximum CPU utilization obtained with multiprogramming
CPU–I/O Burst Cycle – Process execution consists of a cycle of
CPU execution and I/O wait
CPU burst distribution

5.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Alternating Sequence of CPU And I/O BurstsAlternating Sequence of CPU And I/O Bursts

5.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Histogram of CPUHistogram of CPU--burst Timesburst Times

5.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

CPU SchedulerCPU Scheduler

Selects from among the processes in memory that are ready to
execute, and allocates the CPU to one of them
CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

Scheduling under 1 and 4 is nonpreemptive
All other scheduling is preemptive

2

5.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

DispatcherDispatcher

Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler; this involves:

switching context
switching to user mode
jumping to the proper location in the user program to restart
that program

Dispatch latency – time it takes for the dispatcher to stop one
process and start another running

5.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Scheduling CriteriaScheduling Criteria

CPU utilization – keep the CPU as busy as possible
Throughput – # of processes that complete their execution
per time unit
Turnaround time – amount of time to execute a particular
process
Waiting time – amount of time a process has been waiting
in the ready queue
Response time – amount of time it takes from when a
request was submitted until the first response is produced,
not output (for time-sharing environment)

5.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Optimization CriteriaOptimization Criteria

Max CPU utilization
Max throughput
Min turnaround time
Min waiting time
Min response time

5.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

FirstFirst--Come, FirstCome, First--Served (FCFS) SchedulingServed (FCFS) Scheduling

Process Burst Time
P1 24
P2 3
P3 3

Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

Waiting time for P1 = 0; P2 = 24; P3 = 27
Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

5.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

FCFS Scheduling (Cont.)FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order
P2 , P3 , P1

The Gantt chart for the schedule is:

Waiting time for P1 = 6; P2 = 0; P3 = 3
Average waiting time: (6 + 0 + 3)/3 = 3
Much better than previous case
Convoy effect short process behind long process

P1P3P2

63 300

5.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ShortestShortest--JobJob--First (SJR) SchedulingFirst (SJR) Scheduling

Associate with each process the length of its next CPU burst. Use
these lengths to schedule the process with the shortest time
Two schemes:

nonpreemptive – once CPU given to the process it cannot be
preempted until completes its CPU burst
preemptive – if a new process arrives with CPU burst length
less than remaining time of current executing process,
preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF)

SJF is optimal – gives minimum average waiting time for a given
set of processes

3

5.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

SJF (non-preemptive)

Average waiting time = (0 + 6 + 3 + 7)/4 = 4

Example of NonExample of Non--Preemptive SJFPreemptive SJF

P1 P3 P2

73 160

P4

8 12

5.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Example of Preemptive SJFExample of Preemptive SJF

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

SJF (preemptive)

Average waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

5.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Determining Length of Next CPU BurstDetermining Length of Next CPU Burst

Can only estimate the length
Can be done by using the length of previous CPU bursts, using
exponential averaging

:Define 4.
10 , 3.

burst CPU next the for value predicted 2.
burst CPU of lenght actual 1.

1

≤≤

=
=

+

αα
τ n

th
n nt

() .1 1 nnn t ταατ −+==

5.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Prediction of the Length of the Next CPU BurstPrediction of the Length of the Next CPU Burst

5.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Examples of Exponential AveragingExamples of Exponential Averaging

α =0
τn+1 = τn

Recent history does not count
α =1

τn+1 = α tn
Only the actual last CPU burst counts

If we expand the formula, we get:
τn+1 = α tn+(1 - α)α tn -1 + …

+(1 - α)j α tn -j + …
+(1 - α)n +1 τ0

Since both α and (1 - α) are less than or equal to 1, each
successive term has less weight than its predecessor

5.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Priority SchedulingPriority Scheduling

A priority number (integer) is associated with each process
The CPU is allocated to the process with the highest priority
(smallest integer ≡ highest priority)

Preemptive
nonpreemptive

SJF is a priority scheduling where priority is the predicted next CPU
burst time
Problem ≡ Starvation – low priority processes may never execute
Solution ≡ Aging – as time progresses increase the priority of the
process

4

5.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Round Robin (RR)Round Robin (RR)

Each process gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready queue.
If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time in
chunks of at most q time units at once. No process waits more
than (n-1)q time units.
Performance

q large ⇒ FIFO
q small ⇒ q must be large with respect to context switch,
otherwise overhead is too high

5.20 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Example of RR with Time Quantum = 20Example of RR with Time Quantum = 20

Process Burst Time
P1 53
P2 17
P3 68
P4 24

The Gantt chart is:

Typically, higher average turnaround than SJF, but better response

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

5.21 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Time Quantum and Context Switch TimeTime Quantum and Context Switch Time

5.22 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Turnaround Time Varies With The Time QuantumTurnaround Time Varies With The Time Quantum

5.23 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Multilevel QueueMultilevel Queue

Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)
Each queue has its own scheduling algorithm

foreground – RR
background – FCFS

Scheduling must be done between the queues
Fixed priority scheduling; (i.e., serve all from foreground then
from background). Possibility of starvation.
Time slice – each queue gets a certain amount of CPU time
which it can schedule amongst its processes; i.e., 80% to
foreground in RR
20% to background in FCFS

5.24 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Multilevel Queue SchedulingMultilevel Queue Scheduling

5

5.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Multilevel Feedback QueueMultilevel Feedback Queue

A process can move between the various queues; aging can be
implemented this way
Multilevel-feedback-queue scheduler defined by the following
parameters:

number of queues
scheduling algorithms for each queue
method used to determine when to upgrade a process
method used to determine when to demote a process
method used to determine which queue a process will enter
when that process needs service

5.26 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Example of Multilevel Feedback QueueExample of Multilevel Feedback Queue

Three queues:
Q0 – RR with time quantum 8 milliseconds
Q1 – RR time quantum 16 milliseconds
Q2 – FCFS

Scheduling
A new job enters queue Q0 which is served FCFS. When it
gains CPU, job receives 8 milliseconds. If it does not finish in 8
milliseconds, job is moved to queue Q1.
At Q1 job is again served FCFS and receives 16 additional
milliseconds. If it still does not complete, it is preempted and
moved to queue Q2.

5.27 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Multilevel Feedback QueuesMultilevel Feedback Queues

5.28 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

MultipleMultiple--Processor SchedulingProcessor Scheduling

CPU scheduling more complex when multiple CPUs are
available
Homogeneous processors within a multiprocessor
Load sharing
Asymmetric multiprocessing – only one processor
accesses the system data structures, alleviating the need
for data sharing

5.29 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

RealReal--Time SchedulingTime Scheduling

Hard real-time systems – required to complete a
critical task within a guaranteed amount of time
Soft real-time computing – requires that critical
processes receive priority over less fortunate ones

5.30 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Thread SchedulingThread Scheduling

Local Scheduling – How the threads library decides which
thread to put onto an available LWP

Global Scheduling – How the kernel decides which kernel
thread to run next

6

5.31 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

PthreadPthread Scheduling APIScheduling API

#include <pthread.h>
#include <stdio.h>
#define NUM THREADS 5
int main(int argc, char *argv[])
{

int i;
pthread t tid[NUM THREADS];
pthread attr t attr;
/* get the default attributes */
pthread attr init(&attr);
/* set the scheduling algorithm to PROCESS or SYSTEM */
pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM);
/* set the scheduling policy - FIFO, RT, or OTHER */
pthread attr setschedpolicy(&attr, SCHED OTHER);
/* create the threads */
for (i = 0; i < NUM THREADS; i++)

pthread create(&tid[i],&attr,runner,NULL);

5.32 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

PthreadPthread Scheduling APIScheduling API

/* now join on each thread */
for (i = 0; i < NUM THREADS; i++)

pthread join(tid[i], NULL);
}
/* Each thread will begin control in this function */

void *runner(void *param)
{

printf("I am a thread\n");
pthread exit(0);

}

5.33 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Operating System ExamplesOperating System Examples

Solaris scheduling
Windows XP scheduling
Linux scheduling

5.34 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Solaris 2 SchedulingSolaris 2 Scheduling

5.35 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Solaris Dispatch Table Solaris Dispatch Table

5.36 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Windows XP PrioritiesWindows XP Priorities

7

5.37 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Linux SchedulingLinux Scheduling

Two algorithms: time-sharing and real-time
Time-sharing

Prioritized credit-based – process with most credits is
scheduled next
Credit subtracted when timer interrupt occurs
When credit = 0, another process chosen
When all processes have credit = 0, recrediting occurs

Based on factors including priority and history
Real-time

Soft real-time
Posix.1b compliant – two classes

FCFS and RR
Highest priority process always runs first

5.38 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

The Relationship Between Priorities and TimeThe Relationship Between Priorities and Time--slice lengthslice length

5.39 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

List of Tasks Indexed According to List of Tasks Indexed According to ProritiesProrities

5.40 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Algorithm EvaluationAlgorithm Evaluation

Deterministic modeling – takes a particular
predetermined workload and defines the performance of
each algorithm for that workload
Queueing models
Implementation

5.41 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

5.155.15

End of Chapter 5End of Chapter 5

8

5.43 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

5.085.08

5.44 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

InIn--5.75.7

5.45 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

InIn--5.85.8

5.46 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

InIn--5.95.9

5.47 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Dispatch LatencyDispatch Latency

5.48 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Java Thread SchedulingJava Thread Scheduling

JVM Uses a Preemptive, Priority-Based Scheduling Algorithm

FIFO Queue is Used if There Are Multiple Threads With the Same
Priority

9

5.49 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Java Thread Scheduling (cont)Java Thread Scheduling (cont)

JVM Schedules a Thread to Run When:

1. The Currently Running Thread Exits the Runnable State
2. A Higher Priority Thread Enters the Runnable State

* Note – the JVM Does Not Specify Whether Threads are Time-Sliced
or Not

5.50 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

TimeTime--SlicingSlicing

Since the JVM Doesn’t Ensure Time-Slicing, the yield() Method
May Be Used:

while (true) {
// perform CPU-intensive task
. . .
Thread.yield();

}

This Yields Control to Another Thread of Equal Priority

5.51 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Thread PrioritiesThread Priorities

Priority Comment
Thread.MIN_PRIORITY Minimum Thread Priority
Thread.MAX_PRIORITY Maximum Thread Priority
Thread.NORM_PRIORITY Default Thread Priority

Priorities May Be Set Using setPriority() method:
setPriority(Thread.NORM_PRIORITY + 2);

