Chapter 5: CPU Scheduling
LIEBVDILIIBIDILIIBIDILIIBI I

Chapter 5: CPU Scheduling

Basic Concepts

Scheduling Criteria
Scheduling Algorithms
Multiple-Processor Scheduling
Real-Time Scheduling

Thread Scheduling

Operating Systems Examples
Java Thread Scheduling
Algorithm Evaluation

Basic Concepts

® Maximum CPU utilization obtained with multiprogramming

m CPU-I/O Burst Cycle — Process execution consists of a cycle of
CPU execution and I/O wait

m CPU burst distribution

Silberschatz, Galvin and Gagne £2005

Operating System Concepts 53

silberschatz, Galvin and Gagne 2005

Operating System Concepis 52

Alternating Sequence of CPU And I/O Bursts

» CPU burs

et B (O =T
wtors incremant
ndey » EPU burs
writa fo the |

it for 1D ¥ VO barat
load siore
sl stere # EPU burs
read from file

wat for O » VO berst

Operating System Concepts 54 Silberschatz, Galvin and Gagne ©2005

Histogram of CPU-burst Times

Silberschatz, Galvin and Gagne 2005

Operating System Concepts 55

CPU Scheduler

m Selects from among the processes in memory that are ready to
execute, and allocates the CPU to one of them

® CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates
® Scheduling under 1 and 4 is nonpreemptive
m All other scheduling is preemptive

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts 56

Dispatcher

®m Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler; this involves:

e switching context
e switching to user mode

® jumping to the proper location in the user program to restart
that program

m Dispatch latency — time it takes for the dispatcher to stop one
process and start another running

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts 57

Scheduling Criteria

m CPU utilization — keep the CPU as busy as possible

m Throughput — # of processes that complete their execution
per time unit

® Turnaround time — amount of time to execute a particular
process

® Waiting time — amount of time a process has been waiting
in the ready queue

®m Response time — amount of time it takes from when a
request was submitted until the first response is produced,
not output (for time-sharing environment)

silberschatz, Galvin and Gagne 2005

Optimization Criteria

Max CPU utilization
Max throughput
Min turnaround time
Min waiting time

Min response time

Operating System Concepts 59 Silberschatz, Galvin and Gagne ©2005

Operating System Concepis 58

First-Come, First-Served (FCFS) Scheduling

Process Burst Time
P, 24
P, 3
P 3

®m Suppose that the processes arrive in the order: P, , P, , P
The Gantt Chart for the schedule is:

Py P, Py

0 24 27 30
= Waiting time for P, =0; P, =24; P;=27
m Average waiting time: (0 + 24 +27)/3 =17

Operating System Concepts 5.10 silberschatz, Galvin and Gagne ©2005

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order
PZ ’ P3 ' Pl
B The Gantt chart for the schedule is:

P, P, P,
0 6 30
® Waiting time for P, = 6;P, = 0.P;=3
®m Average waiting time: (6 +0+3)/3=3
® Much better than previous case
= Convoy effect short process behind long process
Operating System Concepts. 511 Silberschatz, Galvin nnﬂ'GAgne ©2005

Shortest-Job-First (SJR) Scheduling

® Associate with each process the length of its next CPU burst. Use
these lengths to schedule the process with the shortest time

® Two schemes:
e nonpreemptive — once CPU given to the process it cannot be
preempted until completes its CPU burst
e preemptive — if a new process arrives with CPU burst length
less than remaining time of current executing process,
preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF)
m SJF is optimal — gives minimum average waiting time for a given
set of processes

Silberschatz, Galvin and Gagne ©

Operating System Concepts 512

Example of Non-Preemptive SJF

Process Arrival Time Burst Time
[Pa 0.0 7
P, 2.0 4
P, 4.0 1
[®n 5.0 4

® SJF (non-preemptive)

m Average waiting time=(0+6 +3 + 7)/4 =4

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts 513

Determining Length of Next CPU Burst

= Can only estimate the length

m Can be done by using the length of previous CPU bursts, using
exponential averaging

1. t, = actual lenght of N CPU burst
2. r,,, =predicted value for the next CPU burst

3. a,0<a<1
4. Define: 7,,=at, +(1-a),.

Operating System Concepts 515 Silberschatz, Galvin and Gagne ©2005

Example of Preemptive SJF

Process Arrival Time Burst Time

[a 0.0 7

P, 2.0 4

P, 4.0 1

P, 5.0 4

m SJF (preemptive)

Pl PZ PS PZ PA Pl ‘
1 1 I T
0 2 4 5 7 11 16

m Average waiting time =(9+ 1+ 0 +2)/4 =3

silberschatz, Galvin and Gagne 2005

Operating System Concepis 514

Prediction of the Length of the Next CPU Burst

Operating System Concepts 516 silberschatz, Galvin and Gagne ©2005

Examples of Exponential Averaging

m a=0
® T =T
e Recent history does not count
" o=1
* Tu=alk
o Only the actual last CPU burst counts
= If we expand the formula, we get:
T =t (d-a)ot, -1+ ...
+1-a)oat, j+..
+(1-a)iz,
m Since both o and (1 - @) are less than or equal to 1, each
successive term has less weight than its predecessor

Operating System Concepts 517 Silberschatz, Galvin and Ga

Priority Scheduling

® A priority number (integer) is associated with each process

®m The CPU is allocated to the process with the highest priority
(smallest integer = highest priority)

e Preemptive
© nonpreemptive

m SJF is a priority scheduling where priority is the predicted next CPU
burst time

® Problem = Starvation — low priority processes may never execute

® Solution =
process

Aging — as time progresses increase the priority of the

Operating System Concepts 518 Silberschatz, Galvin and Gag

Round Robin (RR)

®m Each process gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready queue.

If there are n processes in the ready queue and the time
quantum is g, then each process gets 1/n of the CPU time in
chunks of at most q time units at once. No process waits more
than (n-1)q time units.

m Performance
e glarge = FIFO

e g small = g must be large with respect to context switch,
otherwise overhead is too high

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts 519

Example of RR with Time Quantum = 20

Process Burst Time
P, 53
P, 17
P, 68
P, 24

® The Gantt chart is:

‘Pl P, [Py | P, | P | Py | P | P | PP,

0 20 37 57 77 97 117 121 134 154 162

m Typically, higher average turnaround than SJF, but better response

silberschatz, Galvin and Gagne 2005

Time Quantum and Context Switch Time

process ime = 10 quanium context
swilche:
| | e ;
0 10
I
| | | & |
T
5 10
EIEEEREEEEE J
P 1 2 3 4 5 B 7 8 9 10

Silberschatz, Galvin and Gagne £2005

Operating System Concepts 521

Operating System Concepis 5.20

Turnaround Time Varies With The Time Quantum

process | time

P, &
Py 3
P‘ 1
z P, 7
]
&
g
& 100
z 9sh
20
A [I A
1 2 3 4 5 7
time quanturm
Operating System Concepts 52 Silberschatz, Galvin and Gagne 62005

Multilevel Queue

m Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

m Each queue has its own scheduling algorithm
e foreground - RR
e background — FCFS

m Scheduling must be done between the queues

e Fixed priority scheduling; (i.e., serve all from foreground then
from background). Possibility of starvation.

e Time slice — each queue gets a certain amount of CPU time
which it can schedule amongst its processes; i.e., 80% to
foreground in RR

® 20% to background in FCFS

Silberschatz, Galvin and Gagne 2005

Operating System Concepts 523

Multilevel Queue Scheduling

ighest priany

™ 0 f >
r

— balch processes }=¢

[slisdent processes l =t

lawest peiority

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts 5.24

Multilevel Feedback Queue

m A process can move between the various queues; aging can be
implemented this way

m Multilevel-feedback-queue scheduler defined by the following
parameters:

number of queues

scheduling algorithms for each queue

method used to determine when to upgrade a process
method used to determine when to demote a process

method used to determine which queue a process will enter
when that process needs service

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts 5.25

Multilevel Feedback Queues

quantum = 8

quantum = 16

Operating System Concepts 527 Silberschatz, Galvin and Gagne ©2005

Example of Multilevel Feedback Queue

®m Three queues:
® Q,— RR with time quantum 8 milliseconds
e Q, — RRtime quantum 16 milliseconds
e Q,—FCFS

m Scheduling

* Anew job enters queue Q, which is served FCFS. When it
gains CPU, job receives 8 milliseconds. If it does not finish in 8
milliseconds, job is moved to queue Q.

® AtQ, job is again served FCFS and receives 16 additional
milliseconds. |If it still does not complete, it is preempted and
moved to queue Q,.

silberschatz, Galvin and Gagne 2005

Operating System Concepis 5.26

Multiple-Processor Scheduling

® CPU scheduling more complex when multiple CPUs are
available

® Homogeneous processors within a multiprocessor
®m Load sharing

m Asymmetric multiprocessing — only one processor
accesses the system data structures, alleviating the need
for data sharing

Operating System Concepts 528 silberschatz, Galvin and Gagne ©2005

Real-Time Scheduling

® Hard real-time systems — required to complete a
critical task within a guaranteed amount of time

m Soft real-time computing — requires that critical
processes receive priority over less fortunate ones

Operating System Concepts 529 Silberschatz, Galvin and Gagne ©2005

Thread Scheduling

® Local Scheduling — How the threads library decides which
thread to put onto an available LWP

® Global Scheduling — How the kernel decides which kernel
thread to run next

Operating System Concepts 5.30 silberschatz, Galvin and Gagne ©2005

Pthread Scheduling API

#include <pthread.h>
#include <stdio.h>
#define NUM THREADS 5
int main(int arge, char *argv[])
{
inti;
pthread t tidNUM THREADS];
pthread attr t attr;
I* get the default attributes */
pthread attr init(&attr);
I* set the scheduling algorithm to PROCESS or SYSTEM */
pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM);
I* set the scheduling policy - FIFO, RT, or OTHER */
pthread attr setschedpolicy(&attr, SCHED OTHER);
I* create the threads */
for (i = 0; i < NUM THREADS; i++)
pthread create(&tid[i],&attr,runner, NULL);

Oeevaw\g stmm Concee!s 5.31 Silberschatz, Galvin andr.satzne ©2005
Operating System Examples
m Solaris scheduling
m Windows XP scheduling
®m Linux scheduling

Operating System Concepts 533 Silberschatz, Galvin and Gagne ©2005

Pthread Scheduling API

/* now join on each thread */
for (i = 0; i < NUM THREADS; i++)
pthread join(tid[i], NULL);

}
I* Each thread will begin control in this function */
void *runner(void *param)
{

printf("l am a thread\n");

pthread exit(0);

Solaris Dispatch Table

tme renen
tra quantum trem
prity quartum arpired sioap
o 200 o =%
5 00] =
0| w | a 51
% | w | 5 st
0| w |] 2
I w | 15 w2
E| 2 | 20 =
% | = | = s
w |] | £ 55
T] | 3 =
0 4 a0 [=
[0 ® | =
50)) I =
535 Silberschatz, Galvin and Gagne 62005

Operating System Concepts

w 5.32 Silberschatz, Galvin anﬂrGagne ©2005
Solaris 2 Scheduling
My e T —
' [a]-
Q e
Qf—
0 -
O -
Q -
Operating System Concepts. 534 Silberschatz, Galvin aneragne ©2005
Windows XP Priorities
real- " abave below idle
o | MO | pormal | %Ml | normal | priory
tame-critical n 13 16 156 18
highest 28 15 12 10 8 &
above nommal 25 14 1] 7 5
nomal 24 13 10]] 4
below namal 2 12 7 5 3
lowest 2 1 8 & 4 2
idle 16 1 1 1 1 1
536 Silberschatz, Galvin aneragne ©2005

Operating System Concepts

Linux Scheduling

® Two algorithms: time-sharing and real-time
® Time-sharing

Prioritized credit-based — process with most credits is
scheduled next

Credit subtracted when timer interrupt occurs
When credit = 0, another process chosen
When all processes have credit = 0, recrediting occurs
» Based on factors including priority and history
® Real-time
* Soft real-time
e Posix.1b compliant — two classes
» FCFS and RR
» Highest priority process always runs first

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts 537

The Relationship Between Priorities and Time-slice length

numeric relative time
priority priority quantum
0 highest] 200 ms
2 real-time
% tasks
.
29
100
N other
2 tasks
.
140 lowest i | 10 ms

silberschatz, Galvin and Gagne 2005

List of Tasks Indexed According to Prorities

active expired
array array
priority task lists pricrity task lists
[0] o—0 [0] o—0—0
1 o—0——0 [1] Q
[140] o] [140] o—0

Operating System Concepis 538

Algorithm Evaluation

m Deterministic modeling — takes a particular
predetermined workload and defines the performance of
each algorithm for that workload

® Queueing models
® Implementation

/ simulaton

statisscs
far AR (g = 14

\ simulation =g

Silberschatz, Galvin and Gagne 2005

Operating System Concepts 541

Operating System Concepts 5.40 Silberschatz, Galvin and Gagne ©2005

End of Chapter 5
CIBBIDILIIBIBILIFSIVILIESIBIL

5.08

physical
CPU

physical
CPU

system bus

Operating System Concepts

543 Silberschatz, Galvin and Gagne ©2005

In-5.8

Operating System Concepts

545 Silberschatz, Galvin and Gagne ©2005

Dispatch Latency

e
rimenary

renpins avarcl

r—r.

St iy ————

o Bacts T daatch —#
—
e

sl e
procens
maeuion

Operating System Concepts

5.47 Silberschatz, Galvin and Gagne ©2005

In-5.7

silberschatz, Galvin and Gagne 2005

Operating System Concepis 544

In-5.9

Py P2

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts 5.6

Java Thread Scheduling

m JVM Uses a Preemptive, Priority-Based Scheduling Algorithm

® FIFO Queue is Used if There Are Multiple Threads With the Same
Priority

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts 548

Java Thread Scheduling (cont)

JVM Schedules a Thread to Run When:

1. The Currently Running Thread Exits the Runnable State
2. A Higher Priority Thread Enters the Runnable State

* Note — the JVM Does Not Specify Whether Threads are Time-Sliced

Time-Slicing

Since the JVM Doesn’t Ensure Time-Slicing, the yield() Method
May Be Used:

while (true) {
/I perform CPU-intensive task

Thread.yield();

This Yields Control to Another Thread of Equal Priority

or Not
oeemmg System conceExs 5.49 Silberschatz, Galvin anﬂ'Gagnc ©2005
Thread Priorities
Priority Comment

Thread.MIN_PRIORITY Minimum Thread Priority
Thread.MAX_PRIORITY Maximum Thread Priority
Thread.NORM_PRIORITY Default Thread Priority

Priorities May Be Set Using setPriority() method:
setPriority(Thread.NORM_PRIORITY + 2);

Operating System Concepts 551 Silberschatz, Galvin and Gagne ©2005

silberschatz, Galvin and Gagne 2005

Operating System Concepis 5.50

