
1

 2004 Deitel & Associates, Inc. All rights reserved.

Chapter 15 – Multiprocessor Management

Outline
15.1 Introduction
15.2 Multiprocessor Architecture
15.2.1 Classifying Sequential and Parallel Architectures
15.2.2 Processor Interconnection Schemes
15.2.3 Loosely Coupled vs. Tightly Coupled Systems
15.3 Multiprocessor Operating System Organizations
15.3.1 Master/Slave
15.3.2 Separate Kernels
15.3.3 Symmetrical Organization
15.4 Memory Access Architectures
15.4.1 Uniform Memory Access
15.4.2 Nonuniform Memory Access
15.4.3 Cache-Only Memory Architecture
15.4.4 No Remote Memory Access
15.5 Multiprocessor Memory Sharing
15.5.1 Cache Coherence
15.5.2 Page Replication and Migration
15.5.3 Shared Virtual Memory

 2004 Deitel & Associates, Inc. All rights reserved.

Chapter 15 – Multiprocessor Management

Outline (continued)
15.6 Multiprocessor Scheduling
15.6.1 Job-Blind Multiprocessor Scheduling
15.6.2 Job-Aware Multiprocessor Scheduling
15.7 Process Migration
15.7.1 Flow of Process Migration
15.7.2 Process Migration Concepts
15.7.3 Process Migration Strategies
15.8 Load Balancing
15.8.1 Static Load Balancing
15.8.2 Dynamic Load Balancing
15.9 Multiprocessor Mutual Exclusion
15.9.1 Spin Locks
15.9.2 Sleep/Wakeup Locks
15.9.3 Read/Write Locks

2

 2004 Deitel & Associates, Inc. All rights reserved.

Objectives

• After reading this chapter, you should understand:
– multiprocessor architectures and operating system organizations.
– multiprocessor memory architectures.
– design issues specific to multiprocessor environments.
– algorithms for multiprocessor scheduling.
– process migration in multiprocessor systems.
– load balancing in multiprocessor systems.
– mutual exclusion techniques for multiprocessor systems.

 2004 Deitel & Associates, Inc. All rights reserved.

15.1 Introduction

• Multiprocessor system
– Computer that contains more than one processor
– Benefits

• Increased processing power
• Scale resource use to application requirements

– Additional operating system responsibilities
• All processors remain busy
• Even distribution of processes throughout the system
• All processors work on consistent copies of shared data
• Execution of related processes synchronized
• Mutual exclusion enforced

3

 2004 Deitel & Associates, Inc. All rights reserved.

15.2 Multiprocessor Architecture

• Examples of multiprocessors
– Dual-processor personal computer
– Powerful server containing many processors
– Cluster of workstations

• Classifications of multiprocessor architecture
– Nature of datapath
– Interconnection scheme
– How processors share resources

 2004 Deitel & Associates, Inc. All rights reserved.

15.2.1 Classifying Sequential and Parallel
Architectures

• Stream: sequence of bytes
– Data stream
– Instruction stream

• Flynn’s classifications
– Single-instruction-stream, single-data-stream (SISD) computers

• Typical uniprocessors
• Parallelism through pipelines, superscalar, VLIW, HT-technology

– Multiple-instruction-stream, single-data-stream (MISD) computers
• Not used often

– Single-instruction-stream, multiple-data-stream (SIMD) computers
• Vector and array processors

– Multiple-instruction-stream, multiple-data-stream (MIMD) computers
• Multiprocessors

4

 2004 Deitel & Associates, Inc. All rights reserved.

15.2.2 Processor Interconnection Schemes

• Interconnection scheme
– Describes how the system’s components, such as processors and

memory modules, are connected
– Consists of nodes (components or switches) and links

(connections)
– Parameters used to evaluate interconnection schemes

• Node degree
• Bisection width
• Network diameter
• Cost of the interconnection scheme

 2004 Deitel & Associates, Inc. All rights reserved.

15.2.2 Processor Interconnection Schemes

• Shared bus
– Single communication path between all nodes
– Contention can build up for shared bus
– Fast for small multiprocessors
– Form supernodes by connecting several components with a

shared bus; use a more scalable interconnection scheme to
connect supernodes

– Dual-processor Intel Pentium

5

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 15.1 Shared bus multiprocessor organization.

15.2.2 Processor Interconnection Schemes

 2004 Deitel & Associates, Inc. All rights reserved.

15.2.2 Processor Interconnection Schemes

• Crossbar-switch matrix
– Separate path from every processor to every memory module (or

from every to every other node when nodes consist of both
processors and memory modules)

– High fault tolerance, performance and cost
– Sun UltraSPARC-III

6

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 15.2 Crossbar-switch matrix multiprocessor organization.

15.2.2 Processor Interconnection Schemes

 2004 Deitel & Associates, Inc. All rights reserved.

15.2.2 Processor Interconnection Schemes

• 2-D mesh network
– n rows and m columns, in which a node is connected to nodes

directly north, south, east and west of it
– Relatively cheap
– Moderate performance and fault tolerance
– Intel Paragon

• Hypercube
– n-dimensional hypercube has 2n nodes in which each node is

connected to n neighbor nodes
– Faster, more fault tolerant, but more expensive than a 2-D mesh

network
– nCUBE (up to 8192 processors)

7

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 15.3 4-connected 2-D mesh network.

15.2.2 Processor Interconnection Schemes

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 15.4 3- and 4-dimensional hypercubes.

15.2.2 Processor Interconnection Schemes

8

 2004 Deitel & Associates, Inc. All rights reserved.

15.2.2 Processor Interconnection Schemes

• Multistage network
– Switch nodes act as hubs routing messages between nodes
– Cheaper, less fault tolerant, worse performance compared to a

crossbar-switch matrix
– IBM POWER4

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 15.5 Multistage baseline network.

15.2.2 Processor Interconnection Schemes

9

 2004 Deitel & Associates, Inc. All rights reserved.

15.2.3 Loosely Coupled vs. Tightly Coupled
Systems

• Tightly coupled systems
– Processors share most resources including memory
– Communicate over shared buses using shared physical memory

• Loosely coupled systems
– Processors do not share most resources
– Most communication through explicit messages or shared virtual

memory (although not shared physical memory)

• Comparison
– Loosely coupled systems: more flexible, fault tolerant, scalable
– Tightly coupled systems: more efficient, less burden to operating

system programmers

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 15.6 Tightly coupled system.

15.2.3 Loosely Coupled vs. Tightly Coupled Systems

10

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 15.7 Loosely coupled system.

15.2.3 Loosely Coupled vs. Tightly Coupled Systems

 2004 Deitel & Associates, Inc. All rights reserved.

15.3 Multiprocessor Operating System
Organizations

• Can classify systems based on how processors share
operating system responsibilities

• Three types
– Master/slave
– Separate kernels
– Symmetrical organization

11

 2004 Deitel & Associates, Inc. All rights reserved.

15.3.1 Master/Slave

• Master/Slave organization
– Master processor executes the operating system
– Slaves execute only user processors
– Hardware asymmetry
– Low fault tolerance
– Good for computationally intensive jobs
– Example: nCUBE system

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 15.8 Master/slave multiprocessing.

15.3.1 Master/save

12

 2004 Deitel & Associates, Inc. All rights reserved.

15.3.2 Separate Kernels

• Separate kernels organization
– Each processor executes its own operating system
– Some globally shared operating system data
– Loosely coupled
– Catastrophic failure unlikely, but failure of one processor results

in termination of processes on that processor
– Little contention over resources
– Example: Tandem system

 2004 Deitel & Associates, Inc. All rights reserved.

15.3.3 Symmetrical Organization

• Symmetrical organization
– Operating system manages a pool of identical processors
– High amount of resource sharing
– Need for mutual exclusion
– Highest degree of fault tolerance of any organization
– Some contention for resources
– Example: BBN Butterfly

13

 2004 Deitel & Associates, Inc. All rights reserved.

15.4 Memory Access Architectures

• Memory access
– Can classify multiprocessors based on how processors share

memory
– Goal: Fast memory access from all processors to all memory

• Contention in large systems makes this impractical

 2004 Deitel & Associates, Inc. All rights reserved.

15.4.1 Uniform Memory Access

• Uniform memory access (UMA) multiprocessor
– All processors share all memory
– Access to any memory page is nearly the same for all processors

and all memory modules (disregarding cache hits)
– Typically uses shared bus or crossbar-switch matrix
– Also called symmetric multiprocessing (SMP)
– Small multiprocessors (typically two to eight processors)

14

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 15.9 UMA multiprocessor.

15.4.1 Uniform Memory Access

 2004 Deitel & Associates, Inc. All rights reserved.

15.4.2 Nonuniform Memory Access

• Nonuniform memory access (NUMA) multiprocessor
– Each node contains a few processors and a portion of system

memory, which is local to that node
– Access to local memory faster than access to global memory

(rest of memory)
– More scalable than UMA (fewer bus collisions)

15

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 15.10 NUMA multiprocessor.

15.4.2 Nonuniform Memory Access

 2004 Deitel & Associates, Inc. All rights reserved.

15.4.3 Cache-Only Memory Architecture

• Cache-only memory architecture (COMA)
multiprocessor
– Physically interconnected as a NUMA is

• Local memory vs. global memory
– Main memory is viewed as a cache and called an attraction

memory (AM)
• Allows system to migrate data to node that most often accesses it at

granularity of a memory line (more efficient than a memory page)
• Reduces the number of cache misses serviced remotely
• Overhead

– Duplicated data items
– Complex protocol to ensure all updates are received at all

processors

16

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 15.11 COMA multiprocessor.

15.4.3 Cache-Only Memory Architecture

 2004 Deitel & Associates, Inc. All rights reserved.

15.4.4 No Remote Memory Access

• No-remote-memory-access (NORMA)
multiprocessor
– Does not share physical memory
– Some implement the illusion of shared physical memory—

shared virtual memory (SVM)
– Loosely coupled
– Communication through explicit messages
– Distributed systems
– Not networked system

17

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 15.12 NORMA multiprocessor.

15.4.4 No Remote Memory Access

 2004 Deitel & Associates, Inc. All rights reserved.

15.5 Multiprocessor Memory Sharing

• Memory coherence
– Value read from a memory address = value last written to that

address
– Cache coherency

• Strategies to increase percentage of local memory hits
– Page migration
– Page replication

18

 2004 Deitel & Associates, Inc. All rights reserved.

15.5.1 Cache Coherence

• UMA cache coherence
– Bus snooping
– Centralized directory
– Only one processor can cache a data item

• CC-NUMA cache coherence
– Small systems—use UMA protocols
– Large systems—home-based coherence

• Each address is associated with a home node
• Contact home node on reads and writes to receive most updated

version of data
• Three network traversals per coherency operation

 2004 Deitel & Associates, Inc. All rights reserved.

15.5.2 Page Replication and Migration

• Page replication
– System places a copy of a memory page at a new node
– Good for pages read by processes at different nodes, but not

written
• Page migration

– System moves a memory page from one node to another
– Good for pages written to by a single remote process

• Increases percentage of local memory hits
• Drawbacks

– Memory overhead – duplicated pages, page access histories
– Replicating and migrating more expensive than remotely

referencing so only useful if referenced again

19

 2004 Deitel & Associates, Inc. All rights reserved.

15.5.3 Shared Virtual Memory

• Shared VM:
– Illusion of shared physical memory
– Coherency Protocols

• Invalidation
• Write broadcast

– When to apply protocols
• Sequential consistency
• Relaxed consistency

– Release and lazy release consistency
– Home-based consistency
– Delayed consistency
– Lazy data propagation

 2004 Deitel & Associates, Inc. All rights reserved.

15.6 Multiprocessor Scheduling

• Determines the order and to which processors
processes are dispatched

• Two goals
– Parallelism – timesharing scheduling
– Processor affinity – space-partitioning scheduling

• Soft affinity
• Hard affinity

• Types of scheduling algorithms
– Job-blind
– Job-aware
– Per-processor or per-node run queues

20

 2004 Deitel & Associates, Inc. All rights reserved.

15.6.1 Job-Blind Multiprocessor Scheduling

• Job-blind MP scheduling
– Global run queues
– Straightforward extension of uniprocessor algorithms
– Examples

• First-in-first out (FIFO) multiprocessor scheduling
• Round-robin process (RRprocess) multiprocessor scheduling
• Shortest process first (SPF) multiprocessor scheduling

 2004 Deitel & Associates, Inc. All rights reserved.

15.6.2 Job-Aware Multiprocessor Scheduling

• Job-aware MP scheduling
– Global run queues
– Algorithms that maximize parallelism

• Shortest-number-of-processes-first (SNPF) scheduling
• Round-robin job (RRjob) scheduling
• Coscheduling

– Processes from the same job placed in adjacent spots in the
global run queue

– Sliding window moves down run queue running adjacent
processes that fit into window (size = number of processors)

– Algorithms that maximize processor affinity
• Dynamic partitioning

21

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 15.13 Coscheduling (undivided version).

15.6.2 Job-Aware Multiprocessor Scheduling

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 15.14 Dynamic partitioning.

15.6.2 Job-Aware Multiprocessor Scheduling

22

 2004 Deitel & Associates, Inc. All rights reserved.

15.7 Process Migration

• Transferring a process from one node to another node
• Benefits of process migration

– Increases fault tolerance
– Load balancing
– Reduces communication costs
– Resource sharing

 2004 Deitel & Associates, Inc. All rights reserved.

15.7.1 Flow of Process Migration

• Process’s state includes
– Pages marked as valid in virtual memory
– Register contents
– State of opened files

• Flow of migration
– Either sender or receiver initiates request
– Sender suspends migrating process
– Sender creates message queue for migrating process’s messages
– Sender transmits state to a “dummy” process at the receiver
– Sender and receiver notify other nodes of process’s new location
– Sender deletes its instance of the process

23

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 15.15 Process migration.

15.7.1 Flow of Process Migration

 2004 Deitel & Associates, Inc. All rights reserved.

15.7.2 Process Migration Concepts

• Residual dependency – process’s dependency on its
former node
– Leaving residual dependency makes initial migration faster
– Slows execution of process at new node, reduces fault tolerance

• Characteristics of a successful migration strategy
– Minimal residual dependency
– Transparent
– Scalable
– Fault tolerant
– Heterogeneous

24

 2004 Deitel & Associates, Inc. All rights reserved.

15.7.3 Process Migration Strategies

• Eager migration
– Transfer entire state during initial migration

• Dirty eager migration
– Only transfer dirty memory pages
– Clean pages brought in from secondary storage

• Copy-on reference migration
– Similar to dirty eager except clean pages can also be acquired

from sending node

• Lazy copying
– No memory transfer

 2004 Deitel & Associates, Inc. All rights reserved.

15.7.3 Process Migration Strategies

• Flushing migration
– Flush all dirty pages to disk before migration
– Transfer no memory pages during initial migration

• Precopy migration
– Begin transferring memory pages before suspending process
– Migrate once dirty pages reach a lower threshold

25

 2004 Deitel & Associates, Inc. All rights reserved.

15.8 Load Balancing

• Load balancing
– System attempts to distribute the processing load evenly among

processors
– Reduces variance in response times
– Ensures no processors remain idle while other processors are

overloaded
– Two types

• Static load balancing
• Dynamic load balancing

 2004 Deitel & Associates, Inc. All rights reserved.

15.8.1 Static Load Balancing

• Static load balancing:
– Useful in environments in which jobs exhibit predictable

patterns
– Goals

• Distribute the load
• Reduce communication costs

– Solve using a graph
– Must use approximations for large systems to balance loads with

reasonable overhead

26

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 15.16 Static load balancing using graphs.

15.8.1 Static Load Balancing

 2004 Deitel & Associates, Inc. All rights reserved.

15.8.2 Dynamic Load Balancing

• Dynamic load balancing
– More useful than static load balancing in environments where

communication patterns change and processes are created or
terminated unpredictably

– Types of policies
• Sender-initiated
• Receiver-initiated
• Symmetric
• Random

– Algorithms
• Bidding algorithm
• Drafting algorithm

27

 2004 Deitel & Associates, Inc. All rights reserved.

15.8.2 Dynamic Load Balancing

• Communication issues
– Communication with remote nodes can have long delays; load

on a processor might change in this time
– Coordination between processors to balance load creates many

messages
– Can overload the system
– Solution

• Only communicate with neighbor nodes
• Load diffuses throughout the system

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 15.17 Processor load diffusion. (Part 1 of 2.)

15.8.2 Dynamic Load Balancing

28

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 15.17 Processor load diffusion. (Part 2 of 2.)

15.8.2 Dynamic Load Balancing

 2004 Deitel & Associates, Inc. All rights reserved.

15.9 Multiprocessor Mutual Exclusion

• MP mutual exclusion
– Not all uniprocessor mutual exclusion techniques work for

multiprocessors
– Some do not ensure mutual exclusion

• Example: disabling interrupts
– Some are too inefficient

• Example: test-and-set

29

 2004 Deitel & Associates, Inc. All rights reserved.

15.9.1 Spin Locks

• Spin lock: waiting processes busy-wait for lock
– Wastes processor cycles
– Ensures quick response to lock release (reduces context

switches)

• Delayed blocking: spin for a short time, then block

 2004 Deitel & Associates, Inc. All rights reserved.

15.9.1 Spin Locks

• Advisable process lock (APL)
– Lock holder specifies time it will hold the lock
– Waiting processes can decide whether to block or spin

• Adaptive (or configurable) locks: lock holder can
change the type of lock
– Spin locks when system load is low
– Blocking locks when system load is high

30

 2004 Deitel & Associates, Inc. All rights reserved.

15.9.2 Sleep/Wakeup Locks

• Sleep/wakeup lock
– Processes waiting for the lock sleep
– Upon release, lock holder wakes next process, which obtains the

lock
– Eliminates several problems with blocking locks in

multiprocessors
• Race condition
• Thundering herd

 2004 Deitel & Associates, Inc. All rights reserved.

15.9.3 Read/Write Locks

• Read/write lock
– Multiple processes (readers) can hold the lock in shared mode
– One process (writer) can hold the lock in exclusive mode
– Can be used to solve the readers-and-writers problem

