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Objectives

• After reading this chapter, you should understand:
– the need for performance measures.
– common performance metrics.
– several techniques for measuring relative system 

performance.
– the notions of bottlenecks, saturation and feedback.
– popular architectural design philosophies for processors.
– processor design techniques that increase performance.
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14.1 Introduction

• Performance evaluation is useful for
– Consumers
– Developers
– Users

• System performance is affected by
– Software, particularly the operating system
– Hardware, particularly processors
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14.2 Important Trends Affecting Performance 
Issues

• Early days of computing: performance evaluation 
almost exclusively for hardware

• Now: software must be evaluated too
• Raw measures influential (e.g., GHz)
• Industry standardization
• Evaluation tools becoming more sophisticated

 2004 Deitel & Associates, Inc.  All rights reserved.

14.3 Why Performance Monitoring and Evaluation 
are Needed

• Common purposes of performance evaluation
– Selection evaluation
– Performance projection
– Performance monitoring

• Performance evaluation useful when:
– Developing a system
– Deciding whether to buy or upgrade
– System tuning



4

 2004 Deitel & Associates, Inc.  All rights reserved.

14.4 Performance Measures

• Two types of measures
– Absolute performance measures (e.g., throughput)
– Relative performance measures (e.g., ease of use)

• Common performance measures:
– Turnaround time = time from when a job is submitted to when a 

result is returned
– Response time = time from when a user enters a request until the

system displays a response
– System reaction time = time from when a user enters a request 

until the first time slice of service is given to that user request

• Represented by random variables
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14.4 Performance Measures

• Other commonly employed performance measures:
– Variance in response time = how closely individual response 

times are to the mean response time
– Throughput = work per unit time
– Workload = amount of work submitted to a system; the system is 

evaluated in relation to a specified workload.
– Capacity = maximum throughput
– Utilization = fraction of time a resource is in use
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14.5 Performance Evaluation Techniques

• Different techniques for different purposes
• Some evaluate the system as a whole
• Some isolate the performance of individual 

subsystems, components, functions or instructions
• Thorough evaluation involves using more than one 

technique
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14.5.1 Tracing and Profiling

• Trace
– Record of system activity, typically a log of user or application 

requests to the operating system
– Characterizes a system’s execution environment
– Manipulate to test for “what if” scenarios
– Standard traces

• Can be used to compare systems that execute in a similar 
environment

• Standard traces are difficult to obtain because
– Traces proprietary to installation where recorded
– Subtle differences between environments can make an impact 

on performance, hindering the portability of traces
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14.5.1 Tracing and Profiling

• Profile
– Record of system activity in kernel mode (e.g., process 

scheduling and I/O management)
– Indicate which primitives are most heavily used and should be 

optimized
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14.5.2 Timings and Microbenchmarks

• Timing
– Raw performance measure (e.g., cycles per second or 

instructions per second)
– Quick comparisons between hardware
– Comparisons between members of the same family of computers 

(e.g., Pentiums)

• Microbenchmark
– Measures the time required to perform a specific operating 

system operation (e.g., process creation)
– Also used for system operations (e.g., read/write bandwidth)
– Only used for measuring small aspects of system performance, 

not the system’s performance as a whole
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14.5.2 Timings and Microbenchmarks

• Microbenchmark suites
– Programs that contain a number of microbenchmarks to test 

different instructions and operations of a system
– lmbench

• Compare system performance between different UNIX platforms
• Several limitations

– Timings too coarse (used a software clock) for some tests
– Statistics reporting was not uniform

– hbench
• Analyzes the relationship between operating system primitives and 

hardware components
• Corrected some of the limitations of lmbench
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14.5.3 Application-Specific Evaluation

• Vector-based methodology
– System vector

• Microbenchmark test for each primitive
• Vector consists of the results of these tests

– Application vector
• Profile the system when running the target application
• Vector consists of the demand on each primitive

– Performance of the system obtained by
• For each element in the system vector, multiply it by the element in 

the application vector that corresponds to the same primitive
• Sum the results



8

 2004 Deitel & Associates, Inc.  All rights reserved.

14.5.3 Application-Specific Evaluation

• Hybrid methodology
– Combines the vector-based methodology with a trace
– Useful for system’s whose execution environment depends not 

only the target application, but on the stream of user requests 
(e.g., a Web server)

• Kernel program
– A simple algorithm (e.g., matrix inversion) or an entire program
– Executed “on paper” using manufacturer’s timings
– Useful for consumers who have not yet purchased a system
– Not commonly used anymore
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14.5.4 Analytic Models

• Analytic models
– Mathematical representations of computer systems
– Examples: those of queuing theory and Markov processes
– Pros

• A large body of results exist that can be applied to new models
• Can be relatively fast and accurate

– Cons
• Systems often too complex to model exactly
• Evaluator must be a skilled mathematician

– Must use other techniques to validate results
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14.5.5 Benchmarks

• Production program or industry-standard benchmark
– Run to completion and timed on target machine
– Pros

• Run on the actual machine so human error minimal
• Capture most aspects of a system and its environment
• Typically already exist so easy to use

– Characteristics of a good benchmark
• Produces nearly the same result each run on the same machine
• Relevant to the types of applications executed on target system
• Widely used
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14.5.5 Benchmarks

• Standard Performance Evaluation Corporation 
(SPEC)
– Develops industry-standard benchmarks, called SPECmarks
– Publishes thousands of results per month
– Criticized because workloads not relevant enough to actual 

workloads on systems being tested
– Continually works to develop more relevant benchmarks
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14.5.5 Benchmarks

• Other Industry-standard benchmarks
– Business Application Performance Corporation (BAPCo): 

SYSmark, MobileMark, WebMark
– Transaction Processing Performance Council (TPC) benchmarks 

for database systems
– Standard Application (SAP) benchmarks evaluating scalability
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14.5.6 Synthetic Programs

• Synthetic programs
– Programs constructed for a specific purpose (not a real program)

• To test a specific component
• To approximate the instruction mix of an application or group of

applications
– Useful for isolating the performance of specific components, but

not the system as a whole
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14.5.6 Synthetic Programs

• Examples of synthetic programs
– Whetstone (floating point calculations), no longer used
– Dhrystone (execution of system programs), no longer used
– WinBench 99 (graphics, disk and video subsystems in a 

Windows environment)
– IOStone (file systems)
– Hartstone (real-time systems)
– STREAM (memory subsystem)
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14.5.7 Simulation

• Simulation
– Computerized model of a system
– Useful in performance projection
– Results of a simulation must be validated
– Two types

• Event driven simulators – controlled by events made to occur 
according to a probability distribution

• Script-driven simulators – controlled by data carefully manipulated 
to reflect the system’s anticipated environment

– Common errors
• Bugs in the simulator
• Deliberate omissions (due to complexity)
• Imprecise modeling
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14.5.8 Performance Monitoring

• Performance monitoring
– Can locate inefficiencies in a system that administrators or 

developers can remove
– Software monitors

• Windows Task Manager and Linux proc file system
• Might distort results because these program require system 

resources
– Hardware monitors

• Use counting registers
• Record events such as TLB misses, clock ticks and memory 

operations
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Figure 14.1 Summary of performance evaluation techniques.

14.5.8 Performance Monitoring
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14.6 Bottlenecks and Saturation

• Bottleneck
– Resource that performs its designated task slowly relative to 

other resources
– Degrades system performance
– Arrival rate > service rate
– Removing a bottleneck might not increase performance if there 

are other bottlenecks

• Saturated resource
– Processes competing for use of the resource interfere with each 

other’s execution
– Thrashing occurs when memory is saturated
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14.7 Feedback Loops

• Feedback loop
– Technique in which information about the current state of the 

system can affect arriving requests
– Negative feedback implies resource is saturated
– Positive feedback implies resource is underutilized
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14.7.1 Negative Feedback

• Negative feedback
– Arrival rate a resource might decrease as a result of negative 

feedback
– Examples:

• Multiple print servers
• Print servers with long queues cause negative feedback
• Jobs go to other print servers 

– Contributes to system stability
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14.7.2 Positive Feedback

• Positive feedback
– Arrival rate a resource might increase as a result of positive 

feedback
– Might be misleading

• E.g., Processor utilization is low might cause the scheduler to admit 
more processes to that processor’s queue

• Low utilization might be due to thrashing
• Admitting more processes causes more thrashing and worse 

performance
• Designers must be cautious of these types of situations
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14.8 Performance Techniques in Processor 
Design

• Conceptually, a processor can be divided into:
– Instruction set
– Hardware implementation

• Instruction Set Architecture (ISA)
– Interface that describes the processor
– Instruction set, number of registers, etc.
– Like an API exposed by the processor
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14.8.1Complex Instruction Set Computing (CISC)

• Complex instruction set computing (CISC)
– Incorporate frequently used sections of code into single machine

language instructions
– Makes assembly code writing easier
– Saves memory
– Optimizes the execution of complex functions
– Popular until mid-1980s
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14.8.1 Complex Instruction Set Computing (CISC)

• Characteristics of CISC processors
– Many instructions
– Instruction decoded by firmware
– Few general purpose registers
– Examples: Pentium, Athlon

• Pipelining
– Divides a processor’s datapath into discrete stages
– One instruction per stage per clock cycle
– Increases parallelism and hence processor performance
– Originally developed for CISC processors
– First pipeline: IBM 7030 (“Stretch”)
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14.8.2 Reduced Instruction Set Computing (RISC)

• Studies revealed that only a few simple instructions 
accounted for nearly all instructions executed by a 
processor
– IBM System/370 – 10 most frequently executed instructions 

accounted for 2/3 of instructions executed
– IBM Series/1 - programmers tended to generate “semantically 

equivalent instruction sequences”
– Provided compelling evidence for reduced instruction set 

computing (RISC)
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Figure 14.2 The ten most frequently executed instructions on IBM’s System/370 
architecture. (Courtesy of International Business Machines Corporation.)

14.8.2 Reduced Instruction Set Computing (RISC)
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14.8.2 Reduced Instruction Set Computing (RISC)

• RISC
– Few instructions 
– Complexity in the software
– Instruction decode hardwired
– All instructions a fixed size (typically, one machine word)
– All instructions require nearly the same amount execution time
– Many general purpose registers

• RISC performance gains vs. CISC
– Better use of pipelines
– Delayed branching
– Common instructions execute fast
– Fewer memory accesses
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14.8.2 Reduced Instruction Set Computing (RISC)

• RISC performance losses vs. CISC
– Longer context switch time
– Consume more memory
– Slower for complex operations such as floating point

• Examples
– SPARC
– MIPS
– G5
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Figure 14.3 RISC and CISC comparison.

14.8.2 Reduced Instruction Set Computing (RISC)
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14.8.3 Post-RISC Processors

• Modern processors
– Stray from traditional RISC and CISC designs
– Include anything that increases performance
– Common names: post-RISC, second generation RISC and fast 

instruction set computing (FISC)
– Some do not agree that RISC and CISC designs converged

• RISC convergence to CISC
– Superscalar architecture
– Out of order execution (OOO)
– Branch prediction
– On-chip floating point and vector support
– Additional, infrequently used instructions
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14.8.3 Post-RISC Processors

• CISC convergence to RISC
– Core RISC instruction set
– All instructions decoded to RISC instructions (e.g., Pentium)
– Complex instructions only included to provide backwards 

compatibility
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14.8.4 Explicitly Parallel Instruction Computing 
(EPIC)

• Motivations
– Hardware complexity from superscalar architectures do not scale 

well
– Exploit instruction-level parallelism (ILP)

• Characteristics
– Many execution units
– Borrows from superscalar and VLIW techniques
– Compiler decides path of execution; no OOO
– Multi-op instructions
– Branch predication
– Speculative loading
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Figure 14.4 Instruction execution in an (a) EPIC processor and (b) post-RISC processor.

14.8.4 Explicitly Parallel Instruction Computing 
(EPIC)


