
1

Chapter 4: ThreadsChapter 4: Threads

4.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Chapter 4: ThreadsChapter 4: Threads

� Overview

� Multithreading Models

� Threading Issues

� Pthreads

� Windows XP Threads

� Linux Threads

� Java Threads

4.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Single and Multithreaded ProcessesSingle and Multithreaded Processes

4.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

BenefitsBenefits

� Responsiveness

� Resource Sharing

� Economy

� Utilization of MP Architectures

4.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

User ThreadsUser Threads

� Thread management done by user-level threads library

� Three primary thread libraries:

� POSIX Pthreads

� Win32 threads

� Java threads

4.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Kernel ThreadsKernel Threads

� Supported by the Kernel

� Examples

� Windows XP/2000

� Solaris

� Linux

� Tru64 UNIX

� Mac OS X

2

4.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Multithreading ModelsMultithreading Models

� Many-to-One

� One-to-One

� Many-to-Many

4.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ManyMany--toto--OneOne

� Many user-level threads mapped to single kernel thread

� Examples:

� Solaris Green Threads

� GNU Portable Threads

4.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ManyMany--toto--One ModelOne Model

4.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

OneOne--toto--OneOne

� Each user-level thread maps to kernel thread

� Examples

� Windows NT/XP/2000

� Linux

� Solaris 9 and later

4.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

OneOne--toto--one Modelone Model

4.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ManyMany--toto--Many ModelMany Model

� Allows many user level threads to be mapped to many kernel

threads

� Allows the operating system to create a sufficient number of
kernel threads

� Solaris prior to version 9

� Windows NT/2000 with the ThreadFiber package

3

4.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ManyMany--toto--Many ModelMany Model

4.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

TwoTwo--level Modellevel Model

� Similar to M:M, except that it allows a user thread to be
bound to kernel thread

� Examples

� IRIX

� HP-UX

� Tru64 UNIX

� Solaris 8 and earlier

4.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

TwoTwo--level Modellevel Model

4.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Threading IssuesThreading Issues

� Semantics of fork() and exec() system calls

� Thread cancellation

� Signal handling

� Thread pools

� Thread specific data

� Scheduler activations

4.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Semantics of fork() and exec()Semantics of fork() and exec()

� Does fork() duplicate only the calling thread or all threads?

4.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Thread CancellationThread Cancellation

� Terminating a thread before it has finished

� Two general approaches:

� Asynchronous cancellation terminates the target

thread immediately

� Deferred cancellation allows the target thread to
periodically check if it should be cancelled

4

4.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Signal HandlingSignal Handling

� Signals are used in UNIX systems to notify a process that a

particular event has occurred

� A signal handler is used to process signals

1. Signal is generated by particular event

2. Signal is delivered to a process

3. Signal is handled

� Options:

� Deliver the signal to the thread to which the signal applies

� Deliver the signal to every thread in the process

� Deliver the signal to certain threads in the process

� Assign a specific threa to receive all signals for the process

4.20 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Thread PoolsThread Pools

� Create a number of threads in a pool where they await work

� Advantages:

� Usually slightly faster to service a request with an existing

thread than create a new thread

� Allows the number of threads in the application(s) to be
bound to the size of the pool

4.21 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Thread Specific DataThread Specific Data

� Allows each thread to have its own copy of data

� Useful when you do not have control over the thread

creation process (i.e., when using a thread pool)

4.22 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Scheduler ActivationsScheduler Activations

� Both M:M and Two-level models require communication to

maintain the appropriate number of kernel threads allocated
to the application

� Scheduler activations provide upcalls - a communication

mechanism from the kernel to the thread library

� This communication allows an application to maintain the
correct number kernel threads

4.23 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

PthreadsPthreads

� A POSIX standard (IEEE 1003.1c) API for thread

creation and synchronization

� API specifies behavior of the thread library,
implementation is up to development of the library

� Common in UNIX operating systems (Solaris, Linux,

Mac OS X)

4.24 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Windows XP ThreadsWindows XP Threads

� Implements the one-to-one mapping

� Each thread contains

� A thread id

� Register set

� Separate user and kernel stacks

� Private data storage area

� The register set, stacks, and private storage area are known
as the context of the threads

� The primary data structures of a thread include:

� ETHREAD (executive thread block)

� KTHREAD (kernel thread block)

� TEB (thread environment block)

5

4.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Linux ThreadsLinux Threads

� Linux refers to them as tasks rather than threads

� Thread creation is done through clone() system call

� clone() allows a child task to share the address space

of the parent task (process)

4.26 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Java ThreadsJava Threads

� Java threads are managed by the JVM

� Java threads may be created by:

� Extending Thread class

� Implementing the Runnable interface

4.27 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Java Thread States Java Thread States

End of Chapter 4End of Chapter 4

