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Objectives

• After reading this chapter, you should understand:
– characteristics and examples of networked and distributed file 

systems.
– types, benefits and examples of clustering.
– the peer-to-peer distributed computing model.
– grid computing.
– Java distributed computing technologies.
– Web services and the Microsoft .NET and Sun ONE platforms.
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18.1 Introduction

• File sharing
– Accessing files stored on file servers using a distributed file system is 

similar to accessing files stored on the user’s local computer

• Distributed file systems 
• Clustering

– Takes advantage of distributed systems and parallel systems to build 
powerful computers

• Peer-to-peer distributed computing model 
– Used to remove many central points of failure in applications like 

instant messengers

• Grid computing
– Exploits unused computer power to solve complex problems
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18.2 Distributed File Systems

• Networked file systems 
– Allow clients to access files stored on remote computers

• Distributed file systems
– Special examples of networked file systems that allow 

transparent access to remote files

 2004 Deitel & Associates, Inc.  All rights reserved.

18.2.1 Distributed File System Concepts

• Distributed file server 
– Can be either stateful or stateless
– Stateful system

• The server keeps state information of the client requests so that 
subsequent access to the file is easier

– Stateless system
• The client must specify which file to access in each request

• Distributed file systems provide the illusion of 
transparency
– Complete file location transparency means that the user is 

unaware of the physical location of a file within a distributed file 
system

– The user sees only a global file system
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18.2.1 Distributed File System Concepts

• Many distributed systems implement client caching to avoid 
the overhead of multiple RPCs
– Clients keep a local copy of a file and flush modified copies of it to the 

server from time to time
– Because there are multiple copies of the same file, files can become 

inconsistent
• Distributed file systems are designed to share information 

among large groups of computers
– New computers should be able to be added to the system easily
– Distributed file systems should be scalable

• Security concerns in distributed file systems: 
– Ensuring secure communications
– Access control

 2004 Deitel & Associates, Inc.  All rights reserved.

18.2.2 Network File System (NFS)

• NFS versions 2 and version 3 
– Assume a stateless server implementation
– Fault tolerance easier to implement than with a stateful server
– With stateless servers, if the server crashes, the client can simply 

retry its request until the server responds

• NFS-4 
– Stateful
– Allows faster access to files
– However, if the server crashes, all the state information of the

client is lost, so the client needs to rebuild its state on the server 
before retrying 
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18.2.2 Network File System (NFS)

• Client-side caching is essential to efficient distributed 
file system operation
– NFS-4 extends the client-caching scheme through delegation

• Allows the server to temporarily transfer the control of a file to a 
client

• When the server grants a read delegation of a particular file to the 
client, then no other client can write to that file

• When the server grants a write delegation of a particular file to the 
client, then no other client can read or write to that file

• If another client requests a file that has been delegated, the server 
will revoke the delegation and request that the original client flush 
the file to disk

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 18.1 NFS architecture.

18.2.2 Network File System (NFS)
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18.2.3 Andrew File System (AFS)

• AFS overview
– Global file system 
– Appears as a branch of a traditional UNIX file system at each 

workstation
– Completely location transparent
– Provides a high degree of availability

• Files are always available regardless of the user’s location
– Based on the client-server model
– Relies on RPCs for communication

 2004 Deitel & Associates, Inc.  All rights reserved.

18.2.3 Andrew File System (AFS)

• AFS implementation
– Vice governs access to distributed files
– Venus is a user process that runs on each client and 

interacts with Vice to access files
– AFS uses callbacks to notify clients that files are no longer 

valid
• Client must invalidate its file and request the most recent version

– Provides a high degree of availability
• Files are always available regardless of the user’s location

– File identifiers (fids) and volumes improve AFS efficiency
– Cells enable multiple sites to implement custom access 

control
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Figure 18.2 AFS structure.

18.2.3 Andrew File System (AFS)
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18.2.4 Coda File System

• Coda
– Developed to address AFS’s lack of fault tolerance
– Uses local nonvolatile storage (e.g., disks) as file caches
– Uses callbacks to keep clients up to date
– Volumes 

• Logical pieces of the file system 
• Replicated physically across multiple file servers

– Volume storage group (VSG)
• Servers that hold the same volume

– Available volume storage group (AVSG)
• Members of the VSG with which the client can connect and communicate
• Coda uses AVSGs to implement fault tolerance
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Figure 18.3 Coda volume structure.

18.2.4 Coda File System
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18.2.4 Coda File System

• Addressing consistency in Coda
– If a directory is modified, the Coda servers deal with the problem

• Each member of the VSG locks the volume
• A leader is chosen to process the update

– For files
• When connected to Coda, clients cache files so they can be accessed 

when disconnected (hoarding stage)
• When disconnected, clients enter the emulation stage where all file 

requests are serviced from the cache, if the file is resident (error 
otherwise)

• When reconnected, file updates are sent to the server asynchronously 
(reintegration stage)
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Figure 18.4 File consistency issues in mutually exclusive AVSGs.

18.2.4 Coda File System
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18.2.5 Sprite File System

• Sprite file system characteristics
– Emulates a UNIX file system
– Every client has the exact same view of the hierarchy
– Goes a step further in UNIX file system emulation by allowing 

transparent remote access to I/O devices (which are represented 
as files in UNIX)
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Figure 18.5 Sprite file system domains.

18.2.5 Sprite File System
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18.2.5 Sprite File System

• Both the client and the server maintain a cache
– To open a file, the client first checks its cache, then makes a 

request to its backing store (which is generally a server)
– If the server is unable to satisfy the request from its cache, it 

reads the data from disk
– Both caches retain a copy of the data when it is returned to the

client
– When a client writes a block, it writes into its cache
– Sprite flushes updated pages to the server every 30 seconds
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Figure 18.6 Reading and writing in the Sprite file system.

18.2.5 Sprite File System
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18.3 Multicomputer Systems

• Multicomputer systems 
– Do not share a common memory or bus (although they may 

share a virtual memory)
– Each processing unit has access to its own resources
– Independent units are connected in a network to operate 

cooperatively to form a multicomputer system
• Distributed processing 

– Makes large computations feasible
– Power comes at the cost of simplicity
– Must take into account synchronization, mutual exclusion and 

deadlock 
– Networking and the lack of shared memory make managing such 

issues more complex
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18.4 Clustering

• Clustering
– Interconnecting nodes (single-processor computers or 

multiprocessor computers) within a high-speed LAN to function 
as a single parallel computer

• Cluster: Set of nodes that forms the single parallel 
machine
– Enables multiple computers to work together to solve large and 

complex problems
• For example, weather prediction

 2004 Deitel & Associates, Inc.  All rights reserved.

18.4.1 Clustering Types

• High-performance clusters
– All nodes in the cluster work to improve performance

• High-availability clusters
– Only some of the nodes in the cluster are active while others 

serve as backups
– If working nodes or their components fail, the backup nodes 

immediately start running and take over the jobs that were being
executed on the failed nodes, without interrupting service

• Load-balancing clusters
– A particular node works as a load balancer to distribute the load 

to a set of nodes so that all hardware is utilized efficiently 
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18.4.2 Clustering Benefits

• Economically interconnects relatively inexpensive components
– Reduces the cost for building a clustered system compared to a single 

parallel computer with the same capability

• High performance
– Each node in the clustering system shares the workload

• Fast communications among nodes in a cluster 
– Faster than those in unclustered distributed computing systems due to 

the high-speed LAN between nodes
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18.4.2 Clustering Benefits

• Can provide replication of resources across the nodes
– The failure of any one computer will not affect the availability of the 

rest of the system’s resources

• Scalability
– A cluster is able to add or remove nodes (or the components of nodes) 

to adjust its capabilities without affecting the existing nodes in the 
cluster

– Better scalability than multiprocessors

• Reliability and fault tolerance by providing backups for the 
services and resources
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18.4.3 Clustering Examples

• Beowulf
– Linux systems interconnected with high-speed Ethernet
– Head node (also called a master node) acts as a server

• Distributes the work load
• Controls access to the cluster 
• Handles the shared resources

– All other nodes in the cluster are often called slave nodes

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 18.7 Typical Beowulf cluster.

18.4.3 Clustering Examples
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18.4.3 Clustering Examples

• Windows Server 2003 
– High-availability cluster

• Nodes can be connected either in a LAN or a WAN
• All nodes may share a storage device or each node may have a 

local storage
– Load-balancing cluster

• Usually the nodes are interconnected with high-speed Ethernet
• Does not require sharing storage, because each node can do its job 

independently

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 18.8 High-availability cluster with shared storage.

18.4.3 Clustering Examples
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Figure 18.9 High-availability cluster with local storage.

18.4.3 Clustering Examples
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Figure 18.10 Load-balancing cluster with 32 nodes.

18.4.3 Clustering Examples
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18.5 Peer-to-Peer Distributed Computing

• Peer
– A single computer in a P2P system
– Each performs both client and server functions

• P2P applications 
– Distribute processing responsibilities and information to many 

computers
– Reclaim otherwise wasted computing power and storage space 
– Eliminates many central points of failure
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18.5.1 Client/Server and Peer-to-Peer Applications

• P2P (peer-to-peer) applications
– Instead of segregating computers by function, all computers act 

as both clients and servers
– Each peer has the ability to discover and communicate with 

other peers
– Peers may share resources (such as large multimedia files) with 

others
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18.5.2 Centralized vs. Decentralized P2P Applications

• Centralized P2P application
– Uses a server that connects to each peer
– Exemplify the client/server relationship

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 18.11 Centralized P2P instant-messaging application.

18.5.2 Centralized vs. Decentralized P2P Applications
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18.5.2 Centralized vs. Decentralized P2P Applications

• Decentralized P2P application
– Also called a pure P2P application
– Does not have a server

• Does not suffer from the same deficiencies as applications that 
depend on servers

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 18.12 Pure P2P instant-messenging application.

18.5.2 Centralized vs. Decentralized P2P Applications
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Figure 18.13 Common P2P applications.

18.5.2 Centralized vs. Decentralized P2P Applications
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18.5.3 Peer Discovery and Searching

• Peer discovery
– The act of finding peers in a P2P application
– Pure P2P applications often suffer slow peer discovery and 

information searching due to the lack of a central server

• Distributed searches
– Make networks more robust by removing single points of failure, 

such as servers
– Not only can peers find information in this way, but they can 

search for other peers via distributed searches
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18.5.4 JXTA

• A set of standard, low-level platform and language-
independent protocols

• Promotes interoperability among peer-to-peer 
applications

• Provides a foundation on which developers can build 
any type of P2P application

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 18.14 JXTA low-level protocols.

18.5.4 JXTA
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18.6 Grid Computing

• Grid computing
– Links computational resources that are distributed over the wide

area network (such as computers, data storages and scientific 
devices) to solve complex problems

– Resources are distributed
– Users can access these resources transparently
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18.6 Grid Computing

• Grid computing (cont.)
– Emphasizes public collaboration

• Individuals and research institutes coordinate resources that 
are not subject to a centralized control to deliver qualities of
service

– Grid computing has the same advantage as clustering
• High performance, achieved by cost-effectively using spare 

computer power and collaborating resources
– However, grid computing requires advanced software to manage 

distributed computing tasks efficiently and reliably
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18.7 Java Distributed Computing

• Java 
– Used widely to implement distributed systems
– Tools for developing distributed systems

• Java’s RMI
• CORBA
• Servlets
• JavaServer Pages
• Jini
• JavaSpaces
• JMI
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18.7.1 Java Servlets and JavaServer Pages (JSP)

• Java servlet
– Extends the functionality of a server, most frequently a Web server
– Commonly used when a small portion of the content sent to the client is 

static text or markup
– Some servlets do not produce content at all

• They perform a task on behalf of the client (such as a database query), then 
invoke other servlets or JSPs to provide a response
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18.7.1 Java Servlets and JavaServer Pages (JSP)

• JavaServer Pages 
– Allow Web-page programmers to create pages that use encapsulated 

Java functionality and even to write scriptlets (Java code embedded in a 
JSP) of actual Java code directly in the page

– Generally used when most of the content sent to the client is static text 
and markup and only a small portion of the content is generated 
dynamically with Java code
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18.7.2 Jini

• Jini
– Framework for building reliable and fault-tolerant distributed 

systems with existing Java technologies
– Extends the idea of providing services beyond computer-based 

networks and into home-based networks
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Figure 18.15 Jini architecture.

18.7.2 Jini
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18.7.3 JavaSpaces

• Javaspaces
– Jini service that implements a simple, high-level architecture for 

building distributed systems
– Provides distributed, shared storage (and shared memory) for 

Java objects
– Enables Java objects to communicate, share objects and 

coordinate tasks using the storage
– Any Java-compatible client can put shared objects into the 

storage
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Figure 18.16 Distributed image-processing application using JavaSpaces.

18.7.3 JavaSpaces
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18.7.4 Java Management Extensions (JMX)

• JMX
– Component framework that enables developers to build 

automated, intelligent and dynamic network-management 
solutions

– Defines a three-level management architecture
• Instrumentation level

– Makes any Java-based object manageable so that the 
management application can access and operate these objects

• Agent level
– Provides services for exposing the managed resources

• Manager level
– Gives management applications access to resources created in 

the instrumentation level 
– Operates these resources via the JMX agents
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Figure 18.17 JMX’s three-level management architecture.

18.7.4 Java Management Extensions (JMX)
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18.8 Web Services

• Web services
– Encompass a set of related standards that can enable computer 

applications to communicate and exchange data via the Internet
– Technology and platform independent
– Improve collaborative software development by allowing 

developers to create applications by combining code written in 
any language on any platform
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18.8 Web Services

• Web services (cont.)
– Promote modular programming

• Each specific function in an application can be exposed as a 
separate Web service

• Individuals or businesses can create their own unique 
applications by mixing and matching Web services that 
provide the functionality they need

• Less error prone 
• Promotes software reuse
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18.8.1 Microsoft’s .NET Platform

• The .NET initiative
– Includes the Visual Studio .NET integrated development 

environment 
– Enables programmers to develop Web services in a variety of 

languages, including:
• C++
• C#
• Visual Basic .NET

– However, .NET technologies are available only for Windows 
2000 and XP

• Extend the concept of software reuse to the Internet 
by allowing developers to reuse software components 
that reside on other machines or platforms



29

 2004 Deitel & Associates, Inc.  All rights reserved.

18.8.2 Sun Microsystems and the Sun ONE Platform

• Sun ONE
– Model for software development

• Critical business information and applications are available at any 
time to any type of device, including cell phones and PDAs

– Incorporates support for open standards
• XML, SOAP, UDDI and WSDL,
• Helps ensure high levels of interoperability and system integration


