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� Overview

� Multithreading Models

� Threading Issues

� Pthreads

� Windows XP Threads

� Linux Threads

� Java Threads
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Single and Multithreaded ProcessesSingle and Multithreaded Processes
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BenefitsBenefits

� Responsiveness

� Resource Sharing

� Economy

� Utilization of MP Architectures
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User ThreadsUser Threads

� Thread management done by user-level threads library

� Three primary thread libraries:

� POSIX Pthreads

� Win32 threads

� Java threads
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Kernel ThreadsKernel Threads

� Supported by the Kernel

� Examples

� Windows XP/2000

� Solaris

� Linux

� Tru64 UNIX

� Mac OS X
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Multithreading ModelsMultithreading Models

� Many-to-One

� One-to-One

� Many-to-Many
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ManyMany--toto--OneOne

� Many user-level threads mapped to single kernel thread

� Examples:

� Solaris Green Threads

� GNU Portable Threads
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ManyMany--toto--One ModelOne Model
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OneOne--toto--OneOne

� Each user-level thread maps to kernel thread

� Examples

� Windows NT/XP/2000

� Linux

� Solaris 9 and later
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OneOne--toto--one Modelone Model
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ManyMany--toto--Many ModelMany Model

� Allows many user level threads to be mapped to many kernel 

threads

� Allows the  operating system to create a sufficient number of 
kernel threads

� Solaris prior to version 9

� Windows NT/2000 with the ThreadFiber package
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ManyMany--toto--Many ModelMany Model
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TwoTwo--level Modellevel Model

� Similar to M:M, except that it allows a user thread to be 
bound to kernel thread

� Examples

� IRIX

� HP-UX

� Tru64 UNIX

� Solaris 8 and earlier
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TwoTwo--level Modellevel Model
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Threading IssuesThreading Issues

� Semantics of fork() and exec() system calls

� Thread cancellation

� Signal handling

� Thread pools

� Thread specific data

� Scheduler activations
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Semantics of fork() and exec()Semantics of fork() and exec()

� Does fork() duplicate only the calling thread or all threads?
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Thread CancellationThread Cancellation

� Terminating a thread before it has finished

� Two general approaches:

� Asynchronous cancellation terminates the target 

thread  immediately

� Deferred cancellation allows the target thread to 
periodically check if it should be cancelled



4

4.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Signal HandlingSignal Handling

� Signals are used in UNIX systems to notify a process that a 

particular event has occurred

� A signal handler is used to process signals

1. Signal is generated by particular event

2. Signal is delivered to a process

3. Signal is handled

� Options:

� Deliver the signal to the thread to which the signal applies

� Deliver the signal to every thread in the process

� Deliver the signal to certain threads in the process

� Assign a specific threa to receive all signals for the process
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Thread PoolsThread Pools

� Create a number of threads in a pool where they await work

� Advantages:

� Usually slightly faster to service a request with an existing 

thread than create a new thread

� Allows the number of threads in the application(s) to be 
bound to the size of the pool
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Thread Specific DataThread Specific Data

� Allows each thread to have its own copy of data

� Useful when you do not have control over the thread 

creation process (i.e., when using a thread pool)
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Scheduler ActivationsScheduler Activations

� Both M:M and Two-level models require communication to 

maintain the appropriate number of kernel threads allocated 
to the application

� Scheduler activations provide upcalls - a communication 

mechanism from the kernel to the thread library

� This communication allows an application to maintain the 
correct number kernel threads
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PthreadsPthreads

� A POSIX standard (IEEE 1003.1c) API for thread 

creation and synchronization

� API specifies behavior of the thread library, 
implementation is up to development of the library

� Common in UNIX operating systems (Solaris, Linux, 

Mac OS X)
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Windows XP ThreadsWindows XP Threads

� Implements the one-to-one mapping

� Each thread contains

� A thread id

� Register set

� Separate user and kernel stacks

� Private data storage area

� The register set, stacks, and private storage area are known 
as the context of the threads

� The primary data structures of a thread include:

� ETHREAD (executive thread block)

� KTHREAD (kernel thread block)

� TEB (thread environment block)
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Linux ThreadsLinux Threads

� Linux refers to them as tasks rather than threads

� Thread creation is done through clone() system call

� clone() allows a child task to share the address space 

of the parent task (process)
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Java ThreadsJava Threads

� Java threads are managed by the JVM

� Java threads may be created by:

� Extending Thread class

� Implementing the Runnable interface
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Java Thread States Java Thread States 
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