Chapter 3: Processes
GIEBPIICIIBD PISIIBD PILIIBD PG

Chapter 3: Processes

Process Concept

Process Scheduling
Operations on Processes
Cooperating Processes
Interprocess Communication

Communication in Client-Server Systems

e
#

S

Operating System Concepts 3.2 Silberschatz, Galvin and Gagne ©2005

Process Concept

B An operating system executes a variety of programs:
e Batch system — jobs
e Time-shared systems — user programs or tasks

m Textbook uses the terms job and process almost
interchangeably

B Process — a program in execution; process execution must
progress in sequential fashion

® A process includes:
e program counter
e stack
e data section

)
Operating System Concepts 3.3 Silberschatz, Galvin and Gagne ©2005
Process in Memory
max
stack
heap
data
text
0
a
Operating System Concepts 3.4 Silberschatz, Galvin and Gagne ©2005

Process State

m As a process executes, it changes state
e new: The process is being created
e running: Instructions are being executed
e waiting: The process is waiting for some event to occur
e ready: The process is waiting to be assigned to a process
e terminated: The process has finished execution

a

#

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts B}

Diagram of Process State

admitted

interrupt exit terminated

scheduler dispatch

I/O or event completion /0O or event wait

waiting

S

#

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts 3.6

Process Control Block (PCB)

Information associated with each process

Process state

Program counter

CPU registers

CPU scheduling information
Memory-management information
Accounting information

1/O status information

<

=

Operating System Concepts 3.7 Silberschatz, Galvin and Gagne ©2005

Process Control Block (PCB)

process state
process number
program counter

registers

memory limits
list of open files

S

=
#

Operating System Concepts 3.8 Silberschatz, Galvin and Gagne ©2005

CPU Switch From Process to Process

process Py operating system process P,

interrupt or system call

executing ﬂ
TH save state into PCB,
Ll

reload state from PCB,

idle

ridle interrupt or system call executing

v
save state into PCB,

idle

-
L]
J reload state from PCB,
ercuting l[
-

e
#

Operating System Concepts 3.9 Silberschatz, Galvin and Gagne ©2005

Process Scheduling Queues

Job queue — set of all processes in the system

Ready queue — set of all processes residing in main memory,
ready and waiting to execute

Device queues — set of processes waiting for an I/O device
Processes migrate among the various queues

S

#

Operating System Concepts 3.10 Silberschatz, Galvin and Gagne ©2005

Ready Queue And Various I/O Device Queues
queue header PCB, PCEB,
queue tail ~ registers registers
w :
mag [head A
ulnaifg bl +—
mag head ——=
tape ——=——— =~ pCB, PCB,, PCB,
unit 1 U [
/ | il 1"
disk head 4
unit 0 tail -
PCB,
terminal head - —=
unit 0 tail i'/
:
R .
Operating System Concepts 3.11 Silberschatz, Galvin anc;Gagne ©2005

Representation of Process Scheduling

:| ready queue I » CPU i

/0 queue |4—| 1/O request |‘—
time slice A
expired
child fork a
executes child
interrupt wait foran |
Qccurs interrupt

Operating System Concepts

i

Silberschatz, Galvin anc‘i‘Gagne ©2005

Schedulers

® Long-term scheduler (or job scheduler) — selects which
processes should be brought into the ready queue

m Short-term scheduler (or CPU scheduler) — selects
which process should be executed next and allocates
CPU

)
Operating System Concepts 3.13 Silberschatz, Galvin and{Gagne ©2005
Addition of Medium Term Scheduling
swap in partially executed swap out
swapped-out processes |~ |
| ready queue I » CPU — »eng
= I/O waiting
@" queues
)
Operating System Concepts 3.14 Silberschatz, Galvin and{Gagne ©2005

Schedulers (Cont.)

®m Short-term scheduler is invoked very frequently (milliseconds) =
(must be fast)

m Long-term scheduler is invoked very infrequently (seconds,
minutes) = (may be slow)

® The long-term scheduler controls the degree of multiprogramming
Processes can be described as either:

e |/O-bound process — spends more time doing I/O than
computations, many short CPU bursts

e CPU-bound process — spends more time doing computations;
few very long CPU bursts

Operating System Concepts 3.15 Silberschatz, Galvin and Gagne ©2005

Context Switch

® When CPU switches to another process, the system must save the
state of the old process and load the saved state for the new
process

m Context-switch time is overhead; the system does no useful work
while switching

® Time dependent on hardware support

Operating System Concepts 3.16 Silberschatz, Galvin and Gagne ©2005

Process Creation

m Parent process create children processes, which, in turn create
other processes, forming a tree of processes

® Resource sharing
e Parent and children share all resources
e Children share subset of parent’s resources
e Parent and child share no resources
® Execution
e Parent and children execute concurrently
e Parent waits until children terminate

Operating System Concepts 3.17 Silberschatz, Galvin and Gagne ©2005

Process Creation (Cont.)

® Address space
e Child duplicate of parent
e Child has a program loaded into it
m UNIX examples
e fork system call creates new process

e exec system call used after a fork to replace the process’
memory space with a new program

Operating System Concepts 3.18 Silberschatz, Galvin and Gagne ©2005

Process Creation

parent e : resumes
\\wall

o

a

#

Operating System Concepts 3.19 Silberschatz, Galvin and Gagne ©2005

C Program Forking Separate Process

int main()
{
Pid_t pid;
/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
exit(-1);
}
else if (pid == 0) { /* child process */
execlp("/bin/ls", "Is", NULL);
}
else { /* parent process */
/* parent will wait for the child to complete */
wait (NULL);
printf ("Child Complete");
exit(0);

S

#

Operating System Concepts 3.20 Silberschatz, Galvin and Gagne ©2005

A tree of processes on a typical Solaris

/ \'“‘x“‘_
pageout fsflush
pid=2 pid=3
dtlogin
pid = 251
telnetdasmon Xsession
pid = 7776 pid = 294
Csh sdt_shel
pid = 7778 pid = 340
f/
A
Y

/ pid = 1400

Netscape emacs
pid = 7785 pid = 8105

Is
pld = 2123

a

#

Operating System Concepts 3.21 Silberschatz, Galvin and Gagne ©2005

Process Termination

B Process executes last statement and asks the operating system to
delete it (exit)

e Output data from child to parent (via wait)

e Process’ resources are deallocated by operating system
® Parent may terminate execution of children processes (abort)

e Child has exceeded allocated resources

e Task assigned to child is no longer required

e If parent is exiting

» Some operating system do not allow child to continue if its
parent terminates

All children terminated - cascading termination

S

#

Operating System Concepts 3.22 Silberschatz, Galvin and Gagne ©2005

Cooperating Processes

® Independent process cannot affect or be affected by the execution
of another process

m Cooperating process can affect or be affected by the execution of
another process

m Advantages of process cooperation
e Information sharing

Computation speed-up

Modularity
e Convenience

3.23 Silberschatz, Galvin and Gagne ©2005

Operating System Concepts

Producer-Consumer Problem

m Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer
process

e unbounded-buffer places no practical limit on the size of
the buffer

e bounded-buffer assumes that there is a fixed buffer size

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts 3.24

Bounded-Buffer — Shared-Memory Solution

m Shared data
#define BUFFER_SIZE 10
Typedef struct {

} item;

item buffer[BUFFER_SIZE];
intin=0;
int out = 0;
m Solution is correct, but can only use BUFFER_SIZE-1 elements

Operating System Concepts 3.25 Silberschatz, Galvin and Gagne ©2005

Bounded-Buffer — Insert() Method

while (true) {
/* Produce an item */

while (((in = (in + 1) % BUFFER SIZE count) == out)
; I* do nothing -- no free buffers */

buffer[in] = item;

in = (in + 1) % BUFFER SIZE;

Operating System Concepts 3.26 Silberschatz, Galvin and Gagne ©2005

Bounded Buffer — Remove() Method

while (true) {
while (in == out)
; // do nothing -- nothing to consume

/l remove an item from the buffer

item = buffer[out];

out = (out + 1) % BUFFER SIZE;
return item;

{

Operating System Concepts 3.27 Silberschatz, Galvin and Gagne ©2005

Interprocess Communication (IPC)

® Mechanism for processes to communicate and to synchronize their
actions

B Message system — processes communicate with each other without
resorting to shared variables

m |PC facility provides two operations:
e send(message) — message size fixed or variable
e receive(message)
m If P and Q wish to communicate, they need to:
e establish a communication link between them
e exchange messages via send/receive
® Implementation of communication link
e physical (e.g., shared memory, hardware bus)
e logical (e.g., logical properties)

Operating System Concepts 3.28 Silberschatz, Galvin and Gagne ©2005

Implementation Questions

How are links established?
Can a link be associated with more than two processes?

How many links can there be between every pair of communicating
processes?

What is the capacity of a link?

Is the size of a message that the link can accommodate fixed or
variable?

® |s a link unidirectional or bi-directional?

)
Operating System Concepts 3.29 Silberschatz, Galvin and Gagne ©2005
Communications Models
process A E process A
|}
shared o
2
process B E process B g
2 1
kernel | M pa— kernel
(a) (b)
)
Operating System Concepts 3.30 Silberschatz, Galvin and Gagne ©2005

Direct Communication

® Processes must name each other explicitly:

e send (P, message) — send a message to process P

e receive(Q, message) — receive a message from process Q
® Properties of communication link

e Links are established automatically

e Alink is associated with exactly one pair of communicating
processes

e Between each pair there exists exactly one link
e The link may be unidirectional, but is usually bi-directional

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts 3.31

Indirect Communication

m Messages are directed and received from mailboxes (also
referred to as ports)

e Each mailbox has a unique id
e Processes can communicate only if they share a mailbox
® Properties of communication link
e Link established only if processes share a common mailbox
e A link may be associated with many processes

e Each pair of processes may share several communication
links

e Link may be unidirectional or bi-directional

3.32 Silberschatz, Galvin and Gagne ©2005

Operating System Concepts

Indirect Communication

m Operations
e create a new mailbox
e send and receive messages through mailbox
e destroy a mailbox
® Primitives are defined as:
send(A, message) — send a message to mailbox A
receive(A, message) — receive a message from mailbox A

Operating System Concepts 3.33 Silberschatz, Galvin and Gagne ©2005

Indirect Communication

® Mailbox sharing
e P,, P, and P, share mailbox A
e P,, sends; P, and P, receive
e Who gets the message?
®m Solutions
e Allow a link to be associated with at most two processes
e Allow only one process at a time to execute a receive operation

e Allow the system to select arbitrarily the receiver. Sender is
notified who the receiver was.

Operating System Concepts 3.34 Silberschatz, Galvin and Gagne ©2005

Synchronization

m Message passing may be either blocking or non-blocking
® Blocking is considered synchronous

e Blocking send has the sender block until the message is
received

e Blocking receive has the receiver block until a message is
available

® Non-blocking is considered asynchronous

e Non-blocking send has the sender send the message and
continue

e Non-blocking receive has the receiver receive a valid
message or null

Operating System Concepts 3.35 Silberschatz, Galvin and Gagne ©2005

Buffering

® Queue of messages attached to the link; implemented in one of
three ways

1. Zero capacity — 0 messages
Sender must wait for receiver (rendezvous)

2. Bounded capacity — finite length of n messages
Sender must wait if link full

3. Unbounded capacity — infinite length
Sender never waits

Operating System Concepts 3.36 Silberschatz, Galvin and Gagne ©2005

Client-Server Communication

B Sockets
® Remote Procedure Calls
® Remote Method Invocation (Java)

3.37 Silberschatz, Galvin and Gagne ©2005

Operating System Concepts

Sockets

m A socket is defined as an endpoint for communication
Concatenation of IP address and port

® The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

® Communication consists between a pair of sockets

3.38 Silberschatz, Galvin and Gagne ©2005

Operating System Concepts

Socket Communication

host X
(146.86.5.20)

socket
(146.86.5.20:1625)

web server
(161.25.19.8)

socket
(161.25.19.8:80) A

a

=

Operating System Concepts 3.39 Silberschatz, Galvin and Gagne ©2005

Remote Procedure Calls

® Remote procedure call (RPC) abstracts procedure calls between
processes on networked systems.

Stubs — client-side proxy for the actual procedure on the server.

® The client-side stub locates the server and marshalls the
parameters.

®m The server-side stub receives this message, unpacks the
marshalled parameters, and peforms the procedure on the server.

S

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts 3.40

Execution of RPC

clignt MESSANES SEMET
user calls kernel
1o send APC
messags o
[procedure X
kernel sands (F{gm“crl::\r 8 matchmaker
"'W;?Wz' receives
matchmaker to message, looks
Tired et number | |\ H,;, E‘:EE-B;S up answer

P N

Frum server’ Wy

kel places ,." To client matchmaker

port Pin user -—{ Port: kamal Ji replies o chent

RPC messaga \ Ra: HPEJ(] with part P
Por[-

. P
//Frnm client dagmon

kernel sands To: server listaning to

RPC I\ Port: part F' PO P recaives

<contentss message
\‘ //

./ Frum HPC daeman
karnel recaives Port: B processes
raply, passes To: client roquast and
it to usar Port; kernsl processes sand
p _Soutput> ouput | "'\
.’ﬁ > I-
Operating System Concepts 3.41 Silberschatz, Galvin and Gagne ©2005

Remote Method Invocation

® Remote Method Invocation (RMI) is a Java mechanism similar to
RPCs.

® RMI allows a Java program on one machine to invoke a method on
a remote object.

JVM
ol ; JVM
e
g?ggram Tt Methog invog
atip
—® remote y
object Y,

8

Operating System Concepts 3.42 Silberschatz, Galvin anc‘i. Gagne ©2005

Marshalling Parameters

client remote object

val = server.someMethod(A,B) boolean someMethod (Object x, Object y)
{

implementation of someMethod
Y

}

| stub : | | skeleton |

b A

| A B, someMethod |

[boolean return value ‘

~

Operating System Concepts 3.43 Silberschatz, Galvin and Gagne ©2005

End of Chapter 3
LIBBIICIIBPIICIIBI PN

