
1

 2004 Deitel & Associates, Inc. All rights reserved.

Chapter 17 – Introduction to Distributed
Systems

Outline
17.1 Introduction
17.2 Attributes of Distributed Systems
17.2.1 Performance and Scalability
17.2.2 Connectivity and Security
17.2.3 Reliability and Fault Tolerance
17.2.4 Transparency
17.2.5 Network Operating Systems
17.2.6 Distributed Operating Systems
17.3 Communication in Distributed Systems
17.3.1 Middleware
17.3.2 Remote Procedure Call (RPC)
17.3.3 Remote Method Invocation (RMI)
17.3.4 CORBA (Common Object Request Broker Architecture)
17.3.5 DCOM (Distributed Component Object Model)
17.3.6 Process Migration in Distributed Systems
17.4 Synchronization in Distributed Systems
17.5 Mutual Exclusion in Distributed Systems
17.5.1 Mutual Exclusion without Shared Memory

 2004 Deitel & Associates, Inc. All rights reserved.

Chapter 17 – Introduction to Distributed
Systems

Outline (continued)
17.5.2 Agrawala and Ricart’s Distributed Mutual Exclusion Algorithm
17.6 Deadlock in Distributed Systems
17.6.1 Distributed Deadlock
17.6.2 Deadlock Prevention
17.6.3 Deadlock Detection
17.6.4 A Distributed Resource Deadlock Algorithm
17.7 Case Study: The Sprite Distributed Operating System
17.8 Case Study: The Amoeba Distributed Operating System

2

 2004 Deitel & Associates, Inc. All rights reserved.

Objectives

• After reading this chapter, you should understand:
– the need for distributed computing.
– fundamental properties and desirable characteristics of

distributed systems.
– remote communication in distributed systems.
– synchronization, mutual exclusion and deadlock in distributed

systems.
– examples of distributed operating systems.

 2004 Deitel & Associates, Inc. All rights reserved.

17.1 Introduction

• Distributed systems
– Remote computers cooperate via a network to appear as a local

machine
– Users are given the impression that they are interacting with just

one machine
– Spread computation and storage throughout a network of

computers
– Applications are able to execute code on local machines and

remote machines and to share data, files and other resources
among these machines

3

 2004 Deitel & Associates, Inc. All rights reserved.

17.2 Attributes of Distributed Systems

• Importance of distributed systems has been stressed
for decades

• Explosion of the Internet has made distributed
systems common

• Attributes of distributed systems:
– Performance
– Scalability
– Connectivity
– Security
– Reliability
– Fault tolerance

 2004 Deitel & Associates, Inc. All rights reserved.

17.2.1 Performance and Scalability

• Centralized system
– A single server handles all user requests

• Distributed system
– User requests can be sent to different servers working in parallel

to increase performance

• Scalability
– Allows a distributed system to grow (i.e., add more machines to

the system) without affecting the existing applications and users

4

 2004 Deitel & Associates, Inc. All rights reserved.

17.2.2 Connectivity and Security

• Distributed systems
– Susceptible to attacks by malicious users if they rely on insecure

communications media

• To improve security:
– Allow only authorized users to access resources
– Ensure that information transmitted over the network is readable

only by the intended recipients
– Provide mechanisms to protect resources from attack

 2004 Deitel & Associates, Inc. All rights reserved.

17.2.3 Reliability and Fault Tolerance

• Fault tolerance
– Implemented by providing replication of resources across the

system

• Replication
– Offers users increased reliability and availability over single-

machine implementations
– Designers must provide mechanisms to ensure consistency

among the state information at different machines

5

 2004 Deitel & Associates, Inc. All rights reserved.

17.2.4 Transparency

• Access transparency
– Hides the details of networking protocols that enable communication

between distributed computers

• Location transparency
– Builds on access transparency to hide the location of resources in the

distributed system

• Failure transparency
– Method by which a distributed system provides fault tolerance
– Checkpointing

• Periodically stores the state of an object such that it can be restored if a
failure in the distributed system results in the loss of the object

– Replication
• A system provides multiple resources that perform the same function

 2004 Deitel & Associates, Inc. All rights reserved.

17.2.4 Transparency

• Replication transparency
– Hides the fact that multiple copies of a resource are available in the system

• Persistence transparency
– Hides the information about where the resource is stored—memory or disk

• Migration and relocation transparency
– Hide the movement of components of a distributed system
– Migration transparency

• Masks the movement of an object from one location to another in the system
– Relocation transparency

• Masks the relocation of an object from other objects that communicate with it

• Transaction transparency
– Allows a system to achieve consistency by masking the coordination among a

set of resources
– Hides the implementation of checkpointing and other consistency mechanisms

6

 2004 Deitel & Associates, Inc. All rights reserved.

17.2.5 Network Operating Systems

• Network OS
– Accesses resources on remote computers that run independent

operating systems
– Not responsible for resource management at remote locations
– Distributed functions are explicit rather than transparent

• A user or process must explicitly specify the resource’s location to
retrieve a networked file or remotely execute an application

– Lack of transparency in network OSs
• Disadvantage: Does not provide some of the benefits of distributed

OSs
• Advantage: Easier to implement than distributed OSs

 2004 Deitel & Associates, Inc. All rights reserved.

17.2.6 Distributed Operating Systems

• Distributed OSs
– Manage resources located in multiple networked computers
– Employ many of the same communication methods, file system

structures and other protocols found in network operating
systems

– Transparent communication
• Objects in the system are unaware of the separate computers that

provide the service (unlike network operating systems)
– Rare to find a “truly” distributed system because the high level

of transparency is difficult to achieve

7

 2004 Deitel & Associates, Inc. All rights reserved.

17.3 Communication in Distributed Systems

• Designers must establish interoperability between
heterogeneous computers and applications

• Interoperability
– Permits software components to interact among different

• hardware and software platforms
• programming languages
• communication protocols

• Standardized interface
– Allows each client/server pair to communicate using a single,

common interface that is understood by both sides

 2004 Deitel & Associates, Inc. All rights reserved.

17.3.1 Middleware

• Software in distributed systems helps provide:
– Portability

• Enables the movement of a system or component from one
environment (including both hardware and software) to another
without changing the system or component being moved

– Transparency
– Interoperability

• Provides standard programming interfaces to enable
interprocess communication between remote
computers

8

 2004 Deitel & Associates, Inc. All rights reserved.

17.3.2 Remote Procedure Call (RPC)

• RPC
– Allows a process executing on one computer to invoke a

procedure in a process executing on another computer
– Goal of RPC

• To simplify the process of writing distributed applications by
preserving the syntax of a local procedure call while transparently
initiating network communication

 2004 Deitel & Associates, Inc. All rights reserved.

17.3.2 Remote Procedure Call (RPC)

• To issue an RPC:
– Client process makes a call to the procedure in the client stub
– Client stub performs marshaling of data to package procedure

arguments along with the procedure name into a message for
transmission over a network

– Client stub passes the message to the server
– Server transmits the message to the server stub

9

 2004 Deitel & Associates, Inc. All rights reserved.

17.3.2 Remote Procedure Call (RPC)

• To issue an RPC (Cont.):
– Message is unmarshaled
– Stub sends the parameters to the appropriate local procedure
– When the procedure has completed, the server stub marshals the

result and sends it back to the client
– Finally, the client stub unmarshals the result, notifies the process

and passes it the result

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 17.1 RPC Communication model.

17.3.2 Remote Procedure Call (RPC)

10

 2004 Deitel & Associates, Inc. All rights reserved.

17.3.3 Remote Method Invocation (RMI)

• RMI
– Enables a Java process executing on one computer to

invoke a method of an object on a remote computer using
the same syntax as a local method call

– Similar to RPC, the details of parameter marshaling and
message transport in RMI are transparent to the calling
program

– The stub/skeleton layer of RMI contains parameter-
marshaling structures analogous to the client and server
stubs of RPC

– The stub employs object serialization
• Enables programs to pass Java objects as parameters and receive

objects as return values

 2004 Deitel & Associates, Inc. All rights reserved.

17.3.3 Remote Method Invocation (RMI)

• RMI (cont.)
– The remote reference layer (RRL) and the transport layer of RMI

work together to send the marshaled message between the client
and the server

– The skeleton unmarshals the parameters, identifies the object on
which the method is to be invoked and calls that method

– Upon completion of the method, the skeleton marshals the result
and returns it to the client via the RRL and stub

11

 2004 Deitel & Associates, Inc. All rights reserved.

17.3.4 CORBA (Common Object Request Broker
Architecture)

• CORBA
– Open standard designed to enable interoperation among

programs in heterogeneous as well as homogeneous systems
– Supports objects as parameters or return values in remote

procedures during interprocess communication

 2004 Deitel & Associates, Inc. All rights reserved.

17.3.4 CORBA (Common Object Request Broker
Architecture)

• CORBA implementation
– The process on the client passes the procedure call along with

the required arguments to the client stub
– The client stub marshals the parameters and sends the procedure

call through its Object Request Broker (ORB), which
communicates with the ORB on the server

– CORBA provides programmers language independence with the
Interface Definition Language (IDL), which allows them to
strictly define the procedures that can be called on the object

12

 2004 Deitel & Associates, Inc. All rights reserved.

17.3.5 DCOM (Distributed Component Object Model)

• DCOM
– Designed to allow software components residing on remote

computers to interact with one another
– As in CORBA, objects in DCOM are accessed via interfaces
– Unlike CORBA, however, DCOM objects may have multiple

interfaces
– When a client requests a DCOM object from a server, the client

must also request a specific interface of the object

 2004 Deitel & Associates, Inc. All rights reserved.

17.3.6 Process Migration in Distributed Systems

• Process migration
– Transfers a process between two computers in a distributed

system
– Allows processes to exploit a remote resource
– A complicated task that often reduces the performance of the

process that is being migrated

• Process cloning
– Similar to process migration
– Instead of transferring a process to a remote location, a new

copy of the process is created on the remote machine

13

 2004 Deitel & Associates, Inc. All rights reserved.

17.4 Synchronization in Distributed Systems

• Determining the order in which events occur is difficult
– Communication delays in a distributed network are unpredictable

• Causal ordering
– Ensures that all processes recognize that a causally dependent event

must occur only after the event on which it is dependent
– Implemented by the happens-before relation:

• If events a and b belong to the same process, then a → b if a occurred
before b

• If event a is the sending of a message and event b is the receiving of that
message, then a → b

• This relation is transitive
– Only a partial ordering

• Events for which it cannot be determined which occurred earlier are said to
be concurrent

 2004 Deitel & Associates, Inc. All rights reserved.

17.4 Synchronization in Distributed Systems

• Total ordering
– Ensures that all events are ordered and that causality is preserved
– Can be implemented through a logical clock that assigns a timestamp to

each event that occurs in the system
– Scalar logical clocks synchronize the logical clocks on remote hosts

and ensure causality

14

 2004 Deitel & Associates, Inc. All rights reserved.

17.5 Mutual Exclusion in Distributed Systems

• Various synchronization methods implemented to
enforce mutual exclusion in distributed systems
– Message passing
– Agrawala and Ricart’s distributed mutual exclusion algorithm

 2004 Deitel & Associates, Inc. All rights reserved.

17.5.1 Mutual Exclusion without Shared Memory

• In environments with no shared memory, mutual
exclusion must be implemented via message passing

• To synchronize the system, message-passing systems
use clock synchronization concepts to employ:
– FIFO broadcast

• Guarantees that when two messages are sent from one process to
another, the message that was sent first will arrive first

– Causal broadcast
• Ensures that when message m1 is causally dependent on message

m2, then no process delivers m1 before delivering m2

– Atomic broadcast
• Guarantees that all messages in a system are received in the same

order at each process

15

 2004 Deitel & Associates, Inc. All rights reserved.

17.5.2 Agrawala and Ricart’s
Distributed Mutual Exclusion Algorithm

• Before a process can enter its critical section:
– The process first must send a request message to all other processes in

the system
– The process must receive a response from each of these processes

• When a process receives a request to enter a critical section
and has not sent a request of its own, it sends a reply

 2004 Deitel & Associates, Inc. All rights reserved.

17.5.2 Agrawala and Ricart’s
Distributed Mutual Exclusion Algorithm

• If the process has sent its own request, it compares the
timestamps of the two requests
– If the process’s own request has a later timestamp than the other

request, it sends a reply
– If the process’s own request has a earlier timestamp than the other

request, it delays its reply
– Finally, if the timestamps of the requests are equal, the process

compares its process number to that of the requesting process
• If its own number is higher, it sends a response, otherwise it delays its

response

16

 2004 Deitel & Associates, Inc. All rights reserved.

17.6 Deadlock in Distributed Systems

• Distributed deadlock
– Occurs when processes spread over different computers in a

network wait for events that will not occur

 2004 Deitel & Associates, Inc. All rights reserved.

17.6.1 Distributed Deadlock

• Three types of distributed deadlock:
– Resource deadlock

• As discussed in Chapter 7
– Communication deadlock

• Circular waiting for communication signals
– Phantom deadlock

• Due to the communications delay associated with distributed
computing, it is possible that a deadlock detection algorithm might
detect a deadlock (called phantom deadlock, a perceived deadlock)
that does not exist

• Although this form of deadlock cannot immediately cause the
system to fail, it is a source of inefficiency

17

 2004 Deitel & Associates, Inc. All rights reserved.

17.6.2 Deadlock Prevention

• Two algorithms designed to prevent deadlock
– Rely on ordering processes based on when each process was started
– Wound-wait strategy

• Breaks deadlock by denying the no-preemption condition
• A process will wait for another process if the first process was created

before the other
• A process will wound (restart) another process if the first process was

created after the other
– Wait-die strategy

• Breaks deadlock by denying the wait-for condition
• A process will wait for another process if the first process was created after

the other process
• A process will die (restart) itself if it was created before the other process

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 17.2 Wound-wait strategy.

17.6.2 Deadlock Prevention

18

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 17.3 Wait-die strategy.

17.6.2 Deadlock Prevention

 2004 Deitel & Associates, Inc. All rights reserved.

17.6.3 Deadlock Detection

• Central deadlock detection
– Entire system monitored by one dedicated site
– Whenever a process requests or releases a resource it informs the

central site, which continuously checks the system for cycles
– DDAs for central detection are simple to implement and are efficient

for LANs
– Disadvantages:

• The system may experience decreased performance (the central site
becomes a bottleneck)

• Not fault tolerant—the central site becomes the system’s single point of
failure

19

 2004 Deitel & Associates, Inc. All rights reserved.

17.6.3 Deadlock Detection

• Hierarchical deadlock detection
– Arranges each site in the system as a node in a tree
– Each node, except a leaf node, collects the resource allocation

information for its children
– Tree structure helps to improve fault tolerance
– More efficient

• Because deadlock detection is divided into hierarchies and clusters, sites
that do not introduce the possibility of deadlock for a resource do not have
to participate in deadlock detection for that resource

 2004 Deitel & Associates, Inc. All rights reserved.

17.6.3 Deadlock Detection

• Distributed deadlock detection
– Places the responsibility of deadlock detection with each site
– Each site in the system queries all other sites to determine

whether any other sites are involved in deadlock
– This is the most fault-tolerant method of deadlock detection

• Failure of one site will not cause any other site to fail

20

 2004 Deitel & Associates, Inc. All rights reserved.

17.6.4 A Distributed Resource Deadlock Algorithm

• Johnston, et al.’s simple algorithm for deadlock
detection in distributed systems:
– Each process keeps track of the transaction wait-for graph

(TWFG) of which they are involved
– When a process requests a resource that is being held by another

process, the requesting process blocks and the TWFG is updated
– As this happens, any deadlocks are detected and removed

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 17.4 System without deadlocks.

17.6.4 A Distributed Resource Deadlock Algorithm

21

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 17.5 Deadlock is introduced to the system.

17.6.4 A Distributed Resource Deadlock Algorithm

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 17.6 System after deadlock has been eliminated.

17.6.4 A Distributed Resource Deadlock Algorithm

22

 2004 Deitel & Associates, Inc. All rights reserved.

17.7 Case Study: The Sprite Distributed Operating System

• Sprite
– Large numbers of personal workstations are connected and

many computers could be idle at any given time
– Idle workstations allow Sprite to use process migration to

balance the workload of the system
– When the central migration server is notified that a

workstation is idle, it will migrate a process to that target
computer

– When the user of the target computer returns, the
workstation notifies the central migration server about the
return, and the process is migrated back to the home
computer

 2004 Deitel & Associates, Inc. All rights reserved.

17.7 Case Study: The Sprite Distributed Operating System

• Sprite (cont.)
– The Sprite kernel provides more location-independent calls by

providing the exact same view of the file system for each
workstation

– When a location-dependent call is required:
• The system either forwards the call to the home computer for

evaluation
or

• The system transfers the process’s state information from the home
computer to the target computer

– The Sprite file system also caches files on both the server and
client sides

23

 2004 Deitel & Associates, Inc. All rights reserved.

17.8 Case Study: The Amoeba Distributed Operating
System

• Amoeba:
– Users share processors located in one or more processor pools
– When a user issues a command to execute a process, the

processor pool dynamically allocates the processors for the user
– When the user process terminates, the user returns the allocated

processors to the processor pool

 2004 Deitel & Associates, Inc. All rights reserved.

17.8 Case Study: The Amoeba Distributed Operating
System

• Amoeba (cont.)
– Provides transparency by hiding the number and location of

processors from the user
– Amoeba supports two forms of communication:

• Point-to-point communication
– A client stub sends a request message to the server stub and

blocks, awaiting the server reply
• Group communication

– Messages are sent to all receivers in exactly the same order

24

 2004 Deitel & Associates, Inc. All rights reserved.

17.8 Case Study: The Amoeba Distributed Operating
System

• The Amoeba file system
– Standard file server called the bullet server which has a large

primary memory
– The files stored in the bullet server are immutable
– If a file is modified, a new file is created to replace the old one,

and the old one is deleted from the server
– The bullet server also stores files contiguously on the disk so that

it can transfer files faster than Sprite

