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Basic Concepts

®  Maximum CPU utilization obtained with multiprogramming

m  CPU-I/O Burst Cycle — Process execution consists of a cycle of
CPU execution and I/O wait

m  CPU burst distribution
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Alternating Sequence of CPU And I/O Bursts
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Histogram of CPU-burst Times
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CPU Scheduler

m  Selects from among the processes in memory that are ready to
execute, and allocates the CPU to one of them

® CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates
®  Scheduling under 1 and 4 is nonpreemptive
m All other scheduling is preemptive
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Dispatcher

®m Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler; this involves:

e switching context
e switching to user mode

® jumping to the proper location in the user program to restart
that program

m Dispatch latency — time it takes for the dispatcher to stop one
process and start another running
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Scheduling Criteria

m  CPU utilization — keep the CPU as busy as possible

m  Throughput — # of processes that complete their execution
per time unit

®  Turnaround time — amount of time to execute a particular
process

®  Waiting time — amount of time a process has been waiting
in the ready queue

®m Response time — amount of time it takes from when a
request was submitted until the first response is produced,
not output (for time-sharing environment)
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Optimization Criteria

Max CPU utilization
Max throughput
Min turnaround time
Min waiting time

Min response time
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First-Come, First-Served (FCFS) Scheduling

Process Burst Time
P, 24
P, 3
P 3

®m Suppose that the processes arrive in the order: P, , P, , P
The Gantt Chart for the schedule is:

Py P, Py

0 24 27 30
= Waiting time for P, =0; P, =24; P;=27
m  Average waiting time: (0 + 24 +27)/3 =17
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FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order
PZ ’ P3 ' Pl
B The Gantt chart for the schedule is:

P, P, P,
0 6 30
®  Waiting time for P, = 6;P, = 0.P;=3
®m Average waiting time: (6 +0+3)/3=3
®  Much better than previous case
= Convoy effect short process behind long process
Operating System Concepts. 511 Silberschatz, Galvin nnﬂ'GAgne ©2005

Shortest-Job-First (SJR) Scheduling

®  Associate with each process the length of its next CPU burst. Use
these lengths to schedule the process with the shortest time

®  Two schemes:
e nonpreemptive — once CPU given to the process it cannot be
preempted until completes its CPU burst
e preemptive — if a new process arrives with CPU burst length
less than remaining time of current executing process,
preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF)
m  SJF is optimal — gives minimum average waiting time for a given
set of processes
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Example of Non-Preemptive SJF

Process Arrival Time Burst Time
[Pa 0.0 7
P, 2.0 4
P, 4.0 1
[®n 5.0 4

®  SJF (non-preemptive)

m  Average waiting time=(0+6 +3 + 7)/4 =4
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Determining Length of Next CPU Burst

= Can only estimate the length

m  Can be done by using the length of previous CPU bursts, using
exponential averaging

1. t, = actual lenght of N CPU burst
2. r,,, =predicted value for the next CPU burst

3. a,0<a<1
4. Define: 7,,=at, +(1-a),.
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Example of Preemptive SJF

Process Arrival Time Burst Time

[a 0.0 7

P, 2.0 4

P, 4.0 1

P, 5.0 4

m  SJF (preemptive)

Pl PZ PS PZ PA Pl ‘
1 1 I T
0 2 4 5 7 11 16

m  Average waiting time =(9+ 1+ 0 +2)/4 =3
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Prediction of the Length of the Next CPU Burst
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Examples of Exponential Averaging

m a=0
® T =T
e Recent history does not count
" o=1
* Tu=alk
o Only the actual last CPU burst counts
= If we expand the formula, we get:
T =t (d-a)ot, -1+ ...
+1-a)oat, j+..
+(1-a )iz,
m  Since both o and (1 - @) are less than or equal to 1, each
successive term has less weight than its predecessor
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Priority Scheduling

® A priority number (integer) is associated with each process

®m The CPU is allocated to the process with the highest priority
(smallest integer = highest priority)

e Preemptive
© nonpreemptive

m SJF is a priority scheduling where priority is the predicted next CPU
burst time

® Problem = Starvation — low priority processes may never execute

®  Solution =
process

Aging — as time progresses increase the priority of the
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Round Robin (RR)

®m Each process gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready queue.

If there are n processes in the ready queue and the time
quantum is g, then each process gets 1/n of the CPU time in
chunks of at most q time units at once. No process waits more
than (n-1)q time units.

m Performance
e glarge = FIFO

e g small = g must be large with respect to context switch,
otherwise overhead is too high
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Example of RR with Time Quantum = 20

Process Burst Time
P, 53
P, 17
P, 68
P, 24

® The Gantt chart is:

‘Pl P, [Py | P, | P | Py | P | P | PP,

0 20 37 57 77 97 117 121 134 154 162

m Typically, higher average turnaround than SJF, but better response
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Time Quantum and Context Switch Time
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Turnaround Time Varies With The Time Quantum

process | time

P, &
Py 3
P‘ 1
z P, 7
]
&
g
& 100
z 9sh
20
A [ I A
1 2 3 4 5 7
time quanturm
Operating System Concepts 52 Silberschatz, Galvin and Gagne 62005

Multilevel Queue

m  Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

m  Each queue has its own scheduling algorithm
e foreground - RR
e background — FCFS

m  Scheduling must be done between the queues

e Fixed priority scheduling; (i.e., serve all from foreground then
from background). Possibility of starvation.

e Time slice — each queue gets a certain amount of CPU time
which it can schedule amongst its processes; i.e., 80% to
foreground in RR

® 20% to background in FCFS
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Multilevel Queue Scheduling
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Multilevel Feedback Queue

m A process can move between the various queues; aging can be
implemented this way

m  Multilevel-feedback-queue scheduler defined by the following
parameters:

number of queues

scheduling algorithms for each queue

method used to determine when to upgrade a process
method used to determine when to demote a process

method used to determine which queue a process will enter
when that process needs service
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Multilevel Feedback Queues

quantum = 8

quantum = 16
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Example of Multilevel Feedback Queue

®m Three queues:
® Q,— RR with time quantum 8 milliseconds
e Q, — RRtime quantum 16 milliseconds
e Q,—FCFS

m  Scheduling

* Anew job enters queue Q, which is served FCFS. When it
gains CPU, job receives 8 milliseconds. If it does not finish in 8
milliseconds, job is moved to queue Q.

® AtQ, job is again served FCFS and receives 16 additional
milliseconds. |If it still does not complete, it is preempted and
moved to queue Q,.
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Multiple-Processor Scheduling

®  CPU scheduling more complex when multiple CPUs are
available

®  Homogeneous processors within a multiprocessor
®m Load sharing

m  Asymmetric multiprocessing — only one processor
accesses the system data structures, alleviating the need
for data sharing
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Real-Time Scheduling

® Hard real-time systems — required to complete a
critical task within a guaranteed amount of time

m  Soft real-time computing — requires that critical
processes receive priority over less fortunate ones
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Thread Scheduling

® Local Scheduling — How the threads library decides which
thread to put onto an available LWP

®  Global Scheduling — How the kernel decides which kernel
thread to run next
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Pthread Scheduling API

#include <pthread.h>
#include <stdio.h>
#define NUM THREADS 5
int main(int arge, char *argv[])
{
inti;
pthread t tidNUM THREADS];
pthread attr t attr;
I* get the default attributes */
pthread attr init(&attr);
I* set the scheduling algorithm to PROCESS or SYSTEM */
pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM);
I* set the scheduling policy - FIFO, RT, or OTHER */
pthread attr setschedpolicy(&attr, SCHED OTHER);
I* create the threads */
for (i = 0; i < NUM THREADS; i++)
pthread create(&tid[i],&attr,runner, NULL);
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Operating System Examples
m  Solaris scheduling
m  Windows XP scheduling
®m  Linux scheduling
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Pthread Scheduling API

/* now join on each thread */
for (i = 0; i < NUM THREADS; i++)
pthread join(tid[i], NULL);

}
I* Each thread will begin control in this function */
void *runner(void *param)
{

printf("l am a thread\n");

pthread exit(0);

Solaris Dispatch Table
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Solaris 2 Scheduling
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Windows XP Priorities
real- " abave below idle
o | MO | pormal | %Ml | normal | priory
tame-critical n 13 16 156 18
highest 28 15 12 10 8 &
above nommal 25 14 1 ] 7 5
nomal 24 13 10 ] ] 4
below namal 2 12 7 5 3
lowest 2 1 8 & 4 2
idle 16 1 1 1 1 1
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Linux Scheduling

®  Two algorithms: time-sharing and real-time
® Time-sharing

Prioritized credit-based — process with most credits is
scheduled next

Credit subtracted when timer interrupt occurs
When credit = 0, another process chosen
When all processes have credit = 0, recrediting occurs
» Based on factors including priority and history
® Real-time
* Soft real-time
e Posix.1b compliant — two classes
» FCFS and RR
» Highest priority process always runs first
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The Relationship Between Priorities and Time-slice length

numeric relative time
priority priority quantum
0 highest ] 200 ms
2 real-time
% tasks
.
29
100
N other
2 tasks
.
140 lowest i | 10 ms
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List of Tasks Indexed According to Prorities

active expired
array array
priority task lists pricrity task lists
[0] o—0 [0] o—0—0
1 o—0——0 [1] Q
[140] o] [140] o—0
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Algorithm Evaluation

m Deterministic modeling — takes a particular
predetermined workload and defines the performance of
each algorithm for that workload

®  Queueing models
® Implementation
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End of Chapter 5
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Dispatch Latency
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Java Thread Scheduling

m JVM Uses a Preemptive, Priority-Based Scheduling Algorithm

® FIFO Queue is Used if There Are Multiple Threads With the Same
Priority
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Java Thread Scheduling (cont)

JVM Schedules a Thread to Run When:

1. The Currently Running Thread Exits the Runnable State
2. A Higher Priority Thread Enters the Runnable State

* Note — the JVM Does Not Specify Whether Threads are Time-Sliced

Time-Slicing

Since the JVM Doesn’t Ensure Time-Slicing, the yield() Method
May Be Used:

while (true) {
/I perform CPU-intensive task

Thread.yield();

This Yields Control to Another Thread of Equal Priority

or Not
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Thread Priorities
Priority Comment

Thread.MIN_PRIORITY Minimum Thread Priority
Thread.MAX_PRIORITY Maximum Thread Priority
Thread.NORM_PRIORITY Default Thread Priority

Priorities May Be Set Using setPriority() method:
setPriority(Thread.NORM_PRIORITY + 2);
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