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Objectives

• After reading this chapter, you should understand:
– the need for distributed computing.
– fundamental properties and desirable characteristics of 

distributed systems.
– remote communication in distributed systems.
– synchronization, mutual exclusion and deadlock in distributed 

systems.
– examples of distributed operating systems.
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17.1 Introduction

• Distributed systems
– Remote computers cooperate via a network to appear as a local 

machine
– Users are given the impression that they are interacting with just 

one machine
– Spread computation and storage throughout a network of 

computers
– Applications are able to execute code on local machines and 

remote machines and to share data, files and other resources 
among these machines
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17.2 Attributes of Distributed Systems

• Importance of distributed systems has been stressed 
for decades

• Explosion of the Internet has made distributed 
systems common

• Attributes of distributed systems:
– Performance
– Scalability
– Connectivity
– Security
– Reliability
– Fault tolerance
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17.2.1 Performance and Scalability

• Centralized system
– A single server handles all user requests

• Distributed system
– User requests can be sent to different servers working in parallel 

to increase performance

• Scalability 
– Allows a distributed system to grow (i.e., add more machines to 

the system) without affecting the existing applications and users
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17.2.2 Connectivity and Security

• Distributed systems 
– Susceptible to attacks by malicious users if they rely on insecure 

communications media

• To improve security:
– Allow only authorized users to access resources 
– Ensure that information transmitted over the network is readable

only by the intended recipients
– Provide mechanisms to protect resources from attack
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17.2.3 Reliability and Fault Tolerance

• Fault tolerance 
– Implemented by providing replication of resources across the 

system

• Replication
– Offers users increased reliability and availability over single-

machine implementations
– Designers must provide mechanisms to ensure consistency 

among the state information at different machines
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17.2.4 Transparency

• Access transparency
– Hides the details of networking protocols that enable communication 

between distributed computers

• Location transparency
– Builds on access transparency to hide the location of resources in the 

distributed system

• Failure transparency
– Method by which a distributed system provides fault tolerance
– Checkpointing

• Periodically stores the state of an object such that it can be restored if a 
failure in the distributed system results in the loss of the object

– Replication
• A system provides multiple resources that perform the same function
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17.2.4 Transparency

• Replication transparency
– Hides the fact that multiple copies of a resource are available in the system

• Persistence transparency
– Hides the information about where the resource is stored—memory or disk

• Migration and relocation transparency 
– Hide the movement of components of a distributed system
– Migration transparency

• Masks the movement of an object from one location to another in the system
– Relocation transparency 

• Masks the relocation of an object from other objects that communicate with it

• Transaction transparency 
– Allows a system to achieve consistency by masking the coordination among a 

set of resources
– Hides the implementation of checkpointing and other consistency mechanisms
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17.2.5 Network Operating Systems

• Network OS
– Accesses resources on remote computers that run independent 

operating systems
– Not responsible for resource management at remote locations 
– Distributed functions are explicit rather than transparent

• A user or process must explicitly specify the resource’s location to 
retrieve a networked file or remotely execute an application

– Lack of transparency in network OSs
• Disadvantage: Does not provide some of the benefits of distributed 

OSs
• Advantage: Easier to implement than distributed OSs
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17.2.6 Distributed Operating Systems

• Distributed OSs
– Manage resources located in multiple networked computers
– Employ many of the same communication methods, file system 

structures and other protocols found in network operating 
systems

– Transparent communication 
• Objects in the system are unaware of the separate computers that

provide the service (unlike network operating systems)
– Rare to find a “truly” distributed system because the high level

of transparency is difficult to achieve
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17.3 Communication in Distributed Systems

• Designers must establish interoperability between 
heterogeneous computers and applications

• Interoperability
– Permits software components to interact among different 

• hardware and software platforms 
• programming languages
• communication protocols

• Standardized interface
– Allows each client/server pair to communicate using a single, 

common interface that is understood by both sides
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17.3.1 Middleware

• Software in distributed systems helps provide:
– Portability

• Enables the movement of a system or component from one 
environment (including both hardware and software) to another 
without changing the system or component being moved

– Transparency
– Interoperability

• Provides standard programming interfaces to enable 
interprocess communication between remote 
computers
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17.3.2 Remote Procedure Call (RPC)

• RPC
– Allows a process executing on one computer to invoke a 

procedure in a process executing on another computer
– Goal of RPC

• To simplify the process of writing distributed applications by 
preserving the syntax of a local procedure call while transparently 
initiating network communication
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17.3.2 Remote Procedure Call (RPC)

• To issue an RPC:
– Client process makes a call to the procedure in the client stub
– Client stub performs marshaling of data to package procedure 

arguments along with the procedure name into a message for 
transmission over a network

– Client stub passes the message to the server
– Server transmits the message to the server stub
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17.3.2 Remote Procedure Call (RPC)

• To issue an RPC (Cont.):
– Message is unmarshaled
– Stub sends the parameters to the appropriate local procedure
– When the procedure has completed, the server stub marshals the 

result and sends it back to the client
– Finally, the client stub unmarshals the result, notifies the process 

and passes it the result
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Figure 17.1 RPC Communication model.

17.3.2 Remote Procedure Call (RPC)
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17.3.3 Remote Method Invocation (RMI)

• RMI
– Enables a Java process executing on one computer to 

invoke a method of an object on a remote computer using 
the same syntax as a local method call

– Similar to RPC, the details of parameter marshaling and 
message transport in RMI are transparent to the calling 
program

– The stub/skeleton layer of RMI contains parameter-
marshaling structures analogous to the client and server 
stubs of RPC

– The stub employs object serialization
• Enables programs to pass Java objects as parameters and receive 

objects as return values
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17.3.3 Remote Method Invocation (RMI)

• RMI (cont.)
– The remote reference layer (RRL) and the transport layer of RMI 

work together to send the marshaled message between the client 
and the server

– The skeleton unmarshals the parameters, identifies the object on 
which the method is to be invoked and calls that method

– Upon completion of the method, the skeleton marshals the result 
and returns it to the client via the RRL and stub
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17.3.4 CORBA (Common Object Request Broker 
Architecture)

• CORBA
– Open standard designed to enable interoperation among 

programs in heterogeneous as well as homogeneous systems
– Supports objects as parameters or return values in remote 

procedures during interprocess communication 
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17.3.4 CORBA (Common Object Request Broker 
Architecture)

• CORBA implementation
– The process on the client passes the procedure call along with 

the required arguments to the client stub
– The client stub marshals the parameters and sends the procedure 

call through its Object Request Broker (ORB), which 
communicates with the ORB on the server

– CORBA provides programmers language independence with the 
Interface Definition Language (IDL), which allows them to 
strictly define the procedures that can be called on the object
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17.3.5 DCOM (Distributed Component Object Model)

• DCOM
– Designed to allow software components residing on remote 

computers to interact with one another
– As in CORBA, objects in DCOM are accessed via interfaces
– Unlike CORBA, however, DCOM objects may have multiple 

interfaces
– When a client requests a DCOM object from a server, the client 

must also request a specific interface of the object

 2004 Deitel & Associates, Inc.  All rights reserved.

17.3.6 Process Migration in Distributed Systems

• Process migration 
– Transfers a process between two computers in a distributed 

system 
– Allows processes to exploit a remote resource
– A complicated task that often reduces the performance of the 

process that is being migrated

• Process cloning
– Similar to process migration
– Instead of transferring a process to a remote location, a new  

copy of the process is created on the remote machine
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17.4 Synchronization in Distributed Systems

• Determining the order in which events occur is difficult
– Communication delays in a distributed network are unpredictable

• Causal ordering
– Ensures that all processes recognize that a causally dependent event 

must occur only after the event on which it is dependent
– Implemented by the happens-before relation:

• If events a and b belong to the same process, then a → b if a occurred 
before b

• If event a is the sending of a message and event b is the receiving of that 
message, then a → b

• This relation is transitive
– Only a partial ordering

• Events for which it cannot be determined which occurred earlier are said to 
be concurrent
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17.4 Synchronization in Distributed Systems

• Total ordering 
– Ensures that all events are ordered and that causality is preserved
– Can be implemented through a logical clock that assigns a timestamp to 

each event that occurs in the system
– Scalar logical clocks synchronize the logical clocks on remote hosts 

and ensure causality
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17.5 Mutual Exclusion in Distributed Systems

• Various synchronization methods implemented to 
enforce mutual exclusion in distributed systems
– Message passing
– Agrawala and Ricart’s distributed mutual exclusion algorithm
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17.5.1 Mutual Exclusion without Shared Memory

• In environments with no shared memory, mutual 
exclusion must be implemented via message passing

• To synchronize the system, message-passing systems 
use clock synchronization concepts to employ:
– FIFO broadcast 

• Guarantees that when two messages are sent from one process to 
another, the message that was sent first will arrive first

– Causal broadcast 
• Ensures that when message m1 is causally dependent on message 

m2, then no process delivers m1 before delivering m2

– Atomic broadcast
• Guarantees that all messages in a system are received in the same 

order at each process
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17.5.2 Agrawala and Ricart’s
Distributed Mutual Exclusion Algorithm

• Before a process can enter its critical section:
– The process first must send a request message to all other processes in 

the system
– The process must receive a response from each of these processes

• When a process receives a request to enter a critical section 
and has not sent a request of its own, it sends a reply
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17.5.2 Agrawala and Ricart’s
Distributed Mutual Exclusion Algorithm

• If the process has sent its own request, it compares the 
timestamps of the two requests
– If the process’s own request has a later timestamp than the other 

request, it sends a reply
– If the process’s own request has a earlier timestamp than the other 

request, it delays its reply
– Finally, if the timestamps of the requests are equal, the process 

compares its process number to that of the requesting process
• If its own number is higher, it sends a response, otherwise it delays its 

response
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17.6 Deadlock in Distributed Systems

• Distributed deadlock 
– Occurs when processes spread over different computers in a 

network wait for events that will not occur
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17.6.1 Distributed Deadlock

• Three types of distributed deadlock: 
– Resource deadlock

• As discussed in Chapter 7
– Communication deadlock

• Circular waiting for communication signals
– Phantom deadlock

• Due to the communications delay associated with distributed 
computing, it is possible that a deadlock detection algorithm might 
detect a deadlock (called phantom deadlock, a perceived deadlock) 
that does not exist

• Although this form of deadlock cannot immediately cause the 
system to fail, it is a source of inefficiency
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17.6.2 Deadlock Prevention

• Two algorithms designed to prevent deadlock
– Rely on ordering processes based on when each process was started
– Wound-wait strategy

• Breaks deadlock by denying the no-preemption condition
• A process will wait for another process if the first process was created 

before the other
• A process will wound (restart) another process if the first process was 

created after the other
– Wait-die strategy

• Breaks deadlock by denying the wait-for condition
• A process will wait for another process if the first process was created after 

the other process
• A process will die (restart) itself if it was created before the other process
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Figure 17.2 Wound-wait strategy.

17.6.2 Deadlock Prevention
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Figure 17.3 Wait-die strategy.

17.6.2 Deadlock Prevention
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17.6.3 Deadlock Detection

• Central deadlock detection
– Entire system monitored by one dedicated site
– Whenever a process requests or releases a resource it informs the 

central site, which continuously checks the system for cycles
– DDAs for central detection are simple to implement and are efficient

for LANs
– Disadvantages:

• The system may experience decreased performance (the central site 
becomes a bottleneck)

• Not fault tolerant—the central site becomes the system’s single point of 
failure
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17.6.3 Deadlock Detection

• Hierarchical deadlock detection 
– Arranges each site in the system as a node in a tree
– Each node, except a leaf node, collects the resource allocation 

information for its children
– Tree structure helps to improve fault tolerance
– More efficient

• Because deadlock detection is divided into hierarchies and clusters, sites 
that do not introduce the possibility of deadlock for a resource do not have 
to participate in deadlock detection for that resource

 2004 Deitel & Associates, Inc.  All rights reserved.

17.6.3 Deadlock Detection

• Distributed deadlock detection 
– Places the responsibility of deadlock detection with each site
– Each site in the system queries all other sites to determine 

whether any other sites are involved in deadlock
– This is the most fault-tolerant method of deadlock detection 

• Failure of one site will not cause any other site to fail
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17.6.4 A Distributed Resource Deadlock Algorithm

• Johnston, et al.’s simple algorithm for deadlock 
detection in distributed systems: 
– Each process keeps track of the transaction wait-for graph 

(TWFG) of which they are involved
– When a process requests a resource that is being held by another

process, the requesting process blocks and the TWFG is updated
– As this happens, any deadlocks are detected and removed
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Figure 17.4 System without deadlocks.

17.6.4 A Distributed Resource Deadlock Algorithm



21

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 17.5 Deadlock is introduced to the system.

17.6.4 A Distributed Resource Deadlock Algorithm
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Figure 17.6 System after deadlock has been eliminated.

17.6.4 A Distributed Resource Deadlock Algorithm
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17.7 Case Study: The Sprite Distributed Operating System

• Sprite
– Large numbers of personal workstations are connected and 

many computers could be idle at any given time
– Idle workstations allow Sprite to use process migration to 

balance the workload of the system
– When the central migration server is notified that a 

workstation is idle, it will migrate a process to that target 
computer

– When the user of the target computer returns, the 
workstation notifies the central migration server about the 
return, and the process is migrated back to the home 
computer
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17.7 Case Study: The Sprite Distributed Operating System

• Sprite (cont.)
– The Sprite kernel provides more location-independent calls by 

providing the exact same view of the file system for each 
workstation

– When a location-dependent call is required:
• The system either forwards the call to the home computer for 

evaluation
or 

• The system transfers the process’s state information from the home 
computer to the target computer

– The Sprite file system also caches files on both the server and 
client sides
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17.8 Case Study: The Amoeba Distributed Operating 
System

• Amoeba:
– Users share processors located in one or more processor pools
– When a user issues a command to execute a process, the 

processor pool dynamically allocates the processors for the user
– When the user process terminates, the user returns the allocated

processors to the processor pool
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17.8 Case Study: The Amoeba Distributed Operating 
System

• Amoeba (cont.)
– Provides transparency by hiding the number and location of 

processors from the user
– Amoeba supports two forms of communication:

• Point-to-point communication
– A client stub sends a request message to the server stub and 

blocks, awaiting the server reply
• Group communication

– Messages are sent to all receivers in exactly the same order



24

 2004 Deitel & Associates, Inc.  All rights reserved.

17.8 Case Study: The Amoeba Distributed Operating 
System

• The Amoeba file system 
– Standard file server called the bullet server which has a large 

primary memory
– The files stored in the bullet server are immutable
– If a file is modified, a new file is created to replace the old one, 

and the old one is deleted from the server
– The bullet server also stores files contiguously on the disk so that 

it can transfer files faster than Sprite


