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Objectives

• After reading this chapter, you should understand:
– multiprocessor architectures and operating system organizations.
– multiprocessor memory architectures.
– design issues specific to multiprocessor environments.
– algorithms for multiprocessor scheduling.
– process migration in multiprocessor systems.
– load balancing in multiprocessor systems.
– mutual exclusion techniques for multiprocessor systems.

 2004 Deitel & Associates, Inc.  All rights reserved.

15.1 Introduction

• Multiprocessor system 
– Computer that contains more than one processor
– Benefits

• Increased processing power
• Scale resource use to application requirements

– Additional operating system responsibilities
• All processors remain busy
• Even distribution of processes throughout the system
• All processors work on consistent copies of shared data
• Execution of related processes synchronized
• Mutual exclusion enforced



3

 2004 Deitel & Associates, Inc.  All rights reserved.

15.2 Multiprocessor Architecture

• Examples of multiprocessors
– Dual-processor personal computer
– Powerful server containing many processors
– Cluster of workstations

• Classifications of multiprocessor architecture
– Nature of datapath
– Interconnection scheme
– How processors share resources
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15.2.1 Classifying Sequential and Parallel 
Architectures

• Stream: sequence of bytes
– Data stream
– Instruction stream

• Flynn’s classifications
– Single-instruction-stream, single-data-stream (SISD) computers

• Typical uniprocessors
• Parallelism through pipelines, superscalar, VLIW, HT-technology

– Multiple-instruction-stream, single-data-stream (MISD) computers
• Not used often

– Single-instruction-stream, multiple-data-stream (SIMD) computers
• Vector and array processors

– Multiple-instruction-stream, multiple-data-stream (MIMD) computers
• Multiprocessors
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15.2.2 Processor Interconnection Schemes

• Interconnection scheme
– Describes how the system’s components, such as processors and 

memory modules, are connected
– Consists of nodes (components or switches) and links 

(connections)
– Parameters used to evaluate interconnection schemes

• Node degree
• Bisection width
• Network diameter
• Cost of the interconnection scheme
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15.2.2 Processor Interconnection Schemes

• Shared bus
– Single communication path between all nodes
– Contention can build up for shared bus
– Fast for small multiprocessors
– Form supernodes by connecting several components with a 

shared bus; use a more scalable interconnection scheme to 
connect supernodes

– Dual-processor Intel Pentium
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Figure 15.1 Shared bus multiprocessor organization.

15.2.2 Processor Interconnection Schemes
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15.2.2 Processor Interconnection Schemes

• Crossbar-switch matrix
– Separate path from every processor to every memory module (or 

from every to every other node when nodes consist of both 
processors and memory modules)

– High fault tolerance, performance and cost
– Sun UltraSPARC-III
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Figure 15.2 Crossbar-switch matrix multiprocessor organization.

15.2.2 Processor Interconnection Schemes
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15.2.2 Processor Interconnection Schemes

• 2-D mesh network
– n rows and m columns, in which a node is connected to nodes 

directly north, south, east and west of it
– Relatively cheap
– Moderate performance and fault tolerance
– Intel Paragon

• Hypercube
– n-dimensional hypercube has 2n nodes in which each node is 

connected to n neighbor nodes
– Faster, more fault tolerant, but more expensive than a 2-D mesh 

network
– nCUBE (up to 8192 processors)



7

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 15.3 4-connected 2-D mesh network.

15.2.2 Processor Interconnection Schemes
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Figure 15.4 3- and 4-dimensional hypercubes.

15.2.2 Processor Interconnection Schemes
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15.2.2 Processor Interconnection Schemes

• Multistage network
– Switch nodes act as hubs routing messages between nodes
– Cheaper, less fault tolerant, worse performance compared to a 

crossbar-switch matrix
– IBM POWER4
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Figure 15.5 Multistage baseline network.

15.2.2 Processor Interconnection Schemes
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15.2.3 Loosely Coupled vs. Tightly Coupled 
Systems

• Tightly coupled systems
– Processors share most resources including memory
– Communicate over shared buses using shared physical memory

• Loosely coupled systems
– Processors do not share most resources
– Most communication through explicit messages or shared virtual 

memory (although not shared physical memory)

• Comparison
– Loosely coupled systems: more flexible, fault tolerant, scalable
– Tightly coupled systems: more efficient, less burden to operating 

system programmers
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Figure 15.6 Tightly coupled system.

15.2.3 Loosely Coupled vs. Tightly Coupled Systems
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Figure 15.7 Loosely coupled system.

15.2.3 Loosely Coupled vs. Tightly Coupled Systems
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15.3 Multiprocessor Operating System 
Organizations

• Can classify systems based on how processors share 
operating system responsibilities

• Three types
– Master/slave
– Separate kernels
– Symmetrical organization
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15.3.1 Master/Slave

• Master/Slave organization
– Master processor executes the operating system
– Slaves execute only user processors
– Hardware asymmetry
– Low fault tolerance
– Good for computationally intensive jobs
– Example: nCUBE system
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Figure 15.8 Master/slave multiprocessing.

15.3.1 Master/save
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15.3.2 Separate Kernels

• Separate kernels organization
– Each processor executes its own operating system
– Some globally shared operating system data
– Loosely coupled
– Catastrophic failure unlikely, but failure of one processor results 

in termination of processes on that processor
– Little contention over resources
– Example: Tandem system
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15.3.3 Symmetrical Organization

• Symmetrical organization
– Operating system manages a pool of identical processors
– High amount of resource sharing
– Need for mutual exclusion
– Highest degree of fault tolerance of any organization
– Some contention for resources
– Example: BBN Butterfly
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15.4 Memory Access Architectures

• Memory access
– Can classify multiprocessors based on how processors share 

memory
– Goal: Fast memory access from all processors to all memory

• Contention in large systems makes this impractical
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15.4.1 Uniform Memory Access

• Uniform memory access (UMA) multiprocessor
– All processors share all memory
– Access to any memory page is nearly the same for all processors 

and all memory modules (disregarding cache hits)
– Typically uses shared bus or crossbar-switch matrix
– Also called symmetric multiprocessing (SMP)
– Small multiprocessors (typically two to eight processors)
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Figure 15.9 UMA multiprocessor.

15.4.1 Uniform Memory Access
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15.4.2 Nonuniform Memory Access

• Nonuniform memory access (NUMA) multiprocessor
– Each node contains a few processors and a portion of system 

memory, which is local to that node
– Access to local memory faster than access to global memory 

(rest of memory)
– More scalable than UMA (fewer bus collisions)
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Figure 15.10 NUMA multiprocessor.

15.4.2 Nonuniform Memory Access
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15.4.3 Cache-Only Memory Architecture

• Cache-only memory architecture (COMA) 
multiprocessor
– Physically interconnected as a NUMA is

• Local memory vs. global memory
– Main memory is viewed as a cache and called an attraction 

memory (AM)
• Allows system to migrate data to node that most often accesses it at 

granularity of a memory line (more efficient than a memory page)
• Reduces the number of cache misses serviced remotely
• Overhead

– Duplicated data items
– Complex protocol to ensure all updates are received at all 

processors
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Figure 15.11 COMA multiprocessor.

15.4.3 Cache-Only Memory Architecture
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15.4.4 No Remote Memory Access 

• No-remote-memory-access (NORMA) 
multiprocessor
– Does not share physical memory
– Some implement the illusion of shared physical memory—

shared virtual memory (SVM)
– Loosely coupled
– Communication through explicit messages
– Distributed systems
– Not networked system
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Figure 15.12 NORMA multiprocessor.

15.4.4 No Remote Memory Access 
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15.5 Multiprocessor Memory Sharing

• Memory coherence
– Value read from a memory address = value last written to that 

address
– Cache coherency

• Strategies to increase percentage of local memory hits
– Page migration
– Page replication
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15.5.1 Cache Coherence

• UMA cache coherence
– Bus snooping
– Centralized directory
– Only one processor can cache a data item

• CC-NUMA cache coherence
– Small systems—use UMA protocols
– Large systems—home-based coherence

• Each address is associated with a home node
• Contact home node on reads and writes to receive most updated 

version of data
• Three network traversals per coherency operation
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15.5.2 Page Replication and Migration

• Page replication
– System places a copy of a memory page at a new node
– Good for pages read by processes at different nodes, but not 

written
• Page migration 

– System moves a memory page from one node to another
– Good for pages written to by a single remote process

• Increases percentage of local memory hits
• Drawbacks

– Memory overhead – duplicated pages, page access histories
– Replicating and migrating more expensive than remotely 

referencing so only useful if referenced again
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15.5.3 Shared Virtual Memory

• Shared VM:
– Illusion of shared physical memory
– Coherency Protocols

• Invalidation
• Write broadcast

– When to apply protocols
• Sequential consistency
• Relaxed consistency

– Release and lazy release consistency
– Home-based consistency
– Delayed consistency
– Lazy data propagation
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15.6 Multiprocessor Scheduling

• Determines the order and to which processors 
processes are dispatched

• Two goals
– Parallelism – timesharing scheduling
– Processor affinity – space-partitioning scheduling

• Soft affinity
• Hard affinity

• Types of scheduling algorithms
– Job-blind
– Job-aware
– Per-processor or per-node run queues
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15.6.1 Job-Blind Multiprocessor Scheduling

• Job-blind MP scheduling
– Global run queues
– Straightforward extension of uniprocessor algorithms
– Examples

• First-in-first out (FIFO) multiprocessor scheduling
• Round-robin process (RRprocess) multiprocessor scheduling
• Shortest process first (SPF) multiprocessor scheduling
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15.6.2 Job-Aware Multiprocessor Scheduling

• Job-aware MP scheduling
– Global run queues
– Algorithms that maximize parallelism

• Shortest-number-of-processes-first (SNPF) scheduling
• Round-robin job (RRjob) scheduling
• Coscheduling

– Processes from the same job placed in adjacent spots in the 
global run queue

– Sliding window moves down run queue running adjacent 
processes that fit into window (size = number of processors)

– Algorithms that maximize processor affinity
• Dynamic partitioning
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Figure 15.13 Coscheduling (undivided version).

15.6.2 Job-Aware Multiprocessor Scheduling
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Figure 15.14 Dynamic partitioning.

15.6.2 Job-Aware Multiprocessor Scheduling
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15.7 Process Migration

• Transferring a process from one node to another node
• Benefits of process migration

– Increases fault tolerance
– Load balancing
– Reduces communication costs
– Resource sharing
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15.7.1 Flow of Process Migration

• Process’s state includes
– Pages marked as valid in virtual memory
– Register contents
– State of opened files

• Flow of migration
– Either sender or receiver initiates request
– Sender suspends migrating process
– Sender creates message queue for migrating process’s messages
– Sender transmits state to a “dummy” process at the receiver
– Sender and receiver notify other nodes of process’s new location
– Sender deletes its instance of the process
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Figure 15.15 Process migration.

15.7.1 Flow of Process Migration

 2004 Deitel & Associates, Inc.  All rights reserved.

15.7.2 Process Migration Concepts

• Residual dependency – process’s dependency on its 
former node
– Leaving residual dependency makes initial migration faster
– Slows execution of process at new node, reduces fault tolerance

• Characteristics of a successful migration strategy
– Minimal residual dependency
– Transparent
– Scalable
– Fault tolerant
– Heterogeneous
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15.7.3 Process Migration Strategies

• Eager migration
– Transfer entire state during initial migration

• Dirty eager migration
– Only transfer dirty memory pages
– Clean pages brought in from secondary storage

• Copy-on reference migration
– Similar to dirty eager except clean pages can also be acquired 

from sending node

• Lazy copying
– No memory transfer
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15.7.3 Process Migration Strategies

• Flushing migration
– Flush all dirty pages to disk before migration
– Transfer no memory pages during initial migration

• Precopy migration
– Begin transferring memory pages before suspending process
– Migrate once dirty pages reach a lower threshold
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15.8 Load Balancing

• Load balancing
– System attempts to distribute the processing load evenly among 

processors
– Reduces variance in response times
– Ensures no processors remain idle while other processors are 

overloaded
– Two types

• Static load balancing
• Dynamic load balancing
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15.8.1 Static Load Balancing

• Static load balancing:
– Useful in environments in which jobs exhibit predictable 

patterns
– Goals

• Distribute the load
• Reduce communication costs

– Solve using a graph
– Must use approximations for large systems to balance loads with 

reasonable overhead
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Figure 15.16 Static load balancing using graphs.

15.8.1 Static Load Balancing
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15.8.2 Dynamic Load Balancing

• Dynamic load balancing
– More useful than static load balancing in environments where 

communication patterns change and processes are created or 
terminated unpredictably

– Types of policies
• Sender-initiated
• Receiver-initiated
• Symmetric
• Random

– Algorithms
• Bidding algorithm
• Drafting algorithm
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15.8.2 Dynamic Load Balancing

• Communication issues
– Communication with remote nodes can have long delays; load 

on a processor might change in this time
– Coordination between processors to balance load creates many 

messages
– Can overload the system
– Solution

• Only communicate with neighbor nodes
• Load diffuses throughout the system
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Figure 15.17 Processor load diffusion. (Part 1 of 2.)

15.8.2 Dynamic Load Balancing
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Figure 15.17 Processor load diffusion. (Part 2 of 2.)

15.8.2 Dynamic Load Balancing
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15.9 Multiprocessor Mutual Exclusion

• MP mutual exclusion
– Not all uniprocessor mutual exclusion techniques work for 

multiprocessors
– Some do not ensure mutual exclusion

• Example: disabling interrupts
– Some are too inefficient

• Example: test-and-set
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15.9.1 Spin Locks

• Spin lock: waiting processes busy-wait for lock
– Wastes processor cycles
– Ensures quick response to lock release (reduces context 

switches)

• Delayed blocking: spin for a short time, then block
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15.9.1 Spin Locks

• Advisable process lock (APL) 
– Lock holder specifies time it will hold the lock
– Waiting processes can decide whether to block or spin

• Adaptive (or configurable) locks: lock holder can 
change the type of lock
– Spin locks when system load is low
– Blocking locks when system load is high
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15.9.2 Sleep/Wakeup Locks

• Sleep/wakeup lock
– Processes waiting for the lock sleep
– Upon release, lock holder wakes next process, which obtains the 

lock
– Eliminates several problems with blocking locks in 

multiprocessors
• Race condition
• Thundering herd
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15.9.3 Read/Write Locks

• Read/write lock
– Multiple processes (readers) can hold the lock in shared mode
– One process (writer) can hold the lock in exclusive mode
– Can be used to solve the readers-and-writers problem


