

15.2.1 Classifying Sequential and Parallel Architectures

- Stream: sequence of bytes
 - Data stream
 - Instruction stream
- Flynn's classifications
 - Single-instruction-stream, single-data-stream (SISD) computers
 - · Typical uniprocessors
 - Parallelism through pipelines, superscalar, VLIW, HT-technology
 - Multiple-instruction-stream, single-data-stream (MISD) computers
 - · Not used often
 - Single-instruction-stream, multiple-data-stream (SIMD) computers
 - · Vector and array processors
 - Multiple-instruction-stream, multiple-data-stream (MIMD) computers
 - Multiprocessors

15.2.2 Processor Interconn Figure 15.1 Shared bus multiproces	
M M Shared bus	M – Memory module P c – Processor with private cache
9 2004 Deitel & Associates, Inc. All rights reserved.	

15.2.3 Loosely Coupled vs. Tightly Coupled Systems

- Tightly coupled systems
 - Processors share most resources including memory
 - Communicate over shared buses using shared physical memory
- Loosely coupled systems
 - Processors do not share most resources
 - Most communication through explicit messages or shared virtual memory (although not shared physical memory)
- Comparison
 - Loosely coupled systems: more flexible, fault tolerant, scalable
 - Tightly coupled systems: more efficient, less burden to operating system programmers

© 2004 Deitel & Associates, Inc. All rights reserved.

15.4.1 Uniform Memor	-
Figure 15.9 UMA multiproce	
M M Interconnection network	M – Memory module P – Processor with private cache
2004 Deitel & Associates, Inc. All rights reserved.	

Figure 15.10 NUMA mult	tiprocessor.
PC	M – Memory module
Interconnection network	P - Processor with private cache

	Figure 15.11 COMA multiprocessor.									
	P C	P c	AM – Attraction memory							
	AM	AM	P _ P Processor with private cache							
In	terconnection netw	ork								
AM	AM									
РС	PC									

-					-						1			-	+-	
1	1	1	2	2	3	3	3	3	3	3	4	4	4	5		Global rui queue
			-		-	~		_	-		-)			+ -	
			low f					indov antu								
6	~	-	,									-	~	_	,	
	nd th												thre			
	essor												esses	i + 2		

© 2004 Deitel & Associates, Inc. All rights reserved.

